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Abstract

Discretization of a geographical region is quite common in spatial analysis. There have been few studies into the impact of
different geographical scales on the outcome of spatial models for different spatial patterns. This study aims to investigate
the impact of spatial scales and spatial smoothing on the outcomes of modelling spatial point-based data. Given a spatial
point-based dataset (such as occurrence of a disease), we study the geographical variation of residual disease risk using
regular grid cells. The individual disease risk is modelled using a logistic model with the inclusion of spatially unstructured
and/or spatially structured random effects. Three spatial smoothness priors for the spatially structured component are
employed in modelling, namely an intrinsic Gaussian Markov random field, a second-order random walk on a lattice, and a
Gaussian field with Matérn correlation function. We investigate how changes in grid cell size affect model outcomes under
different spatial structures and different smoothness priors for the spatial component. A realistic example (the Humberside
data) is analyzed and a simulation study is described. Bayesian computation is carried out using an integrated nested
Laplace approximation. The results suggest that the performance and predictive capacity of the spatial models improve as
the grid cell size decreases for certain spatial structures. It also appears that different spatial smoothness priors should be
applied for different patterns of point data.
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Introduction

Spatial data are available in various forms; at point level, grid

level or area level. In the context of epidemiological studies, area

level data are usually utilized due to its availability. This is because

some phenomena are expressed naturally as area level data such as

contextual variables in social epidemiology. In addition, disease

incidence is often aggregated to administrative districts in order to

protect patient confidentiality. For convenience, the aggregated

data are further used to study small-scale geographical variation.

Consequences of this practice include loss of individual informa-

tion and potential ecological fallacy [1], where the latter refers to

the difference between individual and group level estimates of risk

measures. The aggregated data may also suffer from changes in

geographical boundaries over time which calls into question the

value of any analyses. Another problem concerning the aggregated

data is the modifiable area unit problem, which is defined as

sensitivity of statistical results to the definition of geographical units

over which data are collected [2]. For instance, various datasets

may exhibit different spatial patterns when viewed at one spatial

scale compared to another, which is known as a ‘scale’ effect [3].

In contrast, point level disease data contain desirable individual

information and precise domicile addresses in some instances,

alleviating the issue of ecological bias. However, they are often

difficult to access due to confidentiality issues. Even if they are

available, patients’ residential locations have to be protected and

are not allowed to be published, which has restricted the types of

analyses that can be carried out on point level disease datasets.

Another limitation is that the study of small-scale geographical

variation is not practicable if using individual level disease data. As

a compromise, we utilize point level disease data in this study but

employ a grid level modelling approach to study the geographical

variation of residual disease risk using regular grid cells. As a result,

the issue of patient confidentiality and ecological bias are both

addressed in this study.

We model the individual disease risk using a logistic model with

the inclusion of spatially unstructured and/or spatially structured

random effects. Geographical variation of residual disease risk is

modelled using a spatial component that allows for the heteroge-

neity of random effects and borrows strength from neighboring

grid cells. The grid cells are far smaller than the typical

administrative districts and therefore allow for better specification

and identification of spatial random effects. Many ecological

responses of interest do not recognize areas or borders defined for

administrative purposes, and thus a finer geographical scale of

study is often more appropriate for ecological studies [4]. The

findings are more relevant and specific to the local population in a

finer geographical area.
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Despite being less common than studying the geographical

variation using the area level data, the grid level modelling

approach has rapidly increased in popularity in recent years [5–8].

Modelling of disease data at a grid level is a desirable approach as

it is geographically more accurate than using area level data and

yet protects patient confidentiality. Other advantages include the

formation of a generalized linear model and approximation of the

covariance structure by a Markov random field, which eases

computation [9,10]. The grid level modelling avoids the need to

deal with the problem of changes in administrative boundaries

over time. This approach has the flexibility of allowing the spatial

scale at which the data are modelled to be manipulated to a

practically, biologically, geographically or computationally sensi-

ble scale.

One of the challenges in the grid level modelling is the

specification of an appropriate spatial scale for a specific spatial

dataset. At present, not much is known about the impact of

different spatial scales on the outcome of spatial models at different

spatial patterns. Without repeating the analyses at multiple scales,

it is difficult to know whether the findings at various scales are

consistent. According to [11], selection of the spatial scale of

analysis should be guided by the purpose of analysis, i.e., whether

to draw conclusions at the individual level or the aggregated level.

It is thus important to consider analyses at various spatial

resolutions in order to identify the most appropriate geographical

scale that contributes to significant findings for the problem at

hand.

Given this identified challenge, the study has two main aims: (i)

to investigate the impact of changes in spatial scale on model

outcome for a set of spatial structures; (ii) to evaluate the

performance of various Bayesian spatial smoothness priors for

spatial dependence, namely an intrinsic Gaussian Markov random

field (IGMRF), a second-order random walk (RW2D) on a lattice,

and a Gaussian field with Matérn correlation function. Bayesian

inference is carried out using integrated nested Laplace approx-

imation (INLA) throughout the study.

