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Abstract

The coupling between cell-cycle exit and onset of differentiation is a common feature throughout the developing
nervous system, but the mechanisms that link these processes are mostly unknown. Although the transcription factor
Pax6 has been implicated in both proliferation and differentiation of multiple regions within the central nervous
system (CNS), its contribution to the transition between these successive states remains elusive. To gain insight into
the role of Pax6 during the transition from proliferating progenitors to differentiating precursors, we investigated cell-
cycle and transcriptomic changes occurring in Pax6- retinal progenitor cells (RPCs). Our analyses revealed a unique
cell-cycle phenotype of the Pax6-deficient RPCs, which included a reduced number of cells in the S phase, an
increased number of cells exiting the cell cycle, and delayed differentiation kinetics of Pax6- precursors. These
alterations were accompanied by coexpression of factors that promote (Ccnd1, Ccnd2, Ccnd3) and inhibit (P27kip1

and P27kip2) the cell cycle. Further characterization of the changes in transcription profile of the Pax6-deficient RPCs
revealed abrogated expression of multiple factors which are known to be involved in regulating proliferation of RPCs,
including the transcription factors Vsx2, Nr2e1, Plagl1 and Hedgehog signaling. These findings provide novel insight
into the molecular mechanism mediating the pleiotropic activity of Pax6 in RPCs. The results further suggest that
rather than conveying a linear effect on RPCs, such as promoting their proliferation and inhibiting their differentiation,
Pax6 regulates multiple transcriptional networks that function simultaneously, thereby conferring the capacity to
proliferate, assume multiple cell fates and execute the differentiation program into retinal lineages.
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Introduction

During retinal development in vertebrates, a single pool of
rapidly proliferating multipotent retinal progenitors cells (RPCs)
gives rise to six different types of neurons and the Muller glia.
Differentiation of all retinal cell types occurs in an evolutionarily
conserved order and begins after terminal exit from the cell
cycle [1-3]. Neurogenesis and progenitor proliferation occur
simultaneously, thus at any given developmental stage some
RPCs exit the cell cycle and differentiate while others continue
to divide. The rate of proliferation and the fraction of RPCs that
exit the cell cycle determine the size of the remaining
progenitor pool as well as the number of each type of neuron
generated. Thus, tight regulation of cell-cycle progression and
exit is required to ensure the timely generation and correct
amount of the various retinal cell types.

One of the greatest challenges in studying the regulation of
RPC proliferation is the close coupling and interdependence of
cell-cycle exit, cell-fate specification and neuronal
differentiation. Thus, factors promoting neurogenesis or altering
the cell fate acquired by ensuing postmitotic precursors may
also directly regulate cell-cycle components or affect the timing
of cell-cycle exit. For example, this dual activity was reported
for the proneural gene Neurog2, which was found to promote
neuronal differentiation in the spinal cord and at the same time
suppress the expression of cell-cycle genes such as Ccnd1 [4].
Similarly, Ccnd1, which promotes cell-cycle progression, was
recently found to play a role in cell-fate acquisition and in
establishing the correct proportion of the various retinal cell
types [5].

The paired and homeodomain-containing transcription factor
(TF) Pax6 has been one of the most extensively investigated
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factors with respect to neural differentiation and progenitor
proliferation. Its function has been studied in various animal
models, in different areas of the CNS and at different stages of
development. The roles of Pax6 in retinogenesis have been
investigated by systemic and Cre-mediated somatic mutations
[6-9]. Deletion of Pax6 from the peripheral optic cup (OC)
revealed that the roles of Pax6 within RPCs depend on their
state of maturation: RPCs located in the distal OC are late to
differentiate and require Pax6 for inhibition of Crx and
completion of neurogenesis. In contrast, RPCs located
centrally, within the differentiation zone, require Pax6 to retain
their multipotency and differentiate into most retinal cell types,
excluding subtypes of GABAergic amacrine cells [6,8].

In addition to its role in neuronal differentiation, Pax6 is
required for normal proliferation in the developing retina as well
as in other regions of the CNS, including the telencephalon
(reviewed in 10), diencephalon [11] and spinal cord [12]. In the
optic vesicle (OV), as well as in the retina, Pax6 is required to
maintain high levels of proliferation as Pax6- progenitors
display a significant reduction in bromodeoxy-uridine (BrdU)
incorporation [6-8]. Nevertheless, it remains unclear whether
these proliferative changes are due to a discrete role of Pax6 in
regulating RPC proliferation or are an indirect outcome of the
altered cell fates observed in the various knockout models.

The aim of this study was to distinguish between Pax6’s role
in cell-cycle dynamics and its activity in cell specification, and
to elucidate the transcriptional network mediating its
involvement in RPC proliferation. We therefore characterized
the dynamics of the cell cycle and cell differentiation following
conditional mutation of Pax6 in RPCs, as well as the global
changes in gene expression in the Pax6-mutant cells. These
analyses revealed that the processes of cell-cycle exit, cell-fate
specification and neuronal differentiation, which normally occur
in close tandem succession, are temporally separated in Pax6-
deficient RPCs, thus demonstrating a role for Pax6 in both
regulating progenitor proliferation and coupling cell-cycle exit
and neuronal differentiation. Furthermore, our findings reveal
that rather than conveying a positive linear effect on RPC
proliferation, Pax6 intersects with multiple retinal programs,
some of which promote RPC proliferation, while others promote
cell-cycle exit and differentiation.

Materials and Methods

Mouse Lines
The Pax6flox allele contains loxPs flanking the initiator ATG

and exons 4–6 encoding the paired domain [13]. The α-Cre-
transgenic line contains the Pax6 P0 promoter and the
peripheral retina enhancer (termed α) followed by Cre which
was cloned 5′ of IRES-intron-gfp-pA [6]. All animal work was
conducted according to national and international guidelines
and all efforts were made to minimize suffering. The protocol
was approved by the Tel Aviv University institutional animal
care and use committee (IACUC permit: M08092).

Immunofluorescence and In Situ Hybridization (ISH)
Immunofluorescence analysis was performed as described

previously [8]. The primary antibodies used are shown in Table

S3. Secondary antibodies were conjugated to Alexa488,
Alex594 (1:1,000, Invitrogen) or Aminomethylcoumarin Acetate
(AMCA) (1:100, Jackson Immuno Research Laboratories).

ISH analysis was performed on frozen sections.
Hybridization was conducted overnight at 65°C and performed
as described previously [8]. Probes used for ISH were: FoxN4
(king gift of Xiang Ming [14]), Nr2e1 (amplified from cDNA
using tcctgaacggcagactctcg and cgaggttgcctgacctacgg cloned
into pGEM-T-easy, Promega), Plagl1 (king gift of Carol
Schuurmans [15]), and Gli1, Gli2, Gli3 (king gift of Alexandra
Joyer).

Slides were viewed with an Olympus BX61 fluorescent
microscope or laser-scanning confocal microscope CLSM 410
(Zeiss) and images were analyzed using the image analysis
system 'AnalySIS'.

