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Abstract

Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to
obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L2 regularization used in
deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose
a method called diffusion decomposition, which obtains a sparse solution of fiber ODF by decomposing the diffusion ODF
obtained from q-ball imaging (QBI), diffusion spectrum imaging (DSI), or generalized q-sampling imaging (GQI). A simulation
study, a phantom study, and an in-vivo study were conducted to examine the performance of diffusion decomposition. The
simulation study showed that diffusion decomposition was more accurate than both constrained spherical deconvolution
and ball-and-sticks model. The phantom study showed that the angular error of diffusion decomposition was significantly
lower than those of constrained spherical deconvolution at 30u crossing and ball-and-sticks model at 60u crossing. The in-
vivo study showed that diffusion decomposition can be applied to QBI, DSI, or GQI, and the resolved fiber orientations were
consistent regardless of the diffusion sampling schemes and diffusion reconstruction methods. The performance of
diffusion decomposition was further demonstrated by resolving crossing fibers on a 30-direction QBI dataset and a 40-
direction DSI dataset. In conclusion, diffusion decomposition can improve angular resolution and resolve crossing fibers in
datasets with low SNR and substantially reduced number of diffusion encoding directions. These advantages may be
valuable for human connectome studies and clinical research.
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Introduction

Crossing fiber problem is still under active research in the field

of diffusion MRI, and a method that offers accurate fiber

orientation is the cornerstone of human connectome studies since

it can facilitate fiber tracking and provide better mapping of

neuronal connections [1,2]. To resolve crossing fibers, methods

that make use of the orientation distribution function (ODF) have

been widely used [3]. Tuch [4] proposed q-ball imaging (QBI) to

estimate the diffusion ODF (dODF) by applying Funk-Radon

transform to high angular resolution diffusion images (HARDI)

[5]. Wedeen et al. [6] proposed diffusion spectrum imaging (DSI),

which obtains dODF by applying inverse Fourier transform to

diffusion MR signals and calculating the second moment along the

radial distribution of the transformed signals. To further extend

the applicability, Yeh et al. [7] proposed generalized q-sampling

imaging (GQI), which can be applied to a variety of diffusion

sampling schemes to obtain dODFs, and the results are consistent

with those from QBI and DSI. Although these dODF methods

have been used to determine fiber orientations, their accuracy is

limited by the blurred contour of dODF. This problem is

demonstrated in Fig. 1, an example of two fiber populations

crossed at right angles (Fig. 1A). The fiber orientations can be

resolved by the peak orientations of the dODF (Fig. 1B), but the

blurred contour of the dODF may fail to resolve crossing fibers if

the crossing angle is sufficiently small.

To better characterize fiber distribution, studies have used

spherical deconvolution to obtain fiber ODF (fODF) and to

measure the orientation distribution of fiber volume fractions

[8,9]. Spherical deconvolution estimated the signal pattern of a

single fiber bundle and applied deconvolution to the spherical

harmonics of diffusion MR signals to calculate fODF. An example

of fODF is shown in Fig. 1C, where fODF presents a contour

sharper than dODF’s and achieves better angular resolution. This

advantage makes fODF a useful way to resolve crossing fibers for

diffusion MRI fiber tracking. Further studies have proposed

improved methods to address the problem of partial volume effect

[10,11], which can corrupt fODFs and produce false peaks.

Moreover, different computational approaches have been pro-

posed to sharpen fODFs, enforce non-negativity, or achieve more

robust fODFs estimation [12,13,14,15,16,17]. Although fODF has

been shown to be sensitive to crossing fibers, its specificity has been

called into question [11,18]. fODF often has baseline fluctuation

that may give rise to false peaks, as illustrated in the zoom-in figure

of Fig. 1C. This fluctuation problem is often handled by applying

an ODF filter, but the filter can indiscriminately eliminate less

salient fibers and decrease the sensitivity of fODF. Besides the

baseline fluctuation problem, L2 regularization also introduces
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blurring to fODF; this is in contrast to the true fODF (Fig. 1D),

which has non-zero distribution value at fiber orientations and

zeros elsewhere—a feature known as sparsity. The sparsity feature

of fODF has inspired studies to make use of L1 regularization to

promote sparsity and to provide a robust estimation for fODF

[19,20].