We designed a simulation study and utilized a case study to

fulfill the aims. The simulated datasets consist of point data with

various spatial structures including inhomogeneous point patterns,

patterns with local repulsion, patterns with local clustering, and

patterns with local clustering in the presence of a larger-scale

inhomogeneity. The case study involves the analysis of the

Humberside data on childhood leukaemia and lymphoma. This

dataset portrays a sparse spatial pattern with potential spatial

clustering.

Methods

Model
Let X be a spatial point-based dataset embedded in an

observation window S, which is discretized into I~n1|n2 regular

grid cells. Let yij denote the event outcome of the j-th individual in

the i-th grid. Here yij is a binary response that follows a Bernoulli

distribution with probability of disease pij . The individual risk, pij ,

is modelled via the logistic regression model,

logit(pij)~mjzuizvi: ð1Þ

Spatial variation in the individual risk is modelled using

different components including mj , ui, and vi, where mj refers to

the intercept term for individual j, ui is an unstructured term that

accounts for unexplained variability in the model, and vi is a

spatially structured term that describes the effect of the location by

assuming that geographically close areas are more similar than

distant areas. In this study, three Bayesian spatial smoothness

priors for the spatially structured effect are considered, namely an

intrinsic Gaussian Markov random field (IGMRF), a second-order

random walk (RW2D) on a lattice [12], and a Gaussian field with

Matérn correlation function [13] which includes a range

parameter. These three priors are chosen due to their popularity

in spatial modelling [14].

The IID model
The IID model considers a fixed intercept and unstructured

random effects ui.

IIDmodel : logit(pij)~mjzui:

The IID model defines u to be a vector of independent,

identical and Gaussian distributed random variable (possibly

scaled) with mean zero and unknown precision (inverse variance),

tu:

p(u jtu)~P
n1|n2

i~1

1ffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffiffi

situ

p
exp

1

2
(situ)u2

i

� �
,

where siw0 is an optional fixed scale. The precision parameter

tu is assigned a Gamma prior.

The IGMRF model
In the IGMRF model corresponding to (1), the spatially

unstructured component, ui, is assumed to be independent and

identically distributed (i.i.d.) and normally distributed with mean

zero and unknown precision, tu. The spatially structured

component, vi, is given an IGMRF prior [12] with unknown

precision, tv. Gamma priors are assigned to the precision

parameters tu and tv.

An IGMRF for vi is defined as

vijv{i,tv*N
1

ni

X
i*k

vk,
1

nitv

 !
,

where ni is the number of neighbors of grid cell i, v{i denotes

all elements in v except for vi, and i*k indicates that the two grid

cells are neighbors that share a common boundary. A sum-to-zero

constraint is imposed on vi to ensure identifiability of the intercept

m . See [12], [15] and [16] for further details. This model has been

widely applied in disease mapping to study spatial variation of

disease risk [17–19]. The neighborhoods in these papers were

defined in terms of administrative districts, we consider a finer

neighborhood structure in terms of (regular) grid cells, however.

The RW2D model
The RW2D model corresponding to (1) employs a different

formulation for the spatially structured effect. Here, vi is imposed

an RW2D prior on the n1|n2 regular lattice, which is

alternatively known as a second-order polynomial intrinsic GMRF

[12]. This choice is motivated by its application in a discretized log

Gaussian Cox process (LGCP) [20]. The model approximates a

LGCP only when the grid cells are fine enough.

The RW2D model is defined on a regular grid (see Rue and

Held [12], section 3.4.2). The full conditionals of the nodes in the
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interior (with obvious notation) of the regular grid are as follows

E(vijv{i,tv)~
1

20
8

0 0 0 0 0
0 0 . 0 0
0 . 0 . 0
0 0 . 0 0
0 0 0 0 0

{2

0 0 0 0 0
0 . 0 . 0
0 0 0 0 0
0 . 0 . 0
0 0 0 0 0

{1

0 0 . 0 0
0 0 0 0 0
. 0 0 0 .

0 0 0 0 0
0 0 . 0 0

0
BBBBBBBB@

1
CCCCCCCCA

,

Prec(vijv{i,tv)~20tv:

The precision tv is unknown. As stated by [20], the full

conditionals are constructed to mimic the thin plate spline.

Corrections to the boundary can be found by using the stencils in

[21]. A sum-to-zero constraint is again imposed on the spatial term

to ensure identifiability of m . A Gamma prior is assigned to the

precision parameter tv.

The MATERN2D model
The MATERN2D model corresponding to (1) is considered.