Analysis of Cell-Cycle Exit
To label proliferating cells, 5-bromo-2-deoxyuridine (BrdU,

140 µg/g body weight, Sigma) was injected intraperitoneally
(IP) into pregnant females at the desired developmental stage.
To assay for cell-cycle exit, BrdU was injected 24 h before
embryo harvesting. Tissues were then processed for
embedding in paraffin and sectioned. Sections were stained for
BrdU incorporation and either proliferating cell nuclear antigen
(PCNA) or the proliferating cell marker Ki67 using
immunofluorescence. No less than three central sections from
three different eyes were counted for both BrdU+ and BrdU +

Marker+. Cell-cycle exit index was calculated by dividing the
total number of BrdU + Marker+ cells scored in all sections of
the same eye by the total number of BrdU+ cells scored in all
sections of the same eye. All of the values for a single
developmental stage and genotype were averaged and
standard deviation (SD) was calculated. Values obtained for
control and Pax6-mutant animals were compared using either
Student’s t-test or Mann–Whitney test to determine statistical
significance.

Expression Microarray
The control and mutant Pax6- RPCs were isolated by

fluorescent-activated cell sorting (FACS) from Pax6+/+;α-Cre or
Pax6loxP/loxP;α-Cre E12 (embryonic day 12) eyes. Three pools of
1.8 x 106 cells each were collected for the analyses. RNA was
isolated using TRIZOL reagent. Hybridization was to Affymetrix
Mouse 430.2 gene-expression arrays according to the
manufacturer’s protocol. For microarray data processing, we
used remote analysis computation for gene expression data
(RACE [16]) front-end for the Bioconductor [17] package of the
R language utilizing the RMA (Robust Multichip Average; [18])
algorithm. Results were filtered by fold-change (1.5), p-value
(0.05), and FDR (false discovery rate, 10%). The results were
further verified using SAM (Significance Analysis of
Microarrays) software [19]. The expression data were
submitted to the NCBI Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo) under series accession no.
GSE45143.

Role of Pax6 in Regulating RPCs Proliferation
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Results

Delayed Neuronal Differentiation in the Pax6-Deficient
Retina

Previous studies of systemic and conditional Pax6 deletions
have shown both reduced proliferation and limited
differentiation of the Pax6-deficient RPCs exclusively to the
GABAergic (producing γ-aminobutyric acid) amacrine lineage
[6-8]. To distinguish the proliferative roles of Pax6 from its
effects on cell-fate acquisition, we characterized the dynamics
of differentiation into amacrine interneurons in Pax6 conditional
knockout (Pax6loxP/loxP;α-Cre) and control mice. We determined
the temporal and spatial expression patterns of genes that are
known to participate in the regulation of amacrine cell
differentiation based on gene-expression studies of mutant
mice (Figure 1A). The TF FoxN4 is an upstream regulator of
amacrine and horizontal lineages [14]. FoxN4 is expressed by
proliferating RPCs located in the neuroblastic layer (NBL) of
the embryonic retina (E14.5, E16.5, Figure 1B,C and [14]). In
the Pax6loxP/loxP;α-Cre OC (Figure 1D,E), we defined distal and
proximal Pax6- populations by detection of Crx and Pax6 using
indirect immunofluorescence (IIF) analysis on adjacent
sections (Crx – inset in Figure 1B,D; Pax6 – Figure 1H,I). We
found that in the Pax6-mutant region, FoxN4 is initially retained
in Pax6-Crx- neurogenic progenitors (Figure 1D area 2) and
only shows a decrease in distally located Pax6-Crx+ cells
(Figure 1D area 1). However, at E16.5, FoxN4 expression was
lost from virtually all Pax6- cells (Figure 1E).

As FoxN4 is downregulated once cells exit the cell cycle [14],
the reduced number of FoxN4-expressing cells may reflect
accumulation of postmitotic amacrine precursors. We therefore
examined the expression of TFs known to be expressed in
these precursors and to be required for generation of amacrine
subtypes. Ptf1a is transiently expressed in postmitotic
amacrine and horizontal precursors located in the NBL (Figure
1F,G, green and [20,21]). Once Ptf1a expression is
extinguished, amacrine precursors start to express Bhlhb5 and
AP2a (Figure 1J,K, green and red respectively). These are first
detected in migrating precursors in the NBL (E16.5, Figure 1J
and [22,23]) and are later restricted to the prospective inner
nuclear layer (INL, P0, Figure 1K).

Surprisingly, although Pax6-deficient RPCs expressed
FoxN4 at E14, correlating with their competence to differentiate
to amacrine cells, the dynamics of amacrine differentiation was
perturbed in the Pax6- retina based on the reduced number of
cells expressing Ptf1a at E14.5 and E16.5 in both Pax6-Crx-

and Pax6-Crx+ areas of the Pax6loxP/loxP;α-Cre retina (Figure
1H,I). Reduced Ptf1a expression was further accompanied by a
similar reduction in the expression of other amacrine precursor
markers such as bHLHb5, Ap2α, Ap2β, VC1.1, BarHL2 and
syntaxin (E16.5, Figure 1L,M and Figure S1). However, despite
reduced expression of amacrine precursor genes at embryonic
stages, by P0 expression of some of the amacrine TFs, such
as Ap2α (Figure 1M, red), was detected in an increasing
number of Pax6- cells, while expression of other markers, such
as bHLHb5, remained low (Figure 1M green). Taken together,
these results demonstrate that while Pax6 is not required to
convey amacrine competence in RPCs, it is needed for the

correct timing of expression and full repertoire of TFs involved
in differentiation of the amacrine subtypes.

Considering the delayed onset of expression of amacrine
precursor genes, we next monitored the accumulation of GABA
(Figure 1N-Q), an inhibitory neurotransmitter which is detected
in most Pax6-deficient amacrine interneurons in the Pax6loxP/

loxP; α-Cre retina (Figure 1Q and [6]). Normally, GABA is first
detected in the mouse retina at around birth [24]. However, in
Pax6- amacrines, GABA accumulation was delayed and
typically appeared only around P7 (Figure 1P,Q). Nevertheless,
by P15, all Pax6- cells expressed GABA (Figure 1Q). Thus,
despite reduced proliferation of Pax6- RPCs, the differentiation
of Pax6-mutant cells to the GABAergic amacrine lineages is
delayed, revealing a role for Pax6 in the timing of neuronal
differentiation.