In this study, we extended the L1 regularization paradigm to

dODFs obtained from QBI, DSI, or GQI, aiming to get a sparse

solution of fODF and to provide better resolving power for

crossing fibers. The diffusion model was formulated as a regression

situation. We used dODF as the response and component dODFs

as the regressors. The coefficients of the regression equation

comprised the fODF and were estimated by a popular estimation

approach called least absolute shrinkage and selection operator

(LASSO) [21], which used L1 regularization to promote sparsity of

the solution. Although several LASSO estimation algorithms have

been proposed [20,22], we adopted one of the simplest approach-

es, the forward stagewise method [23], and modified it to consider

the nonnegative constraints of fODF. The resulting algorithm,

coined diffusion decomposition, recursively decomposed a dODF

to obtain the sparse solution of fODF.

To examine the performance of diffusion decomposition, we

conducted a simulation and a phantom study using the HARDI

scheme. The results were compared with constrained spherical

deconvolution (CSD) [24] and ball-and-sticks model [25]. In our

in-vivo study, we applied diffusion decomposition to dODFs

obtained from QBI, DSI, or GQI. The performance was

compared with a corresponding deconvolution approach called

diffusion deconvolution [11], which is not limited to HARDI

scheme and can be equally applied to QBI, DSI, and GQI. A

sensitivity and specificity test was conducted to examine the

performance of diffusion decomposition on datasets with reduced

number of diffusion encoding directions. Lastly, the mapping of

the fiber volume fraction derived from diffusion decomposition

was compared to the fractional anisotropy (FA) obtained from

DTI analysis.

Materials and Methods

Diffusion model
We modeled a dODF using the mixed diffusion model [11]: a

dODF can be viewed as a linear combination of multiple dODF

components, meaning that the diffusion signal of a dODF is the

summation of the diffusion signals from each constituted fiber

components. Specifically, the overall dODF yd is composed of a

background isotropic component f0e and a series of component

dODFs, y1,y2,:::yn, each of which represents a fiber population

oriented at a unique direction.

yd~f0ezf1y1zf2y2z:::zfnyn ð1Þ

where f0 is the volume fraction of the background isotropic

diffusion, and e is an all-one vector modeling the isotropic

diffusion. The coefficients f1, f2, …fn are the fiber volume fractions

for each of the component dODFs. In our implementation, we

further scaled the sum of the volume fractions (i.e.
Pn

i~0 fi) to the

spin density because the total volume is in fact proportional to the

amount of the spins. The same scaling was also used in diffusion

deconvolution to avoid the partial volume effect from the gray

matter [11]. Furthermore, each dODF in Eq. (1) was represented

by a vector with finite dimensions. Specifically, the sampling

orientations of a dODF were defined by the vertices of an 8-fold

tessellated icosahedron, which has a total number of 642

orientations. Since the dODF is assumed to be symmetric about

the origin, a dODF can be represented by a 321-dimension vector,

resulting in an angular resolution of around 8u. These 321 unique

orientations were also used to assign the fiber orientations of the

component dODFs, resulting in 321 component dODFs (n = 321).

Using this setting, the orientation distribution of the volume

fractions, f1, f2, …fn, constitute the fODF that we aimed to

estimate.

To solve Eq. (1), we first estimated the dODF, yd , using

standard procedures of QBI, DSI, or GQI, and modeled the

component dODFs with a putative common characteristic dODF

that described the diffusion profile of a single fiber population. We

selected the characteristic dODF from the voxel having the highest

anisotropy, a strategy similar to deconvolution methods [8,26]. To

calculate each component dODF from the characteristic dODF,

we smoothed the characteristic dODF as described in our previous

work [11]. The following is the formula for estimating the i-th

component dODF:

yi v̂vð Þ~z
X

ûu
yc ûuð Þexp {

cos{1 Sv̂v,âaiTj j{ cos{1 Sûu,âacTj j
� �2

2s2

 !
ð2Þ

where yi is the i-th component dODF, and yc is the common

characteristic dODF. âai and âac are the fiber orientations of yi and

yc, respectively. The operator S,T calculates the inner product of

two vectors, s is the standard deviation for the Gaussian radial

basis kernel, and z is a normalizing factor to ensure that the

component dODF integrates to one. The summation iterates

through all sampling directions, ûu, and s = 9u was used as that in

our previous work.