The spatially structured effect vi is imposed a prior as a Gaussian

field with Matérn correlation function on the n1|n2 regular

lattice. The Matérn isotropic correlation function on an infinite

lattice is given as [13,22,23],

Corr(d)~
1

2n{1C(n)

d

r

� �n

Kn
d

r

� �
,

where d is the separation distance, Kn is the modified Bessel

function of the second kind of order v, C(:) is the Gamma-function,

r is the range or distance parameter (r.0) which measures how

quickly the correlations decay with distance, and v is the

smoothness parameter (v.0). The latent field has marginal

variance 1=tv and range r. Gamma priors are assigned to both

parameters. The Matérn model has great flexibility in modelling

the spatial covariance due to the smoothness parameter v. A large

value of n (n??) implies a smoother spatial process.

Computation
In light of the computational cost of Markov chain Monte Carlo

(MCMC) methods for spatial inference, we adopt the integrated

nested Laplace approximation (INLA) approach proposed by [20].

We note that MCMC might also be possible with desktop

computing, but the Laplace approximation is adequate for our

purposes. INLA performs approximate Bayesian inference for

latent Gaussian models [24], which are defined in three stages as

yij jf*p(yij jf ) ðObservation equationÞ

f jh*N(m(h ),Q(h ){1) ðLatent Gaussian fieldÞ

h*p(h) ðParameter modelÞ

where Q(h ) is the precision matrix of the Gaussian random

vector f , which is sparse. The posterior can be written as

p(f ,h jy)!p(h )p(f jh )P
i[I

p(y jf ,h ):

The models considered in this study are regarded as latent

Gaussian models by assigning f~fmj ,ui,vig, a Gaussian prior with

precision matrix Q(h ). The precision parameters of

Q(h)~ftu,tvg are assigned a prior, Gamma distribution. The

desired posterior marginals can be written as

p(fijy)~

ð
p(fijh ,y)p(h jy)d h : ð2Þ

The vector h refers to the hyperparameters used in defining

prior distributions for the precision of the Gaussian priors. The

posterior marginals of h are approximated by

p(hijy)~

ð
p(h jy)d h{i: ð3Þ

In order to estimate (2) and (3), nested approximations are

constructed, and numerical integration is used to integrate out h .

The Laplace approximation to the posteriors of hyperparameters

can be written as

~pp(h jy)!
p(f ,h ,y)

~ppG(f jh ,y)
j f~ f�( h ), ð4Þ

where ~ppG(f jh ,y) is the Gaussian approximation to the full

conditional of f and f�(h ) is the mode of the Gaussian

approximation for each f . We refer the reader to [20] for more

details on INLA computation. See [25–29] for Bayesian inference

using INLA in various applications. See also [10,30,31] on how

the approximation of a LGCP on fine grids is carried out using

INLA.

Computation in this study is performed in the R package, by

calling the inla program. Two steps are taken to run the models.

First, the linear predictor of a model is specified using the formula

object in R. The specified model can then be run by calling the

inla( ) function. We choose ‘‘strategy = laplace’’ to apply a Laplace

approximation in (4) to estimate the marginals of the components

of the latent field. The output of the inla( ) function generates

various statistics such as marginal likelihood, deviance information

criterion, effective number of parameters, predictive measures

such as logarithmic score [32] and probability integral transform

[33], useful to compare and validate models.

As an illustration, the call in R-INLA to fit the IGMRF model is

data = list(y, j, region.iid, region.struct)

formula = y , –1 + f(j, model = ‘‘iid’’)

+ f(region.iid, model = ‘‘iid’’,

hyper = list(theta = list(prior = ‘‘loggamma’’,param = c(1,0.01))))

+ f(region.struct, model = ‘‘besag’’, graph = ‘‘nb565.graph’’,

hyper = list(theta = list(prior = ‘‘loggamma’’,param = c(1,0.01))))

result = inla(formula, family = ‘‘binomial’’, Ntrials = 1, data =

data, verbose = TRUE,

control.compute = list(dic = TRUE, cpo = TRUE), control.inla

= list(strategy = ‘‘laplace’’))
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Figure 1. (a) Six patterns of simulated point-based data (top). Various spatial patterns are considered, including inhomogeneous point
patterns, patterns with local repulsion, patterns with local clustering, and patterns with local clustering in the presence of a larger-scale
inhomogeneity. (b) The Humberside data on childhood leukaemia and lymphoma (bottom). The dataset portrays a sparse spatial pattern
with a cluster.
doi:10.1371/journal.pone.0075957.g001
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Description of Data

Simulated data
We conducted a simulation study to investigate the impact of

spatial scales and spatial smoothing on modelling outcomes. As

discussed earlier, a spatial pattern may be present at a given

aggregation level and may vanish at other scales. Therefore, using

a range of spatial scales, the purpose of this simulation study was to

investigate the performance of the models when dealing with

different spatial structures of point-based data. We simulated

spatial point-based data from various classical point-process

models on the unit square. As guided by Illian et al. [31], we

considered various scenarios: inhomogeneous point patterns,

patterns with local repulsion, patterns with local clustering, and

patterns with local clustering in the presence of a larger-scale

inhomogeneity. These point-based data include cases and controls

which resemble the Bernoulli outcome of an event (or a disease) in

practice. We simulated cases and controls from two separate point-

process models.