Pax6 Regulates the Timing of Cell-Cycle Exit of RPCs
The reduced proliferation previously documented in the

Pax6-mutant retina [8] and the delayed differentiation based on
reduced expression of amacrine differentiation genes (Ptf1a,
Figure 1) detected in the Pax6- OC implicate altered cell-cycle
kinetics. To investigate the cell-cycle kinetics of Pax6- RPCs,
we compared the number of cells exiting the cell cycle in
control and Pax6loxP/loxP;α-Cre distal retinas. Cycling cells were
labeled with a pulse of BrdU 24 h prior to sacrifice followed by
detection of PCNA and BrdU by double IIF [5]. Total BrdU-
positive cells as well as PCNA-negative BrdU-positive (PCNA-

BrdU+) cells were counted and postmitotic cell index was
calculated as PCNA-BrdU + /BrdU+

(Total) in control and Pax6loxP/

loxP;α-Cre retinas (Figure 2, Figure S2). This index reports the
total number of postmitotic RPCs generated during a 24-h
period following BrdU administration.

In the control retina, cell-cycle exit index was 16.6 ± 0.93%,
16.7 ± 2% and 15.9 ± 2% at E14.5, E16.5 and E18.5,
respectively (green bars in Figure 2A). A significant (P ≤ 0.05)
increase in the cell-cycle exit index was documented in the
Pax6loxP/loxP;α-Cre OC at all time points tested: 19 ± 0.6%, 21 ±
2.7% and 24.1 ± 2.6% at E14.5E15.5, E16.5E17.5,
E18.5E19.5/P0, respectively (blue bars in Figure 2A). Thus,
despite the obvious delay in differentiation of Pax6- RPCs and
in agreement with reduced proliferation, there is a significant
increase in cell-cycle exit of the Pax6-deficient RPCs as
compared to controls and this increase becomes more
prominent during the course of retinogenesis (1.14-, 1.25- and
1.51-fold at E14.5, E16.5 and E18.5, respectively).

In an attempt to reconcile the seemingly contrasting findings
of increased cell-cycle exit but delayed differentiation, we
tested control and Pax6loxP/loxP;α-Cre retinas for expression of
additional proliferating-cell markers. Ki67 has been previously
shown to be expressed in proliferating cells and is
downregulated in quiescent and differentiated cells [25-27]. In
the retina, Ki67 expression fully overlapped with PCNA
expression in proliferating cells (Figure 2C-E and [28]);
however, postmitotic cells were previously reported to
extinguish Ki67 prior to downregulating PCNA expression [29].
Surprisingly, we found progressive accumulation of PCNA +

Ki67- cells in the distal retina of Pax6loxP/loxP; α-Cre mice. These
were initially detected at E14.5 and gradually increased, until

Role of Pax6 in Regulating RPCs Proliferation
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Figure 1.  Delayed differentiation of amacrine precursors in the Pax6loxP/loxP ;α-Cre retina.  (A) A scheme of the stages of
amacrine interneuron differentiation. Amacrine cells evolve from FoxN4-expressing RPCs. In the postmitotic amacrine precursors,
FoxN4 is reduced and Ptf1a expression is initiated. The Ptf1a-positive precursors migrate to the prospective INL, lose Ptf1a
expression and initiate expression of TFs involved in the differentiation of amacrine subtypes (e.g. Ap2α and bHLHb5). The final
differentiation of amacrine cells occurs a few days after birth with accumulation of neurotransmitters and transporters (e.g. GABA,
glycine transporter GlyT1). Expression of amacrine specification and differentiation markers in control (B,C,F,G,J,K,N,O) and
Pax6loxP/loxP;α-Cre OC (D,E,H,I,L,M,P,Q). Expression of FoxN4 (B–E, the inset in B and D is Crx on adjacent section) as detected
using ISH. Indirect immunofluorescence (IIF) was employed to detect the expression of Ptf1a and Pax6 (green and red,
respectively, F–I; adjacent sections to B-E respectively), bHLHb5 and Ap2α (green and red, respectively, J–M) and GABA (green,
N–Q) during various stages of development as indicated. Pax6 (red in F–I and not shown) and Crx (inset in B,D and not shown)
expression determined by IIF or ISH was used to identify the Pax6-deficient area (yellow line in D,E,H,I,L,M) and to delineate the
neurogenic and nonneurogenic RPC populations in the Pax6loxP/loxP;α-Cre retina (numbered 1 and 2 and separated by a dotted white
line in D and H). Abbreviations: GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; NBL, neuroblastic layer.
Scale bar in C is 100 µm.
doi: 10.1371/journal.pone.0076489.g001
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Figure 2.  Neurogenic Pax6- RPCs in the Pax6loxP/loxP ;α-Cre retina display increased cell-cycle exit and sustained
expression of cell-cycle factors.  A single pulse of BrdU was administered at E14.5, E15.5, E16.5 and E18.5, 24 h prior to
sacrifice as indicated (A, B). Pax6 expression was detected on adjacent sections to identify the recombination area in the Pax6loxP/

loxP;α-Cre OC. (A) The percentage of BrdU + PCNA-/BrdU+
Total was determined for the Pax6loxP/loxP control (green bars) and Pax6loxP/

loxP ;α-Cre (blue bars) distal retina. Pax6- RPCs show increased cell-cycle exit at all stages tested (19% (SD=0.6%), 21% (SD=2.7%)
and 24.1% (SD=2.6%) compared to 16.6% (SD=0.93%), 16.7% (SD=2%) and 15.9% (SD=2%) in control at E14.5, E16.5 and
E18.5, respectively; p≤0.05, n≥3). (B) The number of BrdU+ and BrdU + Ki67- cells was quantified and the ratio BrdU + Ki67-/BrdU
+

Total was used to compare cell-cycle exit rate in control (green bar) and Pax6loxP/loxP ;α-Cre (blue bar) distal retina at E15.5. Pax6-

RPCs show increased cell-cycle exit (37.3% (SD=3.6%) in Pax6- compared to 14% (SD=1.5%) in control; p<0.01, n=6 for both
genotypes). Triple immunofluorescence for PCNA, Ki67 and BrdU (red, green and blue, respectively, in C–J) in control (C–F) and
Pax6loxP/loxP ;α-Cre (G–J) distal retina showing mitotic PCNA + Ki67 + BrdU+ in both control and mutant (white circles in D–F,H–J) and
abnormal PCNA + Ki67-BrdU- cells detected only in Pax6loxP/loxP ;α-Cre (yellow circles in H–J) OC. Scale bars in C,D are 100 and 25
µm, respectively.
doi: 10.1371/journal.pone.0076489.g002
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by P0 most PCNA+ cells were Ki67- (Figure 2G–I and Figure
S2J-L). To determine the proliferative potential of the abnormal
PCNA + Ki67- progenitors, we tested their ability to incorporate
BrdU during a 1.5-h pulse of BrdU administered at E17.5. As
expected, in the control embryos, all PCNA+ cells were also
Ki67+ and some of these were also BrdU+ (white circles in
Figure 2D–F). In the Pax6- retina, BrdU incorporation was
detected only in Ki67+ cells (white circles in Figure 2H–J) but
BrdU was not incorporated into the PCNA + Ki67- population
(yellow circles in Figure 2H–J). To compare accumulation of
normal (PCNA-Ki67-) and aberrant (PCNA + Ki67-) postmitotic
cells, the cell-cycle index was recalculated using Ki67 instead
of PCNA. This analysis, conducted from E15.5 to E16.5,
revealed a 2.67-fold increase in the number of cells that exited
the cell cycle in Pax6loxP/loxP;α-Cre mice, as 37.3% (SD=3.6%) of
the proliferating cells that incorporated BrdU at E15.5 were
Ki67 negative by E16.5 compared to only14% (SD=1.5%) in
the control (P≤0.001) (Figure 2B). Consistent with reduction in
the number of Ki67-expressing cells, we observed a reduced
number of cells expressing cyclin B1 (Ccnb1), which in the NBL
is located in phase G2/M cells (Figure S2M,N [28]).