LASSO estimator
Without loss of generality, the regression equation in Eq. (1) can

be reformulated by normalizing the vector of each component

dODF in a way that the mean is zero, and the length of the vector

is one.

Yd~f 01Y1zf 02Y2z:::zf 0nYnX
ûu
Yi ûuð Þ~0,

X
ûu
Y2

i ûuð Þ~1
ð3Þ

Figure 1. An example of two crossing fibers at right angles. (A)
The layout of the crossing fibers. (B) The corresponding diffusion ODF,
showing the orientation distribution of the water diffusion due to the
right angle crossing environment. (C) The corresponding fiber ODF
obtained from diffusion deconvolution has non-zero values in most of
the orientations, as shown in the blue colored fluctuation around the
origin. This baseline fluctuation often causes false identification of
crossing fibers. (D) The actual fiber ODF has zero values at most of the
orientations and non-zero values only at the fiber orientations,
suggesting that the fiber ODF is sparse.
doi:10.1371/journal.pone.0075747.g001

Diffusion Decomposition
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One should note that the isotropic component is removed since

the mean is shifted to zero, and the coefficients are rescaled since

the corresponding component dODFs are normalized. The sparse

solution for the coefficients (i.e. the scaled volume fractions) can be

estimated by the LASSO estimator, which uses L1 regularization

to promote sparsity.

min Yd{
Xn

i~1
f 0i Yi

��� ���s:t:
Xn

i~1
f 0i
�� ��ƒs ð4Þ

The regularization is controlled by s, and it has been shown that

the solutions for different levels of s can be obtained by iteratively

including different regressors (component dODFs) in the solution

set [10,22,23]. This leads to our diffusion decomposition

algorithm, which is based on the forward stagewise method [23]

and further considers the nonnegative constraint of fODF.

Diffusion decomposition
Table 1 shows the diffusion decomposition algorithm, which

includes the following steps (the C++ source codes of diffusion

decomposition are available to the public at http://dsi-studio.

labsolver.org). First of all, selection, the algorithm finds the

component dODF that is most correlated with the dODF.

k~ arg max
i

SYd ,YiT ð5Þ

where SYd ,YiT is the inner product of the normalized dODF and

a normalized component dODF. One should note that in Eq. (5)

diffusion decomposition considers only the positive correlation due

to the nonnegative constraint of the solution. The next step is

decomposition, which removes a small volume of Yk from Yd:

Yd/Yd{eSYd ,YkTYk ð6Þ

where e is the decomposition fraction. These two steps, selection

and decomposition, are recursively iterated until the maximum

correlation is less than or equal to zero, or a total of m unique

component dODFs are selected. The selected component dODFs

in the selection-decomposition recursion are recorded in a component

set, A, whereas those not selected have zero fiber volume fractions.

Table 1. Diffusion Decomposition Algorithm.

Input Comments

yd dODF

y 1, y2, … yn Component dODF

Yd Normalized dODFa

Y1, Y2, … Yn Normalized component dODF

e Decomposition fraction

Output Comments

f0 Volume fraction of the isotropic background diffusion

f1, f2, …fn Volume fractions of the component dODFs

Algorithm Comments

1. while maxiSYd ,YiTw0 and |A| , m Repeat 1.1, 1.2, and 1.3 as long as the condition holds.

1.1. k~ arg maxiSYd ,YiT Selection: Select the most correlated component dODF

1.2. Yd/Yd{eSYd ,YkTYk Decomposition: Decompose a small volume from the dODF

1.3. ArA|k Record the selected component dODFs

2.Yd ~ f0 z
P

i[A fiYi Solve volume fractions by ordinary least squaresb

3. If mini (fi),0 then ArA \ argmini (fi)
and go to 2

If any of the volume fractions is negative, set the most negative one to zero and remove it
from set A and solve the regression again.

4. If f0 , 0 then f0 r 0 and go to 2 If the volume fraction of background diffusion is negative, force it to zero and solve the
regression again.

aThe normalized dODF is calculated by Yd/ yd{�yyd

� ��
yd{�yyd

�� ��.
bfi r 0 if i 6[A.
doi:10.1371/journal.pone.0075747.t001

Table 2. Summary of simulation and phantom studies.

b-value (s/mm2
) directions SNR crossing angles simulation/experiment settings

Simulation 1 1500 160 6.8 18u to 90u* Two tensors and an isotropic component

Simulation 2 1500 55 2.3 18u to 90u* Two tensors and an isotropic component

Phantom 4000 160 4.6 30u and 60u Two sets of capillary tubes immersed in water

*divided into 40 steps.
doi:10.1371/journal.pone.0075747.t002

Diffusion Decomposition
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One should note that the same component dODF can be selected

more than once, but the component set only includes unique

elements. After the selection-decomposition recursion, the algorithm

proceeds to estimation, in which we reformulated Eq. (1) as follow.