In dataset X1, the cases were generated from an inhomoge-

neous Poisson process with trend function l~50 exp ({x) on the

unit square. The controls were generated from an inhomogeneous

Poisson process with trend function l~100 exp ({x) which were

then superimposed with the cases. This resulted in point-based

data that were inhomogeneously distributed across the space with

an average intensity of 107 points per unit square.

Dataset X2 consisted of cases distributed in patterns with local

repulsion, which were generated from a homogeneous Strauss

process, with medium repulsion b~100 (intensity parameter),

interaction parameter c~0:7 and interaction radius r~0:05, on

the unit square. The cases were superimposed with the controls

that were generated from an inhomogeneous Poisson process with

trend function l~200 exp ({x). The average intensity of this

dataset was 210 points per unit square.

To generate the clustered cases in dataset X3, we simulated a

homogeneous Thomas process with parameters k~5 (the intensity

of the Poisson process of cluster centers), s~0:05 (the standard

deviation of the distance of a point from the cluster center) and

m~50 (the expected number of points per cluster), on the unit

square. Similarly, the controls were generated from an inhomo-

geneous Poisson process with trend function l~400 exp ({x).
After superimposing the cases and the controls, the average

intensity of this dataset was 431 points per unit square.

The cases in dataset X4 were generated from an inhomoge-

neous Thomas process with parameters s~0:01 and m~5 and a

simple trend function for the intensity of parent points given by

k(x1,x2)~100x1, on the unit square. The cases were then

superimposed with controls generated from an inhomogeneous

Poisson process with trend function l~1000 exp ({2x). The

average intensity of the cases and the controls was 648 points per

unit square.

In dataset X5, both the cases and controls were generated from

an inhomogeneous Poisson process with trend function

l~500 exp ({x) on the unit square. The resulting point-based

data were inhomogeneously distributed across the space with an

average intensity of 605 points per unit square.

The cases in dataset X6 were generated from an inhomoge-

neous Poisson process with trend function l~1000 exp ({x) on

the unit square. The controls were generated from an inhomo-

geneous Poisson process with trend function l~500 exp ({x)
which were then superimposed with the cases. This resulted in

point-based data that were inhomogeneously distributed across the

space with an average intensity of 982 points per unit square.

Datasets X1, X5 and X6 were of similar patterns but different

degree of denseness. Dataset X3 had bigger clusters than dataset

X4. See Figure 1(a) for illustrations of the simulated point-based

data.

Humberside data on childhood leukaemia and
lymphoma

We considered a realistic example (Figure 1(b)) available in the

spatstat R package to illustrate the four models. The data were first

presented and analyzed by [34]. [34] perform the method for

detecting spatial clustering of events on this dataset. It is not the

aim of this paper to pursue the detection of spatial clusters. We use

this dataset as a case study that portrays natural phenomena to

investigate the impact of spatial scales and spatial smoothing on

modelling outcomes to complement the simulation study. The

data contained 62 cases of childhood leukaemia and lymphoma

diagnosed in the North Humberside region of England between

1974 and 1986, and 141 controls selected at random from the

birth register for the same period. Spatial location of each

individual’s home address (actually, the centroid for the postal

code) was given in the dataset. The dataset had a polygonal

observation window; for the analysis, we created a

72.1 km660.8 km rectangular window to enclose all events.

Model Fitting and Evaluations

To evaluate the impact of modelling the random effects at

different spatial scales, we considered the partitions at the grid

level by discretizing the study region using grids 565, 10610,

15615, 20620, 25625, 30630, 35635, 40640, 45645, and

50650. The grid 565 resulted in 25 grid cells over the unit square,

the grid 10610 resulted in 100 grid cells over the unit square, and

so on. So, the grid 565 had the largest grid cell size whereas the

grid 50650 had the smallest grid cell size. The cell2nb function in

the spdep R package [35] was used to generate a list of neighbors

for the grid cells, by applying a queen definition of neighborhood,

where two grid cells were termed neighbors if they shared a

common edge or vertex. The adjacency matrices were required in

the fitting of the IGMRF model.

