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Abstract

We compute the singular value decomposition of the radial distribution function g(r) for hard sphere, and square well
solutions. We find that g(r) decomposes into a small set of basis vectors allowing for an extremely accurate representation
at all interpolated densities and potential strengths. In addition, we find that the coefficient vectors describing the
magnitude of each basis vector are well described by a low-order polynomial. We provide a program to calculate g(r) in this
compact representation for the investigated parameter range.

Citation: Hoppe T (2013) Singular Value Decomposition of the Radial Distribution Function for Hard Sphere and Square Well Potentials. PLoS ONE 8(10): e75792.
doi:10.1371/journal.pone.0075792

Editor: Dennis Salahub, University of Calgary, Canada

Received July 23, 2013; Accepted August 20, 2013; Published October 15, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National
Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: hoppeta@mail.nih.gov

Introduction

To date, there have been many numerical calculations of the

radial distribution function (RDF) and equations of state for

discrete potentials [1–11]. Analytical theories arising from closures

of the Ornstein-Zernike equations, such as the Percus Yevick or

Hypernetted-chain, currently validate their predictions on a set of

fixed simulation data rather than a continuous range of

parameters. In this work, we present a reduced representation

for a continuous range of hard sphere and square well parameters

that reproduces simulation data to extremely high accuracy.

Since the Fourier transform of g(r) results in the experimentally

measurable structure factor, prediction of the RDF is one of the

core goals of liquid state theories. This work was motivated by the

lack of an accurate tabulation of g(r) for various idealized fluids.

Such a tabulation would hold value for validating both theoretical

predictions and modeling empirical results. There are numerous

theories that rely on ‘‘apparent’’ hard-sphere volumes or fitted

square well parameters to predict observed properties [12–16].

With a smooth interpolation, not only would the fits be more

accurate, the sensitivity to inputs could be measured as well. In

addition, modeling across a larger parameter domain would be

possible with a two (or higher) dimensional parameterization. In

this paper we show the results of a systematic computational study

of the RDF for two well-studied potentials, the hard sphere (HS)

and a square well (SW). We find that the potential in all cases can

be decomposed into very few basis vectors when the density and

attractive strength are varied. This allows for the RDF to be

determined at all interpolated values with high accuracy.

Our approach is similar to the work of di Dio, et. al. [17] where

the basis vectors, as a function of temperature, were used to model

the RDF of water. Due to the complexity of the model, only five

points in the parameter space were sampled. Since HS and SW

potentials are less complex, we can examine several orders of

magnitude more points in parameter space. This makes the

singular value decomposition much more accurate and reveals

several interesting phenomena.

The first is that the decomposition is very clean, in that the

singular values are well separated from each other when

considering variations in both density and attractive strength.

This leads to a reduced representation of the RDF across the

parameter range. However, variations of the SW length did not

permit separation into a small number of components, conse-

quently this parameter did not lend itself to a reduced

representation.

Secondly, we note the dependence of each basis vector as a

function of the system parameters was well described by a low-

order polynomial. The degree of this polynomial increased linearly

with the rank order of the basis vector. This means that a

reconstruction of the RDF for any interpolated value of packing

fraction or attractive strength can be expressed by a set of

polynomial coefficients, a vector of singular values, and a small set

of vectors describing the basis functions. This compact represen-

tation along with a program to reconstruct the RDF is given in the

Supplementary Information.

Methods

For a given system, we compute the radial distribution function

g(r;S) as a function of the separation r and a set of parameters S.

Discrete molecular dynamics (DMD) was used to simulate all

systems in this study. We used a simplified set of parameters as

input to an all-atom DMD program created by the Dokholyan

group [18,19]. Although originally designed to model proteins, the

discrete, isotropic, pairwise additive potentials were a natural fit.

For continuous potentials, the motion can only be approximately

integrated over a finite time step. The event-driven nature of

DMD allows for both instantaneous and exact propagation of the

equations of motion. In addition, DMD allowed for rapid

decorrelation of the molecular positions ensuring ergodicity and
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full sampling without the worry of a properly sized displacement

step required for Monte Carlo simulations.