Yd z f0e z
X

i[A
fiYi ð7Þ

One should note that in Eq. 7 the original dODFs are used

instead of the normalized dODFs, and the solution for the volume

fractions can be obtained by ordinary linear regression. To enforce

the nonnegative constraint, if any of the volume fractions is

negative, the most negative volume fraction is forced to zero, and

then the equation is solved again until all volume fractions are

nonnegative. The resulting fiber volume fractions f1, f2, …fn
constitute the solution of the fODF.

Parameter settings and computation efficiency
The computation efficiency of diffusion decomposition algo-

rithm is mainly determined by the decomposition fraction, and it is

usually set to a sufficiently small value to achieve a good estimation

[22,23]. However, this setting may burden the computation since

the initial decompositions are always repeated on the same

component dODF until another component dODF becomes

dominant. To reduce the number of repetition, we can decompose

a larger fraction that just allows the second component to

dominate, as implemented in the least angle regression algorithm

[22]. Following this paradigm, we can derive the algorithm for

solving this large decomposition fraction.

min
i,i=k

SYd ,Yk{YiT
SYd ,YkTSYk,Yk{YiT

ð8Þ

where Yk is the most correlated component dODF selected in

the first step of the algorithm, and the minimum searches all other

Figure 2. The average angular deviation of constrained spherical deconvolution (CSD), ball-and-sticks model, and diffusion
decomposition applied to 160 diffusion weighted images with SNR of 6.8. The performance is examined under different fractional
anisotropy, crossing angles, and fiber volume fractions. Diffusion decomposition outperforms CSD and ball-and-sticks model in smaller crossing
angles.
doi:10.1371/journal.pone.0075747.g002

Table 3. Correlation analysis on estimated fiber volume
fraction.

FA CSD Ball-and-sticks Decomposition

0.4 0.7783 0.8836 0.8109

0.5 0.8018 0.8984 0.8325

0.6 0.8226 0.9108 0.8461

0.7 0.8458 0.9215 0.8649

doi:10.1371/journal.pone.0075747.t003

Diffusion Decomposition
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components dODFs (Yi, i = 1, 2, …, n, i ? k) to find the least

decomposition fraction required to allow another component

dODF to dominate. In this study, we used Eq. 8 only for the first

decomposition, and then the decomposition fraction was set to a

fixed value thereafter (e.g. 0.05).

The maximum size of the component set, A, may also affect the

computation efficiency, and a suitable value can be determined by

a priori information that human brain has limited number of

crossing fiber populations stacked within a voxel. For most of the

white matter area, the number of crossing fibers is no more than 3

[27,28], and in this study, we used a maximum size of 10 to get a

balance between detection ability and computation time.

Simulation study
We simulated crossing fibers to evaluate the performance of

diffusion decomposition and to compare it with that of CSD and

ball-and-sticks model. A multiple-tensor model was used to obtain

the diffusion signals of crossing fibers. As summarized in Table 2,

the model has a component of isotropic diffusion and two fiber

populations [5,29].

S(b,v)~S(0) f0 exp½{bvTD0v�zf1 exp½{bvTD1v�z
�

f2 exp½{bvTD2v�
� ð12Þ

where S(0) is the baseline signal without diffusion encoding (b0). b

and v are the b-value and the unit vector of the applied diffusion

gradient, respectively. f0 is the volume fraction of the isotropic

background diffusion. f1 and f2 are the volume fractions of the two

fiber populations. D0, D1, and D2 are the diffusion tensor matrices

for these three diffusion components (D0 is a multiple of the

identity matrix). The inclusion of the isotropic background

diffusion results in partial volume effect, which is a more

challenging condition for obtaining fODFs. We simulated this

model with a variety of parameter combinations, including fiber

volume fraction, crossing angle, and FA. In the simulation study,

the f0 was set to 0.2, and f1 were assigned from 0.506(12f0) to

0.906(12f0), divided into 40 steps of size 0.01. The remaining

volume was occupied by f2. The crossing angles ranged from 18u
to 90u, divided into 40 steps of size 1.8u.FA values for both of the