These results demonstrate a dramatic increase in the
production of postmitotic cells in the Pax6- retina and reveal, for
the first time, that in the Pax6loxP/loxP;α-Cre retina, there is
accumulation of an abnormal population of postmitotic PCNA +

Ki67- cells. These cells inhabit the NBL and seem to maintain
neuroepithelial morphology until late stages of retinogenesis.
Pax6 is therefore required to maintain progenitors in the cell
cycle as well as for the downregulation of cell-cycle factors,
such as PCNA and Ccnd1 (see below) in the postmitotic
precursors.

High-Throughput Transcriptome Analysis of Pax6-

RPCs Reveals Altered Expression of Genes Associated
with Cell Proliferation

To identify the gene network operating downstream of Pax6
to regulate cell proliferation and fate, we determined the
transcriptomic changes in Pax6-deficient RPCs using
microarray analysis. The expression profile was examined in
E12 retina when both the proliferative and cell-cycle-related
phenotypes are first detected and prior to onset of cell
differentiation. Pax6-deficient and control RPCs were collected
by FACS from mutant (Pax6loxP/loxP;α-Cre) and control (Pax6+/+α-
Cre) E12.5 retinas. This was possible because GFP is
expressed in conjunction with Cre from the α-Cre construct [6].
Three biological replicates were conducted for each of the two
genotypes and the gene-expression profiles were compared
using Affymetrix Gene Chip microarray (MOE430-2). The
expression of 952 genes was found to be altered between
control and mutant RPCs (fold-change >1.5, P<0.05,
FDR<10%); of these, 316 were downregulated and 636 were
upregulated (Figure 3A and Table S1). Expression of Pax6 was
reduced threefold, as was the expression of the previously
reported retinal Pax6 targets Atoh7, NeuroD1, Neurog2,
FoxG1, FoxD1, delta-catenin (Ctnnd2) and Crx (Figure 3A and
[6,8,30,31]). Altered expression of over 20 genes found to be
differentially in the microarray was validated using either IF or
in situ hybridization (Table S2). Furthermore, testing the list of

altered genes for enriched gene ontology (GO) terms using
DAVID Bioinformatics Resources [32,33] and clustering
significantly enriched (P<0.05) terms into functional groups
indicated that these genes have known roles in previously
reported Pax6 functions such as eye development, cellular
adhesion [34-36], neurogenesis and proliferation (Figure 3B
and Figure S3). Therefore, the microarray data faithfully
represented the molecular phenotype of the Pax6-mutant
RPCs and reveals significant changes in expression of genes
associated with cell proliferation.

Pax6- RPCs Overexpress Proteins Involved in both Cell-
Cycle Withdrawal and Progression

The RPC decision to either differentiate or continue
proliferating occurs during the G1 phase of the cell cycle. At
this stage, proliferation can be promoted by the
phosphorylation of Rb by a complex of D/E cyclins and cyclin-
dependent kinases (CDKs). This phosphorylation is inhibited by
CDK inhibitors (CKIs), which function to promote cell-cycle exit
[5,37,38]. Altered expression of cell-cycle-related factors has
been documented in the developing cortex and spinal cord of
Pax6 mutants [39-41].

Our microarray analysis revealed upregulation of both
CyclinD2 (Ccnd2) and the CKI P57Kip2 in Pax6loxP/loxP;α-Cre OC
compared to controls (Table S1). We therefore monitored the
expression of these and other cell-cycle factors in control and
Pax6loxP/loxP;α-Cre OCs during retinogenesis (Figure 4, Figure
S4). In the control embryonic retina, Pax6 was detected in
proliferating RPCs in the NBL as well as in differentiating
neurons located in the inner nuclear layer (INL) and ganglion
cell layer (GCL, Figure 4A,I). At these stages, Ccnd2, Ccnd3
and P57Kip2 were rarely detected in the RPCs (Figure 4B–D),
whereas Ccnd1 and P27Kip1 were prominent in the NBL (Figure
4J [42] [43]). In contrast, we detected ectopic expression of
Ccnd2, Ccnd3 and P57Kip2 (Figure 4F–H), as well as elevated
expression of Ccnd1 and P27Kip1 (Figure 4N), within the Pax6-
deficient RPCs, identified by monitoring loss of Pax6 protein on
adjacent sections (Figure 4E,M). Moreover, while in the control
retina Ccnd1+ and P27Kip1+ cells are mutually exclusive [43]
(Figure 4J, inset), these factors were coexpressed in the
Pax6loxP/loxP;α-Cre retina (Figure 4N, inset). Despite the
misexpression of Ccnd1, the Pax6-P27 Kip1+ Ccnd1+ mutant
cells were negative for Ki67 and did not incorporate BrdU
(Figure 4O,P), similar to P27Kip1+ cells in the control retina
(Figure 4K,L). Thus, aberrant expression of Ccnd1 in these
cells is not sufficient to maintain them in a proliferative state.

Elevated expression of Ccnd2 and P57Kip2 proteins was also
detected in a small number of cells at E12.5, consistent with
the E12 transcriptomic data (not shown). Interestingly, the
microarray data for Ccnd1 indicated reduced transcript levels in
the distal Pax6loxP/loxP;α-Cre retina compared to controls (fold
change -1.5). Nevertheless, IIF for Ccnd1 protein indicated
maintained and even elevated protein levels (E13.5, E15.5,
Figure S4G,N; E17.5, Figure 4N). We therefore monitored
Ccnd1 transcript and protein at E12.5, E13.5 and E15.5 (not
shown and Figure S4). At these stages, the normal RPCs co-
express Pax6 and Ccnd1 (Figure S4A,B,I,J), while the
postmitotic Crx+ photoreceptor precursors do not express either
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Pax6 or Ccnd1 (Figure S4C,D,K,L and [8]). In contrast, in the
Pax6-mutant RPCs, we detected a reduction in Ccnd1
transcript from E13.5 which was prominent by E15.5 (Figure
S4F,N). Interestingly, although Ccnd1 transcript was gradually
reduced, Ccnd1 protein was abnormally retained as it was
detected in the Pax6-Crx+ cells at E13.5 (Figure S4G,H) and in
the neurogenic population (Pax6-Crx- cells) at E15.5 and E17.5

(Figure S4O,P, Figure 4N). This finding suggests complex
regulation of Ccnd1 by Pax6, as it is required for both normal
levels of Ccnd1 transcription and regulation, and through
posttranscriptional/translational mechanisms, of Ccnd1 protein
levels.