The packing fraction w~Vsr~(p=6)s3r is defined by the

product of the density of the spheres r and the volume occupied by

a single sphere VS . For fixed values of N and w, a simulation box

with periodic boundary conditions and length L was constructed

such that L3&NVs=w. At the maximum packing fraction used and

N~213 particles, this gave a box length of L~15:5s. The

particles were arranged by building the indices to a corresponding

face-centered cubic lattice and placing particles at random until

the desired density was reached. During the first phase of

equilibrium, the potential (if present) was switched off to allow

rapid decorrelation of the initial coordinates. During the second

phase of the equilibrium, the potential was turned back on. For

each phase the system equilibrated until the pressure reached a

steady-state value. After equilibration, data was collected at 104

equal time intervals. Since temperature is irrelevant in a HS DMD

simulation, a single time step corresponded approximately 60

collisions per particle at the largest packing fractions and

approximately 5:109 total collisions. We discretize the range

r~ s, . . . ,6sf g into m~3000 equally sized intervals, a resolution

of Dr~s=600. We repeat the measurement of the RDF over k

equally distributed points in parameter space S[ S1,S2, . . . ,Skf g.
For hard spheres the system is completely parameterized by the

packing fraction SHS(w). For square wells the system is parame-

terized by SSW(w,E�,l), where l is the well length and E�~E=kT is

the reduced attractive strength. With spheres of diameter s the

potential for a SW system is

USW(r)~

? : rƒs

{E : svrƒls

0 : rwls

8><
>:

ð1Þ

where hard spheres are the limiting case of square wells as E?0.

For notational convenience, we henceforth set kT = 1 and simply

refer to E� as E.
Let Gij~g(rj ;Si) be a (k,m) real matrix where each row

represents a measurement of the RDF at a particular point in

parameter space. The singular value decomposition (SVD) is

G~ULVT ð2Þ

The matrices U~(u1,u2, . . . ,uk) and V~(v1,v2, . . . ,vm) are

orthogonal. Since there are more sampled intervals in g(r) than

points in parameter space, kvm, L is a diagonal matrix of k real-

valued non-negative singular values, L~diag(s1,s2, . . . ,sk) With

no loss of generality, we order the singular values such that

s1§s2§ . . . §sk.

If there is a sharp decay in the spectrum of singular values, in

that sp=s1vd for some p and threshold d, the original matrix G

can be well approximated by the reconstruction from a partial set

of the SVD

G&U’L’V’T ð3Þ

where U’~(u1,u2, . . . ,up) and similarly for V’ and L’. For

convenience, we designate the vectors vi as basis vectors and the

vectors ui as coefficient vectors. While the basis vectors are a function

of distance, vi(r), the coefficient vectors are functions of the

parameters, ui(S). The coefficient vectors describe how each basis

function contributes as a function of the system parameters. The

basis vectors are equivalent to the so-called ‘‘Grund’’ vectors of di

Dio et. al [17]. For comparisons sake, our reconstructed matrix is

the transpose of Equation (3) in the referenced paper. This has the

effect of switching the interpretation of the v (basis) vectors with

that of the u (coefficient) vectors.

The measurement of the RDF in a canonical ensemble becomes

problematic in the presence of a phase separation due to finite size

boundary effects. We therefore restrict the parameters to regions

containing only a single liquid or vapor phase. We note that it

should be possible to perform the simulation under a grand

canonical ensemble. The so-called Gibbs ensemble method

popularized by Panagiotopoulos [20] could provide information

at the coexistence curve. For HS we examine the range from very

low densities up to the freezing transition wF ~0:494, where the

phase diagram becomes meta-stable [21]. For SW we restrict the

domain to the exterior of the liquid-vapor coexistence curve

temperatures and the freezing transition. We find good results

independent of the liquidus line at the well length we considered

l~1:25.

Results

Hard Spheres
We sampled k~500 points in the parameter space for hard

spheres HS1(Dw) over w~ 0:01, . . . ,0:48½ � and N~212. The six

largest singular values in HS1(Dw) were exponentially separated

from each other, as shown in Figure 1. Smaller singular values and

their corresponding basis vectors contained only noise and did not

improve fits. This strongly suggested that an accurate reconstruc-

tion of the original RDFs is possible using only a limited subset. To

test for finite size effects, we repeated the HS simulation with twice

as many particles, HS�1(Dw), N~213. While the resolution of the

basis vectors improved, this difference was negligible for all but the

smallest vectors u5 and u6.

In Figures 2 and 3 we plot both the basis and coefficient vectors.

Somewhat surprisingly, the coefficient vector un is extremely well

described by a polynomial of degree nz1, e.g. for the single

parameterization of HS1(Dw) there exists a set of coefficients such

that

un(w)~a0za1wz . . . zanz1wnz1 ð4Þ

with high accuracy. These polynomials contain n{1 real roots

and a single pair of complex conjugate roots. The polynomials fit

so well to the coefficient vectors that they are indistinguishable for

the dominant vectors and fit with little error for the smaller

vectors. The log10 of the residuals from the polynomial fits, which

we report for the more accurate HS�1(Dw), were 27.23, 25.00,

24.12, 23.59, 23.24, 22.56 for u1, . . . ,u6 respectively. Due to

the high quality of the fits, we only need to store the coefficients

describing the polynomial to reproduce the coefficient vectors.