simulated fibers were 0.4, 0.5, 0.6, and 0.7. Two signal-to-noise

(SNR) settings were simulated. The first SNR setting was

simulated with Rician noise [30] added to 160 diffusion weighted

images (HARDI, b-value = 1,500 s/mm2) and a b0 image. The

mean diffusivity was 1.061023 mm2/s. The SNR of the b0 image

was 40, and the average SNR of the 160 diffusion weighted images

was 6.8. The second SNR setting was simulated with Rician noise

added to 55 diffusion weighted images (HARDI, b-value =

1,500 s/mm2) and a b0 image. The mean diffusivity was

0.561023 mm2/s. The SNR of the b0 image was 20, and the

average SNR of the 55 diffusion weighted images was 2.3. To

Figure 3. The average angular deviation of constrained spherical deconvolution (CSD), ball-and-sticks model, and diffusion
decomposition applied to 55 diffusion weighted images with SNR of 2.3. Diffusion decomposition outperforms CSD and ball-and-sticks
model in smaller crossing angles.
doi:10.1371/journal.pone.0075747.g003

Diffusion Decomposition
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average the angular deviation, each parameter combination (fiber

volume fractions, crossing angle, and FA) was simulated indepen-

dently for a total of 100 trials. The source codes for generating the

simulation images are publicly available at https://github.com/

frankyeh/DSI-Studio.

MRtrix (http://www.nitrc.org/projects/mrtrix/) was used to

conduct CSD. To ensure the best performance, four different

response functions were estimated for each FA value simulation

(0.4, 0.5, 0.6, and 0.7). The estimated response functions were

inspected to confirm the accuracy as recommended by the MRtrix

documentation. A harmonic order of 6 was used (lmax = 6),

which was lower than the default setting. We did not use the

default value because it failed to generate a valid disk-shaped

response function and resulted in fODFs with meaningless spikes.

The peak orientations were calculated using the peak finding tool

provided in the MRtrix package.

The ball-and-sticks model was calculated using the bedpostx

program in the FMRIB’s Diffusion Toolkit v2.0 package (http://

fsl.fmrib.ox.ac.uk/). Rician noise model was used, and the

maximum number of fibers was set to 2 to match the simulation

setting.

For each comparing method, the angular error was calculated

as follows. If a method resolved more than two fiber orientations (a

common scenario in deconvolution), the most prominent two

orientations were used whereas the rest were discarded. If a

method resolved only one fiber orientation, it was regarded as

resolving two fibers at the same orientation. For each voxel, the

two resolved fiber orientations were compared with the ground

truth to calculate the angular deviation. The performance was

reported by the average of these two deviation values. Although

this evaluation approach may under-represent the error when too

few or too many fiber directions are identified, the results are still

valid as long as it is not biased toward one method over another.

Phantom study
The diffusion phantom was created by using silica capillary

tubes with an inner/outer diameter of 20/90 mm (Polymicro

Technologies, Phoenix, Arizona, USA. These tubes were aligned

in two placeholders, and the relative orientations were set to 30u
and 60u to simulate crossing fiber patterns. For each crossing angle

setting, one placeholder was placed vertically and another one

crossed it at the assigned crossing angle. The phantom was

scanned in a 9.4 Tesla Bruker spectrometer (Bruker Companies,

Ettlingen, Germany) with 2D-FT stimulated-echo diffusion-

weighted imaging with TR/TE = 1900/13.8 ms, matrix size =

32632, FOV = 25 mm625mm, slice thickness = 3.6 mm,

number of diffusion sampling directions = 160, b-value =

4000 s/mm2, and NEX = 4. T2-weighted images were also

acquired to measure the exact crossing angles of the phantom. For

crossing angles originally arranged at 30u and 60u, the measured

crossing angles on the T2-weighted images were 31.48u and

63.59u, respectively. The angle was measured by the crossing

angles of placeholders on the T2-weighted images. Similar to the

simulation study, CSD, ball-and-sticks model, and diffusion

decomposition were conducted using the same parameter settings.

The angular deviation was calculated using the resolved fiber

orientations and the actual fiber orientations shown on the T2-

weighted images.