Taken together, the Pax6- retinal precursors display elevated
expression of both cell-cycle-promoting (Ccnd1–3 and PCNA)

Figure 3.  High-throughput analysis of transcriptional alterations in Pax6- RPCs.  (A) Scatterplot representing the fold change
in gene expression in Pax6- versus control retinas (y axis) plotted against the intensity value in the control (x axis). Each spot
corresponds to one gene; only genes whose expression changed at least 1.5-fold are shown. (B) Gene ontology (GO) analysis
conducted using DAVID bioinformatics resource [32] for genes whose expression was altered in Pax6- versus control retinas,
showing enrichment in various proliferation- and cell-cycle-related GO terms.
doi: 10.1371/journal.pone.0076489.g003
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Figure 4.  Increased expression of cell-cycle factors in the Pax6loxP/loxP ;α-Cre retina.  Expression of Pax6 (A,E,I,M) and of cell-
cycle progression and withdrawal factors was monitored using immunofluorescence in control (A–D,I–L) and Pax6loxP/loxP ;α-Cre (E–
H,M–P) distal retina at E16 and E17, as indicated. Pax6- area was delineated by staining for Pax6 protein (E,M) on adjacent
sections (dotted line in E–H,M,N). Expression of Ccnd2 (B,F) Ccnd3 (C,G), P57Kip2 (D,H) and P27Kip1 (green in J–L,N–P) is
upregulated in most of the Pax6- RPCs of Pax6loxP/loxP ;α-Cre retina. Ccnd1 and P27Kip1, which are expressed in different cells in the
control (J) are coexpressed in Pax6- RPCs (N). For the control and Pax6-deficient cells, P27Kip1-expressing cells are negative for
Ki67 (red in K,O) and BrdU (red in L, P). Abbreviations: GCL, ganglion cell layer; NBL, neuroblastic layer. Scale bar in A is 100 µm.
doi: 10.1371/journal.pone.0076489.g004
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and cell-cycle-inhibiting (P27Kip1 and P57Kip2) factors. These
results indicate a major role for Pax6 in controlling the events
leading to timely cell-cycle exit of RPCs.

TFs that Regulate RPC Proliferation and Cell Cycle Are
Abnormally Expressed in Pax6- Retina

The above results indicate a key role for Pax6 in controlling
cell-cycle parameters. We therefore focused our analysis on
TFs whose expression was altered based on the microarray
analysis and which have been previously shown to regulate
RPC proliferation and thus could mediate Pax6’s role in the
regulation of cell-cycle dynamics.

The homeodomain TF Vsx2 and the orphan nuclear receptor
Nr2e1 (tailless, Tlx) have been previously reported to promote
RPC proliferation [43-45]. Loss-of-function mutations in both
genes result in increased expression of P27Kip1, reduced
expression of Ccnd1 and a hypoplastic retina [43-45].
Expression of these TFs was found to be reduced in the
Pax6loxP/loxP;α-Cre retina based on the microarray analysis (fold
change -1.9 and -2.18 for Vsx2 and Nr2e1, respectively). We
therefore examined the dynamics of their expression following
Pax6 deletion in situ. Both Nr2e1 and Vsx2 expression was
detected in most proliferating RPCs in the NBL of control
retinas (Figure 5A–D); their expression was slightly reduced at
E12.5 in Pax6loxP/loxP;α-Cre retinas (Figure 5E,G; Pax6 mutant
region identified by IIF on adjacent section) and it was virtually
abolished by E14.5 in Pax6loxP/loxP;α-Cre mutants (Figure 5F,H).
A reduction in the expression of these neuronal progenitor
genes could mediate the reduced proliferation of the Pax6-
deficient RPCs.

The maternally imprinted tumor suppressor TF Plagl1 (Zac1)
is a zinc-finger protein that can act as both a transcriptional
activator and repressor [46]. Loss of Plagl1 results in a
hypercellular retina containing an additional INL composed of
amacrine cells [15]. As previously described, Plagl1 was widely
expressed throughout the NBL in control mice (Figure 5I,J and
[15]) but its expression was lost from all Pax6- RPCs (identified
by IIF, not shown) in the distal retina of Pax6loxP/loxP;α-Cre as
early as E12.5 (Figure 5K,L).

These results reveal that Pax6 is required for the expression
of TFs known to promote (Vsx2 and Nr2e1) and restrict
(Plagl1) RPC proliferation and thus Pax6 loss in RPCs results
in a dramatic alteration in cell-cycle dynamics (see discussion).

Figure S5A–D, I–L [48]). The microarray analysis showed
reduced expression of Hes5 and Dll1 at E12. Indeed,
expression of the Notch-pathway genes Notch1, Dll1 and Hes5
was reduced in the Pax6-Crx+ population of E13.5 Pax6loxP/

loxP;α-Cre retina (Figure S5E–H). However, at later stages of
development, when the neurogenic population (Pax6-;Crx-) is
prevalent, the expression of Notch1 and Dll1 was similar to
their expression levels in the control OC (E16.5, Figure
S5N,O), although the expression of Hes5 was reduced in
some, but not all of the Pax6-mutant OC, probably reflecting a
reduction in RPCs (Figure S5P). These findings suggest that
Pax6 may be required for the Notch pathway in the most distal
OC (Pax6-Crx+), but its activity is not essential for maintaining
the expression of Notch-signaling components in the more
central RPCs. Therefore, the reduced proliferation of the

Pax6-;Crx- neurogenic RPCs is probably not due to altered
activity of Notch signaling.

HH signaling is required to maintain normal proliferation of
RPCs, as loss of HH signaling results in precocious cell-cycle
exit and depletion of the progenitor pool [51,52], whereas
overactivation of the HH pathway results in increased
proliferation and retinal hyperplasia [53]. HH signaling has also
been shown to regulate the expression of various cell-cycle-
related factors such as Ccnd1, P57Kip2 and Mycn [51-54]. The
microarray analysis conducted on E12 control and Pax6loxP/

loxP;α-Cre retinas yielded no differential expression of HH
pathway-related factors, possibly because at this stage Shh
components are not prominent in the peripheral OC in regions
of α-Cre activity [55].