In terms of prior specification, the precision parameters of the

unstructured random effect and spatial effect, tu and tv, were both

assigned Gamma priors with parameters (1,0.01) to impose the

same level of spatial smoothing on the spatial field for each model

throughout the study. We carried out sensitivity analyses to assess

the impact of various choices of prior distributions on the models

and found that the influence of priors are negligible on the basis of

minimal changes in the deviance information criterion (DIC).

For the purpose of model comparison, DIC was used to select

the most parsimonious model after penalizing for model

complexity. We note that DIC has been criticized [36,37] and

can be problematic in models with many random effects [38].

Though it fails in some contexts, the use of DIC is appropriate in

most generalized linear modelling problems and is a popular

Bayesian model choice criterion for comparing complex hierar-

chical models [39]. A smaller DIC indicates a better fit of the

model. As suggested by [39], DIC should not be used as an

absolute measure of the ‘best’ model, but rather a method for

screening alternative formulations in order to provide an

indication of the relative fit of a set of candidate models.

Candidate models receiving DIC within 1–2 of the ‘best’ deserve

consideration, while 3–7 have considerably less support [39].

The logarithmic score (LS) for each model was also computed

[32] to assess the predictive performance of these models. Each

model was assigned a numerical score based on the predictive
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distribution using the cross-validated scoring rules. For discrete

observations Yij , the LS is defined as

LS~{ log (pyij
),

where pyij
~Prob(Yij~yij jy{ij) denotes the cross-validated

predictive probability mass at the observed event. A smaller LS

indicates a better predictive power of the model [40,41].

Results

We describe the results for model fitting on the six simulated

datasets and the realistic example in this section. The DIC for

fitting the four models on the six simulated datasets at various

spatial scales are presented in Figure 2 and Figure 3. Figure 4 and

Figure 5 present the LS for fitting the four models on the six

simulated datasets at various spatial scales.

Dataset X1
The IID, IGMRF and MATERN2D models perform quite

similarly at all spatial scales; whereas the RW2D model has larger

DIC and LS than the other models at the first four spatial scales

but its performance gradually improves as the grid cell size

decreases. Across the spatial scales from the largest grid cell size to

the smallest grid cell size, it is observed that the performance of the

IID, IGMRF and MATERN2D models is fairly consistent.

However, the RW2D prior appears to perform increasingly well

as the grid cell size reduces. Therefore, for point data that are

sparse and inhomogeneously distributed across the space such as

dataset X1, the RW2D model seems to be a reasonable choice

when fitted at small grid cell sizes. The results also suggest the need

to repeat the analyses at multiple scales given the sensitivity of the

models to changing spatial scales.

Dataset X2
Based on the results obtained for dataset X2, the RW2D model

produces the smallest DIC and LS at all spatial scales. It appears

that the scores produced by this model are quite similar at all

spatial scales, suggesting that the changes in grid cell size do not

affect the model performance. The performance of the other three

models is inferior to the RW2D model and is rather consistent

across the spatial scales. We note that the point data in this dataset

are sparse and distributed with the presence of local repulsion and

mild inhomogeneity. The results suggest that the changes in the

spatial scales do not affect the model outcomes for this spatial

pattern.

Dataset X3
In dataset X3 which contains clustered cases and inhomogen-

eously distributed controls, the results clearly show the improve-

ment in model fit and predictive performance for the RW2D

model as the grid cell size decreases based on the decreasing DIC

and LS. The RW2D model yields better fit than the three other

models at grids 15615 and above. A great improvement is seen for

the RW2D model from the grid 10610 to the grid 15615. We

note that at the grid 10610, the number of individuals in the grid

cells is highly varying with a maximum of 26 and median of 3.5,

while less extreme at the grid 15615 with a maximum of 17 and

median of 2. There is a lot of inhomogeneity across the grid cells at

the grid 10610 which cannot be effectively smooth out by all four

models. However, the disretization at grids 15615 and above

produces less inhomogeneity across the grid cells and thus the

RW2D prior is able to smooth out the clusters more effectively.

This is due in part to the ability of the RW2D prior in taking into

account the first and second-order neighbors in spatial smoothing.

For the clustered dataset presented here, there seems to be a need

to discretize the study region into fine grid cells and the RW2D

prior appears to be the most appropriate choice for spatial

smoothing.

Dataset X4
Dataset X4 contains relatively small clusters of cases as

compared with dataset X3. The results suggest that the most

appropriate spatial scale for fitting this dataset is at the grid 20620

using the MATERN2D model or the grid 25625 using

the IGMRF model. Too large or too fine grid cell sizes impair

the model performance as shown by the MATERN2D model.

The MATERN2D and IGMRF priors both appear to be good

choices for the spatial smoothness priors for this dataset. However,

the spatial scales should be chosen with caution as they affect

model outcomes substantially.