In Figure 4 we show the measured RDF and the reduced

polynomial reconstruction at a high packing fraction w~0:46.

Within plotting accuracy, the two curves are identical. The

squared difference between the curves shows excellent agreement,

with the greatest discrepancy at the contact value. We compare

our results with the basic predictions of classical fluid theory with

three different closures, Percus Yevick (PY), Hypernetted chain

(HNC), and the mixed form of Roger-Young (RY). For repulsive

potentials, the HNC closure is is more appropriate for large

interparticle distances and the PY closure works best at shorter

distances [22]. The RY closure is a mixture of PY and HNC and

typically outperforms both. The shape of the RDF near the second

maxima for each of the closures calculated according to the

SVD g(r) for Hard Sphere and Square Wells
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method of Rogers [23] and is illustrated in the first inset. While all

theories are fairly accurate, they fail to fully capture all the detail of

the RDF. In contrast, the SVD reconstruction within the

interpolated parameter space, does an excellent job in capturing

the more problematic portion of the RDF.

Square wells
We explored a variety of parameters for the square well, varying

packing fraction SW1(Dw), attractive strength SW1(DE), well

length SW1(Dl), and a double well SW2(Dw). Like the HS system,

we divided each parameter range into k~500 intervals with

N~212, while holding the other parameters fixed. All values were

above the liquid-vapor critical point and the freezing transition to

ensure the system was in a single phase [24]. The specifics for each

simulation along with an averaged error are summarized in

Table 1. The SW system parameters are illustrated in Figure 5.

The singular values for the SW system, shown in Figure 1,

indicate a sharp decomposition by w and E. The spectrum of

Figure 1. Rank sorted normalized singular value spectrum. HS, SW1, SW2 refers to the hard sphere, single and double square well systems
respectively. The asterisk indicates that the system was run with N~213 instead of N~212. Note that in the SW1(Dl) system, the singular values
decay much slower suggesting that the system does not decompose as cleanly as the other variations.
doi:10.1371/journal.pone.0075792.g001

Figure 2. Five most dominant basis vectors vi(r=s) for the hard sphere system HS�1(Dw). Results are identical, but less accurate, for the
smaller N~212 system. The vectors associated with the fourth and fifth singular values, v4 and v5 , were at the sampling resolution and consequently
had more noise.
doi:10.1371/journal.pone.0075792.g002

SVD g(r) for Hard Sphere and Square Wells
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singular values for these systems level off within the first ten values

indicating that the original signal can be reconstructed to high

numerical precision. However, as a function of the well length l,

the singular values show a gentle slope with no dominant

reduction, indicating that a reduced reconstruction is not feasible

for this parameter. We conjecture that this is due to the location of

the discontinuity changing in the potential. While the averaged

error in Table 1 seems low, it is an order of magnitude larger than

the other systems. The value of the RDF near the discontinuity

g(r&sl) consistently undershoots the correct value with large

oscillations, similar to that of a Gibbs phenomenon observed in the

Fourier decomposition of a step function.

Since a SW is often a first-order approximation to a continuous

potential, a double square well is the next logical step in the

approximation. The system SW2(Dw) splits the well into two

regions, giving three discontinuous points in the potential. Unlike

Figure 3. Five most dominant coefficient vectors ui(w) for the hard sphere system HS�1(Dw). The polynomial fits to the vectors are shown as
dashed lines.
doi:10.1371/journal.pone.0075792.g003

Figure 4. RDF for HS�1(Dw) at w = 0.46. The thin solid black line marks the computational value and the red dashed line is the six
vector polynomial reconstruction from the SVD. Note that within the plotting resolution the lines are nearly identical. Left Inset: To illustrate
the failure of the basic integrals closures, Percus Yevick (blue), Hypernetted chain (green), and Roger-Young (orange), we plot the predicted RDF
calculated from [23] in the region of the second peak. Outside of this region, there is better agreement of the integral equations to the simulation

results. Right Inset: Distance dependence on the residuals of the computed RDF g(r) to the reconstructed RDF ~gg(r), where the y-axis is (g(r){~gg(r))2 .
doi:10.1371/journal.pone.0075792.g004

SVD g(r) for Hard Sphere and Square Wells
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the SW1(Dl) system, where the location of the discontinuity is

changing, the double well potential was fixed as the other

parameters varied. SW2(Dw) showed the sharp decomposition,

suggesting that continuous potentials may be amenable to SVD. It

is worth investigating whether other macroscopic potentials, such

as Lennard-Jones, Yukawa, or even general anisotropic electro-

static models [25] can be decomposed in this manner. Very

recently, the thermal stability of water and noble gases using a

Lennard-Jones potential has been investigated [26], where similar

results were obtained.