To test for possible alterations in HH signaling, we
characterized Gli1 expression at various developmental stages,
as Gli1 is both an effector and a target of the HH pathway
(Figure 6B,D,F,H [56]). IIF analysis for Pax6 was performed on
adjacent sections to determine the Pax6 mutant area (Figure
6A,C,E,G). As previously reported, extensive Gli1 expression
was detected in the NBL of both E14.5, E1.5.5 and E18.5
control retinas (Figure 6B,D, Figure S6A). However, in the
distal retina of Pax6loxP/loxP; α-Cre, Gli1 expression was
undetectable throughout retinogenesis (E14.5, E18.5, Figure
6F,H, Figure S6D) suggesting HH-signaling arrest in Pax6-

RPCs. The expression of Gli2 and Gli3, which participate in HH
signaling but are not HH-signaling targets [57], was unaltered
in Pax6loxP/loxP; α-Cre compared to controls (Figure S6) and thus
these mediators of the HH pathway are maintained despite the
loss of Pax6. To further determine whether Pax6 is required
cell autonomously for HH signaling, we examined Gli1
expression in RPCs that escaped Cre-mediated Pax6 deletion.
This occurred because the α-Cre transgene is occasionally
inactive in some RPCs resulting in patches of nonrecombinant
cells surrounded by recombinant ones. In the distal OC of the
Pax6loxP/loxP; α-Cre embryos, these patches of Pax6-expressing
RPCs form rosette-like structures (Figure 6G,H, yellow
arrowheads). These rosettes share the same environment as
recombinant Pax6- RPCs, yet extensive Gli1 expression was
detected in the Pax6+ rosettes (Figure 6H, yellow arrowheads).
These results suggest that Pax6 plays a cell-autonomous role
within the RPCs for the normal activation of HH signaling.

Discussion

Pax6-Deficient RPCs Exhibit a Unique Cell-Cycle
Phenotype

Previous studies have substantiated the requirement for
Pax6 in establishing the neuronal progenitor pool during
development of the vertebrate nervous system. Reduced
proliferation was documented following knockdown of Pax6 in
the embryonic chick retina and spinal cord [12,58]. Similarly,
reduced BrdU incorporation was detected in the diencephalon
and altered proliferation was observed in the dorsal
telencephalon of Pax6-knockout mice [11,59,60].
Corresponding with alterations in the cell cycle, the expression
of cell-cycle factors was noted in various Pax6 mutants,
including increased expression of Ccnd1 in the Pax6-deficient
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cortex during early corticogenesis, and elevation of both Ccnd2
and P57Kip2 during late stages of cortical development [40].

Increased levels of Ccnd1 were reported in zebrafish embryos
following knockdown of Pax6 proteins [61].

Figure 5.  Abrogated expression of factors implicated in regulating RPC proliferation in Pax6loxP/loxP ;α-Cre retina.  The
expression pattern of different factors was monitored on sections from eyes of control (A-D,I,J) and Pax6loxP/loxP ;α-Cre (E-H,K,L)
mice. Nr2e1 (E12.5 A,E; E14.5 B,F) and Plagl1 (E12.5 I,K; E14.5 J,L) were detected using ISH while Vsx2 (green; E12.5 C,G;
E15.5 D,H) Pax6 (red; E12.5 C,G; E15.5 D,H) were detected by IIF analysis. Pax6 (red in C,D,G,H and not shown) and Crx (inset in
E and not shown) expression were used to delineate the different RPC populations in the Pax6loxP/loxP;α-Cre retina (marked with
dotted line in E-H,K,L). Scale bar in F is 100 µm.
doi: 10.1371/journal.pone.0076489.g005
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In the current study, we observed that in Pax6-deficient
retina there is a reduced number of cells in the S phase,
accompanied by a significant and progressive increase in the
number of cells exhibiting cell-cycle abnormalities. These were
manifested in the elevated expression of cell-cycle-progression
factors (Ccnd1, Ccnd2, Ccnd3) and cell-cycle-withdrawal
factors (CKIs: P27Kip1 and P57Kip2, Figure 4, Figure 7). Despite
their opposing functions, increased expression of both types of
cell-cycle factors can contribute to delayed differentiation of the
Pax6-deficient neuronal precursors. This is supported by the
finding that overexpression of Ccnd1 in photoreceptor
precursors delays their differentiation [62]. Beyond the CNS,
Ccnd1 was further shown to inhibit adipocyte and myoblast
differentiation [63-65]. In addition, while the increase in P27Kip1

and P57Kip2 promotes cell-cycle exit, it is now recognized that
this increase is not sufficient to induce cell differentiation, which
depends on additional cues [66-68]. Moreover, P27Kip1 has
been recently shown to contain CDK-independent functions
that inhibit the differentiation of postmitotic cells. These
oncogenic activities of P27Kip1 were recognized in mice
expressing a mutant isoform of P27Kip1 which is unable to bind
cyclin–CDK. In these mice, in contrast to P27Kip1-knockout
mice, ectopic proliferation and differentiation arrest were
detected in the developing retina [69]. It is therefore likely that
the elevation of both cell-cycle-promoting and inhibiting factors
in the Pax6-deficient RPCs contributes to their delayed
differentiation to retinal neurons.

Pax6 Regulates a Transcriptional Network Capable of
both Promoting and Inhibiting the Transition of
Proliferating RPCs into Postmitotic Precursors

A few studies have suggested the direct involvement of Pax6
in cell-cycle mechanisms by regulating cell-cycle-related
factors such as P27Kip1 [39] and interacting with Rb [70]. Other
findings propose roles for Pax6 in cell division, including sister-
chromatid separation [71], interkinetic nuclear movement and
determination of the orientation of cell division [72,73]. . While
these Pax6 functions may have some effect on the cell-cycle
kinetics of Pax6- RPCs, it is unlikely that they account for the
profound alterations in the expression of multiple cell-cycle
factors observed in the Pax6loxP/loxP;α-Cre retina.

Through the characterization of cell-cycle and cell-
differentiation dynamics together with transcriptional changes
in Pax6- RPCs, the current study reveals that Pax6 functions
upstream of multiple factors, each of which is an important
determinant in the regulation of RPC proliferation. We
observed reduced expression of several factors that are
required for proliferation of retinal progenitors during early
stages of retinogenesis: NR2e1, Vsx2 and HH signaling (Figure
7). The loss of each of these components is expected to result
in reduced proliferation, as observed in the Pax6-mutant retina.

Nr2e1 is an essential intrinsic regulator of neural stem cells
during embryonic development and in adult neurogenesis
[74,75]. Nr2e1 has been found to play a key role during
multiple stages of eye development. Functional studies in frog