As suggested by the results, some models behave differently at

different scales, e.g., working relatively well at certain scales but

not others. This could be related to the fact that the smoothness

priors perform in different mechanisms at various scales due to the

impact from the neighboring grid cells. For illustration, we present

the estimated precision parameters for the MATERN2D model at

various spatial scales in Table 1. It is shown that the mean and

standard deviation of the precision parameters for ui and vi at

grids 565 and 10610 are very different from grids 15615 and

above, hence resulting in the varying DIC seen for the

MATERN2D model in dataset X4 (Figure 3). The performance

of the MATERN2D model is very similar at grids 15615 and

20620 due to their similarity in the precision parameters. We note

that at different scales, various degree of inhomogeneity across the

grid cells is observed. When there is large inhomogeneity across

the cells, a higher degree of spatial smoothing is imposed while less

smoothing when there is small inhomogeneity. The change in the

degree of spatial smoothing results in the changes in the precision

parameters.

Datasets X5 and X6
Datasets X5 and X6 contain point data that are inhomogen-

eously distributed across the space (similar to dataset X1). They

are both denser than dataset X1 and dataset X6 is denser than

dataset X5. The results for both datasets show that the IID,

IGMRF and MATERN2D models produce good fit to both

datasets at most spatial scales. The RW2D model is shown to yield

the worst fit to the data across the spatial scales in both datasets.

For both datasets, it appears that all the models perform rather

consistently at all spatial scales. As a result, we note that the spatial

scale is not an issue for dense point data and either one of the IID,

IGMRF and MATERN2D models could be used in modelling.

Humberside data
In order to understand the discretization of the Humberside

dataset better, we provide the summaries of the number of events

included in the grid cells for all the non-zero cell counts at the

different spatial scales (Table 2). The maximum number of cases

decreases from 33 at the largest grid cell size to four at the smallest

grid cell size while the maximum number of controls decreases

from 83 at the largest grid cell size to nine at the smallest grid cell

size. It is shown that the number of events contained in the grid

cells has only slight differences for the grid 30630 up to the grid

50650, which suggests that the grid 30630 might be a suitable

scale and a finer grid cell is not required.
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Figure 2. The estimated DIC of the four models for datasets X1, X2 and X3 at various spatial scales. The RW2D model fitted at small grid
cell sizes appears to be a reasonable choice for dataset X1. For dataset X2, the RW2D model produces the smallest DIC at all spatial scales. The RW2D
model also performs better than the three other models at grids 15615 and above.
doi:10.1371/journal.pone.0075957.g002
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Figure 3. The estimated DIC of the four models for datasets X4, X5 and X6 at various spatial scales. The most appropriate spatial scale
for fitting dataset X4 is at the grid 20620 using the MATERN2D model or the grid 25625 using the IGMRF model. For datasets X5 and X6, the IID,
IGMRF and MATERN2D models perform well at most spatial scales.
doi:10.1371/journal.pone.0075957.g003
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Figure 4. The estimated LS of the four models for datasets X1, X2 and X3 at various spatial scales. The RW2D model fitted at small grid
cell sizes appears to be a reasonable choice for dataset X1. For dataset X2, the RW2D model produces the smallest LS at all spatial scales. The RW2D
model also performs better than the three other models at grids 15615 and above.
doi:10.1371/journal.pone.0075957.g004
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Figure 5. The estimated LS of the four models for datasets X4, X5 and X6 at various spatial scales. The most appropriate spatial scale for
fitting dataset X4 is at the grid 20620 using the MATERN2D model or the grid 25625 using the IGMRF model. For datasets X5 and X6, the IID, IGMRF
and MATERN2D models perform well at most spatial scales.
doi:10.1371/journal.pone.0075957.g005
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Based on the results obtained from modelling the Humberside

dataset, the IID, IGMRF and MATERN2D models produce

similar DIC and LS at the various spatial scales (Figure 6) but the

RW2D model performs slightly worse than the other three models

at all instances. At the grid 30630, a slight improvement is

observed for all the models. Also, at this scale, the MATERN2D

model outperforms the other models substantially. It could be seen

that the performance of the MATERN2D model is rather sensitive

to the changes in the spatial scales. In short, the results suggest that

the dataset should be fitted at the grid 30630 using the

MATERN2D prior for spatial smoothing. Table 3 summarizes

the results for fitting the models at various spatial scales for various

datasets described above. The implications of these results are

considered further in the Discussion.

Discussion

We evaluated the performance of a range of spatial smoothness

priors (an intrinsic Gaussian Markov random field (IGMRF), a

second-order random walk on a lattice (RW2D), and a Gaussian

field with Matérn correlation function (MATERN2D)) and spatial

scales for various spatial structures using deviance information

criterion (DIC) and logarithmic score (LS). The simulated datasets

consist of points that are distributed across the space at various

spatial patterns. The Humberside data are real phenomena where

the data points are spatially sparse and exhibit a cluster. The

results in this study suggest that different spatial smoothness priors

and spatial scales may be appropriate for different patterns of

spatial point-based data.