In-vivo study
Diffusion MRI was acquired from a 25-year-old healthy male

participant on a 3T MRI system (TIM Trio, Siemens, Erlangen,

Germany). The scan was performed using a 12-channel head coil

and a single-shot twice-refocused echo planar imaging (EPI)

diffusion pulse sequence. On the same subject, shell (for QBI), grid

(for DSI), and two-shell (for GQI) sampling schemes were acquired

consecutively using the same spatial parameters: field of view =

240 mm6240 mm, matrix size = 96696, slice thickness =

2.5 mm (no gap), the number of the slices = 40 covering the

cerebral cortex, resulting in isotropic voxel size of 2.5 mm. The

shell scheme was acquired by 252 diffusion gradient directions, b-

value = 4000 sec/mm2, and TR/TE = 7200 ms/133 ms. The

grid scheme was acquired by 202 diffusion gradient directions at

the grid points within a sphere in the q-space, maximum b-value

= 4000 sec/mm2, and TR/TE = 7200 ms/144 ms. The two-

shell scheme was acquired by two DTI scans based on the built-in

DTI b-table. One DTI dataset had 64 diffusion-weighted images

(DWI) acquired by b-value = 3000 sec/mm2, and TR/TE =

6300 ms/121 ms. Another DTI dataset had 30 gradient direc-

tions, b-value = 1500 sec/mm2, and TR/TE = 5500 ms/

101 ms. Diffusion deconvolution and diffusion decomposition

were conducted using the same dataset to facilitate comparison.

Diffusion deconvolution was conducted using a regularization

parameter of 7, a value recommended for in-vivo data [11],

whereas diffusion decomposition was conducted using the same

setting as the phantom study.

Ethics Statement
Data were analyzed anonymously, and written inform consent

was waived because the study fulfills the following requirements.

The study has the lowest risk. The risk to the studied subjects does

not exceed the possible risks of people who do not participate in

Figure 4. The result of constrained spherical deconvolution
(CSD), ball-and-sticks model, and diffusion decomposition
applied to phantom data. The results are from voxels at the center
of the crossing region. All three methods resolve two fiber orientations
at 60u crossing, but ball-and-sticks model present a slight tilting of the
fiber orientations. At 30u crossing, CSD resolves one fiber orientation
with several false fibers appeared around the origin due to baseline
fluctuation, which is a typical specificity problem for deconvolution. By
contrast, diffusion decomposition resolves two crossing fibers in all
voxels at 30u crossing, and its fODF show positive value only at fiber
orientations and zeros elsewhere, suggesting its sparsity feature.
doi:10.1371/journal.pone.0075747.g004

Diffusion Decomposition
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the study. Waiving the prior consent does not affect the rights and

interests of the studied subjects. (File# 1010265083, Ministry of

Health, Executive Yuan, Taiwan). The research procedures were

also approved by the Institutional Review Board of National

Taiwan University Hospital.

Sensitivity and Specificity Test
We applied diffusion decomposition to datasets with reduced

number of diffusion encoding directions (termed reduced datasets

hereafter) and compared the results with datasets acquired by full

diffusion encoding directions (termed full datasets hereafter). The

performance of diffusion decomposition was quantified in terms of

the angular error and was compared with that of diffusion

deconvolution [11], which can be equally applied to both shell and

grid sampling schemes for comparison. For the shell scheme, the

reduced dataset was the 30-direction dataset acquired with b-

value = 1500 mm/s, and the full dataset was the 252-direction

shell dataset acquired with b-value = 4000 mm/s. For the grid

scheme, the reduced dataset was the 40 lowest b-values

acquisitions of the full 202-direction grid dataset (maximum b-

value = 2300 sec/mm2). The fODFs of the full datasets (both

shell and grid) were calculated by diffusion deconvolution with a

regularization parameter of 7, a value recommended for in-vivo

data [11], whereas the fODFs of the reduced datasets were

calculated separately by diffusion deconvolution and diffusion

decomposition for comparison. Since the performance may be

affected by different parameter settings, the reduced dataset was

processed under 5 different parameters for each method. For

diffusion decomposition, we used decomposition fractions of 0.01,

0.02, 0.05, 0.1, and 0.2. For diffusion deconvolution, the

regularization parameters were set to 1, 2, 4, 8, and 16. For both

reconstructions, the fiber orientations were determined by peak

orientations on the fODFs.