Figure 6.  Hedgehog signaling is disrupted in Pax6loxP/loxP ;α-Cre retina.  Expression of Gli1 was detected using ISH (B,D,F,H)
and Pax6 protein was detected by IIF on adjacent sections (A,C,E,G) for control (A-D) and Pax6loxP/loxP ;α-Cre (E-H) OC. Gli1
expression was abrogated in all Pax6- RPCs (F,H) compared to controls (B,D) at both E14.5 (B,F) and E18.5 (D,H). Pax6- area was
determined by antibody labeling on adjacent sections and marked by dotted line (E-H). Scale bar in B is 100 µm.
doi: 10.1371/journal.pone.0076489.g006
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Figure 7.  Scheme depicting Pax6 roles during the transition from proliferating retinal progenitor to differentiating retinal
neuron.  (A) In normal cycling retinal progenitors, Pax6 regulates the balance between proliferation promoting (i.e. Nr2e1, Vsx2,
Hedgehog (HH) signaling) and inhibiting factors (i.e. Plagl1). These in turn regulate the expression of genes which induce either
progression of (i.e. Ccnd1–3) or withdrawal (P27Kip1, P57Kip2) from the cell cycle. It is also required for the expression of bHLH
proneural factors (Neurog2, Atoh7, and Ascl1) presumed to inhibit cell-cycle factors as well as promote specific retinal lineages. (B)
Pax6 loss from RPCs results in aberrant cell-cycle exit as Ccnd1–3, as well as P27Kip1 and P57Kip2, are elevated and several cell-fate
determination factors show reduced (bHLH proneural factors) or increased (Six3, Sox2) expression. The combined outcome of
these alterations is delayed differentiation of the Pax6-deficient cells to only one subclass of retinal interneurons.
doi: 10.1371/journal.pone.0076489.g007
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embryos suggest that the Nr2e1 homolog Xtll is an eye-field
gene and required for normal eye formation [76,77]. In murine
embryos, Nr2e1 seems to be dispensable for specification of
retinal cell types but consistent with its activities in the cortex, it
is required for normal proliferation of RPCs through activation
of Ccnd1 and inhibition of P27Kip1 [44]. Similar to Nr2e1, Vsx2 is
expressed in RPCs prior to the onset of retinal neurogenesis. It
is initially required at the OV stage for ocular neuroectoderm
patterning to the retinal pigmented epithelium (RPE) and retinal
lineages, while at the OC stage it is primarily involved in
promoting RPC proliferation [78,79]. Though Vsx2 expression
is maintained during early stages in the optic rudiment of Pax6-
knockout mice [30], its expression was lost at later stages of
development in both the systemic and Pax6loxP/loxP;α-cre OC
(Figure 5 and [30]). From this we can conclude that Pax6 is
required for Vsx2 maintenance in RPCs but not for initiating its
expression in the OV. Vsx2-knockout retinas exhibit reduced
expression of Ccnd1 and elevated levels of P27Kip1, as well as
cryptic coexpression of both Ccnd1 and P27Kip1. The inhibition
of P27Kip1 by Vsx2 is thought to mediate its activity in RPCs, as
proliferation is recovered in P27Kip1;Vsx2-double-knockout mice
[43]. The third positive regulator of proliferation that was lost in
the Pax6-mutant RPCs is HH signaling, based on the loss of
the target Gli1 [80]. HH is an established mitogen in the
developing CNS, including the retina [51,52,81]. The deletion of
Smoothened, an essential mediator of this signal-transduction
pathway, from RPCs resulted in progenitor-pool depletion due
to cell-cycle aberrations which included reduced expression of
Ccnd1 and elevated expression of P27Kip1 [51,52].

Considering the proliferation-promoting roles of Nr2e1, Vsx2
and HH in RPCs, it is expected that combined reduction of
these factors following Pax6 loss will result in the reduced
proliferation observed in the Pax6loxP/loxP;α-Cre retina (Figure 7).
Yet, in the Pax6-deficient RPCs, the reduced proliferation was
accompanied by elevated expression of several cell-cycle-
promoting factors: Ccnd1, Ccnd2 and Ccnd3. This elevated
expression could be due to altered expression of factors which
normally inhibit cell-cycle progression (Figure 7). Among these
is the tumor suppressor Plagl1 [46]. Plagl1 is expressed from
early stages of retinogenesis in RPCs, with higher levels in the
distal OC and reduced levels in the central more mature RPCs
[15]. Analysis of Plagl1-knockout mice revealed increased RPC
proliferation and an increase in the number of Ccnd1-
expressing cells [15]. In addition to loss of Plagl1, we detected
increased expression of several progenitor factors in the Pax6-
deficient RPCs such as Six3 and Sox2 (Figure 5, Figure S7).
The increased expression of these progenitor genes combined
with the loss of Plagl1 probably contributes to the unique cell-
cycle phenotype observed in the Pax6-mutant retina.

The distinctive molecular phenotype of Pax6-deficient RPCs
suggests that Pax6 simultaneously controls a number of genes
which function during the transition of RPCs to differentiating
precursors. Consistent with our findings, recent high-
throughput analyses of Pax6 function in the developing cortex,
conducted using chromatin immunoprecipitation and
transcriptomic profiling of both Pax6 loss- and gain-of-function
transgenic models, suggest a complex gene network mediating
Pax6 activity in cell proliferation and differentiation during

cortical development [41]. The analysis suggested that Pax6
can simultaneously regulate the expression of factors which
promote cell proliferation and self-renewal (CDK4 and Hmga2
[82]) and cell-cycle inhibitors (tumor suppressor Pten [83]).
Collectively, these observations suggest that Pax6 controls
several key TFs and signaling pathways, some with opposing
roles, and that the phenotype observed in Pax6loxP/loxP;α-Cre
retinas is due to the combined disruption of several pathways.

The seemingly opposing activities of Pax6 in RPCs may
reflect dosage- and context-dependent activity of this TF in the
heterogeneous population of progenitors. Indeed, the levels of
Pax6 vary according to cell-cycle stage; cells in the G1 and S
phase express low levels of Pax6, whereas cells in G2 and M
may display either low levels, high levels or no Pax6
expression at all [58]. An additional level of complexity in
deciphering the mechanism of Pax6 activity is that this TF also
regulates the expression of differentiation factors, particularly
that of bHLH proneural factors Ato7 [84,85], Neurog2 [86] and
Ascl1 [6-8]. These differentiation-promoting TFs are thought to
directly inhibit cell-cycle-promoting factors as was
demonstrated for Neurog2 [4]), and thus their combined loss
may contribute not only to the limited differentiation potential of
Pax6-deficient RPCs but also to the persistent expression of
Ccnd1 in the Pax6-deficient precursors. Finally, in addition to
regulating multiple downstream TFs, it is now established that
Pax6 controls the expression of microRNAs [87]. In future
studies, microRNAs should be considered important mediators
of Pax6 activity in posttranscriptionally controlling the
expression levels of multiple genes simultaneously.