We note that for spatially sparse and inhomogeneously

distributed point pattern (dataset X1), our study shows that it is

necessary to include a spatially structured component, in addition

to the unstructured component, to the model. The RW2D model

at small grid cell sizes is an appropriate choice of modelling as it is

the most parsimonious model (based on the DIC) and has the best

predictive performance (based on the LS). Dataset X5 and dataset

X6, which are essentially similar structures to dataset X1 but in a

denser pattern, do not produce similar results to dataset X1. The

results suggest that when denser point data are involved, the

changes in spatial scales have little impact on the model outcomes.

In addition, the spatial effect does not necessarily have to be

included in the model as the unstructured component alone

suffices. However, if desirable, the IGMRF and MATERN2D

priors may be used as priors for the spatial effect as they do not

impair the model performance.

When the point patterns with local repulsion and mild

inhomogeneity (dataset X2) are modelled, the spatial component

should be included and assigned the RW2D prior, in addition to

the inclusion of the IID component in the model, as suggested by

the results. Nevertheless, the spatial scales do not seem to matter in

modelling this sort of spatial structure where the points are

distributed across the space with local repulsion and mild

inhomogeneity. For the inhomogeneous point pattern with a few

large clusters (as portrayed by dataset X3), the RW2D model at

fine grid cell sizes is shown to be a good modelling choice.

The sparse inhomogeneous point pattern with a number of

small clusters across the space (dataset X4) appears to be quite

sensitive to the changes in the spatial scales. As shown in the

results, the MATERN2D model at the grid 20620 and the

IGMRF model at the grid 25625 are the two appropriate

modelling approaches for this point pattern. The model perfor-

mance (based on the DIC and LS) becomes worse when larger or

smaller grid cell sizes are used in modelling. This has addressed the

need to select the spatial scales with caution when complicated

spatial structures are of interest.

The realistic example studied here (the Humberside dataset) has

further confirmed that for sparse point pattern with potential

spatial clustering, the spatial scale and spatial smoothness prior

have to be chosen carefully in modelling. The model fit (as guided

by the DIC) and predictive performance of the models (as guided

by the LS) differ at the different spatial scales. The results for this

dataset show that the best modelling approach for this dataset is

the MATERN2D model at the grid 30630. This complements the

results for dataset X4, in which both of these sparse datasets with

clustering appear to be quite sensitive to the changes in the spatial

scales. Furthermore, the MATERN2D model is shown to be a

good modelling approach for both datasets.

The various spatial smoothness priors considered in this study

have been shown to be applicable for different spatial structures.

We note that it is possible to choose the appropriate prior based on

the spatial structures but a range of priors should generally be

considered. As suggested by our study, the RW2D prior is a

reasonable choice for spatial smoothing when spatially sparse point

patterns are involved, regardless of whether the points are

homogenous or inhomogeneously distributed across the space.

The RW2D prior imposes spatial smoothing by taking into

account the first and second-order neighbors. Our study also

shows that the IGMRF prior is suitable for spatial smoothing in

Table 1. The estimated precision parameters of the
MATERN2D model at various spatial scales for dataset X4.

Spatial scale Precision for ui (tu) Precision for vi (tv)

Mean Std dev Mean Std dev

565 0.455 0.092 172.474 44.838

10610 0.217 0.043 23.700 12.438

15615 46.034 4.236 0.084 0.007

20620 49.972 5.169 0.065 0.006

25625 40.582 3.022 0.041 0.003

30630 41.473 3.413 0.051 0.004

doi:10.1371/journal.pone.0075957.t001

Table 2. Summary of the number of events in the grid cells
for all the non-zero cell counts at various spatial scales for the
Humberside dataset.

Spatial
scale Case Control

Min Mean Max Min Mean Max

565 1 6.20 33 1 11.75 83

10610 1 4.77 22 1 6.13 44

15615 1 2.82 10 1 4.15 29

20620 1 2.95 11 1 3.62 17

25625 1 2.39 8 1 3.36 14

30630 1 1.88 4 1 2.77 10

35635 1 2.00 6 1 2.71 12

40640 1 1.77 5 1 2.31 11

45645 1 1.68 4 1 2.14 8

50650 1 1.55 4 1 2.10 9

doi:10.1371/journal.pone.0075957.t002
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Figure 6. The estimated DIC and LS of the four models for the Humberside dataset at various spatial scales. The dataset should be
fitted at the grid 30630 using the MATERN2D prior for spatial smoothing.
doi:10.1371/journal.pone.0075957.g006

Table 3. Summary of results for fitting the four models at various spatial scales for various spatial patterns.