The basis vectors, which are given in the Supplementary

Information, are similar to the HS except for the presence of

discontinuities at the potential boundaries. The coefficient vectors

also show the same general reduction to a polynomial of degree

nz1. We also investigated the feasibility of a two parameter SVD

in SW1(Dw,E). The singular values decayed more slowly than their

one parameter counterparts but still much faster than SW1(Dl).
We found that the coefficient vectors, now a function of two

variables, could be replaced by a bivariate polynomial

u(w,E)~
Xnz1

i

Xnz1

j

aijw
iEj ð5Þ

The static structure factor for an isotropic fluid can be

calculated by a Fourier transform of the RDF,

S(k)~1z4pr
Ð?

0
(g(r){1) sin (kr)rk{1 dr. As a check for each

reconstructed RDF, we have verified the physical requirement of

positivity S(k)w0 when at least five vectors were used.

Table 1. Simulation parameters studied in this work.

w E l N avg. error

HS1(Dw)HS 0:01, . . . ,0:48½ �500 - - 212 .0064

HS�1(Dw)HS 0:01, . . . ,0:48½ �500 - - 213 .0046

SW1(Dw)SW 0:01, . . . ,0:48½ �500 1.0 1.25 212 .0093

SW1(DE)SW wc 0, . . . ,1:0½ �500 1.25 212 .0050

SW1(Dl)SW wc 1.0 1:0, . . . ,1:25½ �500 212 .0350

SW1(Dw,E)SW 0:01, . . . ,0:48½ �50 0, . . . ,1:0½ �50 1.25 212 .0086

SW2(Dw)SW 0:01, . . . ,0:48½ �500 (21.0, 21/2) (1.125, 1.25) 212 .0063

The subscript indicates the number of intervals the range was divided over. The SW parameter space is illustrated in Figure 5. wc~0:194 is the critical packing fraction
for a SW at l~1:25. The double SW2(Dw) potential has two values for l and E indicated in parentheses. The average error was the percentage difference between the

measured g(r) and the SVD reconstructed ~gg(r) using the top five vectors, averaged over all system parameters: v
Ð

~gg(r){g(r)j j=g(r) drwS . The domain of the integration

extends from s to 6s since g(rvs)~0 for the systems studied.
doi:10.1371/journal.pone.0075792.t001

Figure 5. Parameter space of the SW, l = 1.25 potential. The vertical and horizontal dashed lines indicate the variation for SW1(Dw) and
SW1(DE) respectively. The cross indicates the point at which the well depth was varied SW1(Dl), and the shaded region indicates the two parameter
region explored SW1(Dw,E). The vertical axis is plotted in T�~kT=E for comparison to known coexistence curves. As a reference, we show the liquid-
vapor coexistence curve as a solid line, with a red dot at the critical point, wc~0:194, T�c ~0:764, from Vega [24] and the coexistence curve
determined via Gibbs-Duhem integration [29].
doi:10.1371/journal.pone.0075792.g005

SVD g(r) for Hard Sphere and Square Wells
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Discussion

While useful because of their compact representation, it is

unclear if the exact polynomial representations of the coefficient

vectors hold any special significance. Although they bear a

resemblance to the radial Zernike polynomials [27,28], all

attempts at fitting proved unsuccessful. The existence of the pair

of complex conjugate roots precluded the possibility that the

coefficient vectors were formed directly from an orthogonal

polynomial construction.

In theory, the basis functions themselves may yield qualitative

insight, especially when the singular values are well separated. In

the case of the RDF, it is possible that the basis functions are

related to an expansion of the Ornstein-Zernike equation. For

example, we find that the largest basis vector v1 captures the scale

of the potential, in that it approximates the contact value, any

discontinuities, and captures the long range limit of g(r&s)~1.

The less dominant basis functions seem to capture the variation in

secondary maxima and minima as the parameters change.

However, we are unable to ascertain any physical significance

beyond these general qualitative observations. We also note that

the reconstructed RDF’s are only accurate within the interpolated

parameter regions. While extrapolated values may be valid near

the boundary of the parameter space, they are unlikely to give

good predictions further way. The investigation of the polynomial

representation of the coefficient vectors along with the connection

of the basis vectors to the underlying liquid state theory also

warrants additional study.

Preliminary work on both binary mixture and polydisperse hard

sphere fluids show the same sharp separation of the singular

values. These systems and other simple continuous potentials are

being currently studied in more detail. For HS and SW systems we

have shown that the reduced decomposition allows for the RDF to

be reproduced with extremely high accuracy over all interpolated

values of w and E.

Supplementary Information
Source code to compute the radial distribution profiles for HS

and SW can be found at https://github.com/thoppe/gr_svd.
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