Pax6 Regulates Multiple Factors that Affect Retinal
Cell-Fate Specification

In addition to reduced proliferation, the Pax6-deficient RPCs
are limited in their differentiation potential as they only give rise
to subclasses of GABAergic amacrine, while other retinal
lineages fail to differentiate [6]. This limited multipotency was
previously attributed to abrogated expression of the proneural
bHLH proteins [6,8]. In the present study, we recognized
additional perturbation in the Pax6-mutant OC that might
account for the eventual acquisition of the amacrine fate
(Figure S7). These changes included elevated expression of
the amacrine-promoting factors Sox2 (Figure S7A,D) and Six3
(Figure S7B,E), as well as maintained expression of NeuroD1
in the NBL (Figure S7C,F, green). Ectopic expression of Sox2
was shown to induce amacrine cells in the mouse retina [88]
and similarly, overexpression of Six3 together with Neurod1
promoted amacrine cell genesis [89]. Furthermore, we detected
reduced expression of Plagl1 (Figure 5I-L). In addition to its
role in regulating RPC proliferation, Plagl1 functions in the
regulation of amacrine cell number by activating a feedback
mechanism by which amacrine cells can inhibit the formation of
additional amacrines from RPCs [15]. Thus, loss of Plagl1 in
the Pax6loxP/loxP;α-Cre retina might contribute to the formation of
excessive numbers of amacrine cells. Collectively, these
findings suggest that Pax6 loss results in a unique transcription
profile in the retinal precursors, which promotes the generation
of amacrine interneurons. Interestingly, although these Pax6-
mutant amacrine cells express GABA, their molecular
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phenotype was distinct from that of normal amacrine cells. In
the Pax6-mutant retina, Sox2 protein was detected in many of
the amacrine cells but only a small subset of these
coexpressed Isl1 and only a few of these coexpressed choline
acetyltransferase (ChAT; Figure S8E–H and [88]). In contrast,
in the normal retina, the expression of Sox2 in amacrine cells is
restricted to Isl1- and ChAT-expressing cells (Figure S8A–D).
These findings suggest that while Pax6 is dispensable for the
generation of GABAergic interneurons, it is required for normal
differentiation of the amacrine cell types.

Future studies, employing Cre lines which are expressed in
late progenitors and in postmitotic precursors, are required to
determine the roles of Pax6 in the generation of the late-born
amacrine cell types (glycinergic and non-GABAergic-non-
glycinergic [90,91]) as well as in the differentiation of the
postmitotic amacrine precursors.

Supporting Information

Figure S1.  Reduced expression of amacrine precursor
markers in the Pax6loxP/loxP ;α-Cre retina. Expression of
amacrine specification and differentiation markers in control
(A–D) and Pax6loxP/loxP ;α-Cre (E–H) OC. IIF was employed for
the detection of Pax6 and VC1.1 (E15.5, green and red,
respectively, in A,E) Ptf1a (E15.5, green in B,F), syntaxin and
Ap2β (E16.5, red and green, respectively, C, G). BarHL2
(E16.5, D,H) was detected using ISH. The recombinant area in
the Pax6loxP/loxP;α-Cre retina (marked with dotted line in E–H)
was determined by monitoring Pax6 expression by IIF on an
adjacent section (E,G adjacent to F,H respectively).
Abbreviations: GCL, ganglion cell layer; NBL, neuroblastic
layer. Scale bar in A is 100 μm for A,B,E,F. Scale bar in C is
100 µm for C,D ,G,H.
(TIF)

Figure S2.  Expression of PCNA and Ki67 does not overlap
in a subset of Pax6- RPCs. A single pulse of BrdU was
administered 24 h prior to sacrifice at E18.5 (A,B) or E15.5
(C,D). Sections of control (Pax6loxP/loxP;A,C) and Pax6loxP/loxP ;α-
Cre (B,D) optic cup were double-stained by IIF with antibodies
against BrdU (green in A–D) and either PCNA (red in A, B) or
Ki67 (red in C,D). Pax6 expression was detected on adjacent
sections and used to identify the recombination area in the
Pax6loxP/loxP;α-Cre OC (dotted line in B,D,I–L, N). Coexpression
of PCNA and Ki67 (red and green, respectively, in E–L)
determined by IIF in control (E–H) and Pax6loxP/loxP ;α-Cre (I–L)
retinas at E12.5 (E,I), E14.5 (F,J), E16,5 (G,K) and P0 (H,L).
CyclinB1 expression detected by IIF at E13.5 in control and
Pax6loxP/loxP;α-Cre OC (M,N). Abbreviation: NBL, neuroblastic
layer. Scale bar in A is 100 µm.
(TIF)

Figure S3.  Gene ontology (GO) analysis of genes altered
in Pax6loxP/loxP ;α-Cre compared to control RPCs. Histogram
depicting average significance of significantly enriched (p<0.05)
GO terms as calculated using DAVID Bioinformatics Resources
[32,33] clustered into functional and previously reported Pax6
functions.

(TIF)

Figure S4.  Aberrant expression of cell-cycle factors in the
Pax6 mutant OC. IIF analysis for detection of Pax6 (A,E,I,M)
ISH for detection of Ccnd1 transcript (B,F,J,N), IIF for Ccnd1
and Crx (red and green, respectively, C,D,G,H,K,L,O,P) in
control (A–D, I–L) and Pax6loxP/loxP ;α-Cre (E–H, M–P) distal
retina. Scale bar in A is 100 µm.
(TIF)

Figure S5.  Characterization of components of the Notch
signaling pathway during retinogenesis in control and
Pax6loxP/loxP ;α-Cre embryos. Expression of Notch-pathway
components at E13.5 (A-H) and E16.5 (I-P) in control (A-D, I-L)
and Pax6loxP/loxP ;α-Cre (E-H, M-P) retinas. Pax6- area was
delineated by staining for Pax6 protein on the same or adjacent
sections (red in D-H,I,M; dotted line in E–H,M-P). Expression of
Notch1 (B,F,J,N), Dll1 (C,G,K,O) and Hes5 (D,H,L,P) detected
using fluorescent (A-H) or regular (I-P) ISH. Scale bar in A is
100 µm.
(TIF)

Figure S6.  Expression of Gli1 but not of Gli2 or Gli3 is
decreased in the Pax6loxP/loxP ;α-Cre retina. Expression of Gli1
(A,D) Gli2 (B,E) and Gli3 (C,F) in Pax6loxP/loxP control (A–C) and
Pax6loxP/loxP ;α-Cre (D–F) optic cups as detected by ISH at
E15.5. Scale bar in A is 100 µm.
(TIF)

Figure S7.  Altered expression of amacrine-differentiation-
promoting and inhibiting factors in Pax6loxP/loxP ;α-Cre
RPCs. Control (A–C) and Pax6loxP/loxP ;α-Cre (D–F) embryonic
retina labeled by IIF for Pax6 (E15, red, A,D,C,F) Sox2 (E15,
green, A,D) and by ISH for detection of Six3 (E16, B, E),
NeuroD1 (E15, green, C,F). Scale bar in A is 100 µm.
(TIF)

Figure S8.  Pax6- amacrines display an abnormal molecular
phenotype. Control (A–D) and Pax6loxP/loxP ;α-Cre (E–H) P15
retina cholinergic amacrine labeled by IIF for Isl1 (red), choline
acetyltransferase (ChAT, green in A,B,E,F) and Sox2 (green in
C,D,G,H) Scale bar in A is 100 µm.
(TIF)

Table S1.  List of differentially expressed genes following
Pax6 loss in Pax6loxP/loxP;α-Cre and control mice.
(XLS)

Table S2.  List of differentially expressed genes found in
the microarray analysis and validated in situ.
(XLS)

Table S3.  List of primary antibodies used in this study.
(PDF)
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