Spatial patterns Recommended spatial smoothness priors
and spatial scales

Sensitivity of the models towards the changing spatial scales

Sparse inhomogeneous point pattern
(dataset X1)

The RW2D model at small grid cell sizes. The IID, IGMRF and MATERN2D models perform consistently at all
spatial scales; the RW2D model is sensitive towards the changing
grid cell sizes.

Sparse point pattern with local repulsion
and mild inhomogeneity (dataset X2)

The RW2D model; spatial scales have little
impact on model outcomes.

All four models perform rather consistently at all spatial scales.

Sparse inhomogeneous point pattern with
large clusters (dataset X3)

The RW2D model at grids 15615 and above. The IGMRF model performs consistently at all spatial scales; the
IID, RW2D and MATERN2D models are sensitive towards the
changing grid cell sizes.

Sparse inhomogeneous point pattern with
small clusters (dataset X4)

The MATERN2D model at the grid 20620 or
the IGMRF model at the grid 25625.

The RW2D model performs consistently at all spatial scales; the
IID, IGMRF and MATERN2D models are sensitive towards the
changing grid cell sizes.

Dense inhomogeneous point pattern
(datasets X5 and X6)

The IID, IGMRF and MATERN2D models; spatial
scales have little impact on model outcomes.

All four models perform rather consistently at all spatial scales.

Sparse point pattern with clusters
(the Humberside dataset)

The MATERN2D model at the grid 30630. The IID, IGMRF and RW2D models perform rather consistently at
all spatial scales; the MATERN2D model is sensitive towards the
changing grid cell sizes.

doi:10.1371/journal.pone.0075957.t003
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spatially dense and inhomogeneous point patterns as it considers

only first-order neighbors. The RW2D prior is essentially a

second-order IGMRF on a lattice. It is quite flexible due to its

invariance to addition of a linear trend. The RW2D prior imposes

a higher level of spatial smoothing than the IGMRF prior due to

the presence of the second-order neighbors. Sparse data need

more spatial smoothing than dense data, therefore the RW2D

prior works well in this context. If spatially dense and homoge-

neous point patterns are considered, the model may not include

the spatially structured component but only the unstructured

component assigned the IID prior. The MATERN2D prior

appears to be well-suited for capturing the spatial effect in spatially

clustered point patterns but it is very sensitive to the changes in

spatial scales. This could be due to the representation of the

smoothness parameter which gives the model great flexibility in

modelling clustered point data that require a relatively high level

of spatial smoothing.

In conclusion, we note that it is crucial to repeat the spatial

analyses at multiple spatial scales when modelling inhomogen-

eously distributed point patterns as the model fit and predictive

performance of the models appear to vary at different spatial

scales. Methods for testing spatial heterogeneity such as Tango’s

Index [42] and Moran’s I [43] could be used to decide if a given

spatial dataset is inhomogeneously distributed. Inspection of

detailed plots of the spatial data may also be a good guide to

examine the presence of spatial inhomogeneity. For the inhomo-

geneous point patterns that do not contain clusters, the model

performance improves as the grid cell size reduces. For the

inhomogeneous point patterns that contain clusters, the appropri-

ate spatial scale can be chosen by repeating the analyses at a range

of spatial scales. On the other hand, the spatial scales appear to

have little impact for homogeneously distributed point patterns.

Also, it may not be necessary to include the spatially structured

component in modelling of homogeneous point patterns unless

desirable.

An acknowledged limitation of the study is that we simulated

one scenario for each point process structure of interest.

Therefore, we are reserved about the generality of the conclusions

drawn above. For future work, more than one simulation scenario

for a continuum of point process models with varying spatial

structures could be studied in order to achieve more general

conclusions. In this study, we consider grid cells with equal sizes as

it was argued by [44] that in the specification of neighborhood

structure, all regions should be of similar size and arranged in a

regular pattern. For regions with different sizes, possible neigh-

borhood structure definitions are some known function of the

distance between centroid of areas [45]; an intrinsic conditional

autoregressive (ICAR) prior [15] using weight definition, and

alternative specifications within the CAR class [46]. Further

investigation could be carried out to examine the impact of the

changes in the shape of the regions including regular and irregular

sizes.

Given the different results observed and different inferences

made at the different spatial scales, it is crucial to repeat the

analysis at different scales as the data may contain useful

information at more than just one scale. It is also important to

take into account the spatial scale that is of interest in a particular

problem, i.e., the scale at which decisions or inferences will be

made in practice. Often, disease management and policy making

of subpopulation require modelling at a coarser scale than that

required for understanding individual influences or associations.

The choice of spatial scale is typically influenced by geo-political

considerations, for instance, administrative districts are often used

to describe and to understand geographical variation of a disease,

with the aim being to assist public health decision making.

Similarly, the identification of population-based clusters may differ

from local clusters, with different interpretations and decision/

action implications.
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