To calculate the angular error related to sensitivity, we selected

each fiber in the full dataset and calculated its angular error with

respect to a corresponding fiber in the reduced dataset. If multiple

fibers were resolved in the reduced dataset, the one that had the

least angular error was chosen. If no fiber was resolved, an angular

Figure 5. The angular error of constrained spherical deconvo-
lution (CSD), ball-and-sticks model, and diffusion decomposi-
tion applied to phantom data. The diffusion decomposition shows
significantly better accuracy than CSD at 30u crossing and ball-and-
sticks model at 60u crossing (p-value , 0.001).
doi:10.1371/journal.pone.0075747.g005

Figure 6. The fiber ODFs obtained by applying diffusion
deconvolution and diffusion decomposition to QBI, DSI, and
GQI. Each of the methods reconstructs diffusion ODF from shell, grid,
and two-shell sampling schemes, respectively. Both diffusion deconvo-
lution and diffusion decomposition can be equally applied to QBI, DSI,
and GQI to improve their ability to resolve crossing fibers, but the fiber
ODFs obtained from deconvolution shows blunt lobes with fluctuating
baseline, whereas those from decomposition show sharp spikes with
clean baseline, suggesting that diffusion decomposition can achieve
better sensitivity and specificity in resolving crossing fibers.
doi:10.1371/journal.pone.0075747.g006

Figure 7. The fiber ODFs obtained from diffusion decomposi-
tion applied to the 30-direction QBI, 252-direction QBI, 40-
direction DSI, and 202-direction DSI. Even in datasets with
substantially reduced number of diffusion encoding directions,
diffusion decomposition can still depict correct crossing fibers formed
by the corpus callosum and corticospinal tract.
doi:10.1371/journal.pone.0075747.g007
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error of 45u (the expected angular error if the fiber was resolved at

a random orientation) was assigned. Specificity was examined

conversely. We selected each fiber in the reduced dataset and

calculated its angular error with respect to a corresponding fiber in

the full dataset. If multiple fibers were resolved in the full dataset,

the one that had the least angular error was chosen. If no fiber was

resolved, an angular error of 45u was assigned. To exclude gray

matter in the analysis, the angular error was calculated by fibers in

white matter area defined by applying a threshold to the

quantitative anisotropy (QA) [7] of the full dataset. The exact

threshold values were adjusted by comparing the extent of the

threshold with the gray-white matter junction to achieve the best

match of the coverage in the white matter.

Results

Simulation study
Figure 2 shows the average angular deviation of CSD, ball-and-

sticks model, and diffusion decomposition applied to 160 diffusion

weighted images with SNR of 6.8. All methods were applied to

different combinations of crossing angle, fiber volume fractions,

and FA. As shown in the figure, CSD performs well with crossing

fiber greater than 45u, but its angular deviation increases in

smaller crossing angles due to the false peaks in fODFs. This result

demonstrates a typical specificity problem of CSD in smaller

crossing angles. The noise in the diffusion signals can give rise to

false peaks and introduce substantial angular deviation. In

addition to the noise in the diffusion MRI, the additional isotropic

component in our simulation model may corrupt the CSD results

and lead to poor performance. The results of ball-and-sticks

model show a similar pattern with CSD, but the accuracy is better

in smaller crossing angles. Lastly, diffusion decomposition

outperforms CSD and ball-and-sticks model in angles less than

45u, whereas in angles greater than 45u, its performance resembles

the ball-and-sticks model. This feature can be attributed to the

sparsity feature of the decomposition that offers good specificity

while still retaining the sensitivity to crossing fibers.

Table 3 shows the result of a correlation analysis conducted to

examine the accuracy of the fiber volume fractions provided by

CSD, ball-and-sticks model, and diffusion decomposition. The

analysis was conducted using the simulation dataset with 160

diffusion weighted images (SNR = 6.8).The correlation coeffi-

cients between the measured and simulated values are reported

against different FA values. All methods provide good correlation

(. 0.7), and higher FA values lead to higher correlation

coefficients. Among these methods, ball-and-sticks model provides

Figure 8. The boxplot showing the distribution of the angular error related to sensitivity. The results from (A) 30-direction QBI and (B) 40-
direction DSI are shown in the figure. Diffusion deconvolution and diffusion decomposition was examined by 5 different parameters. The result
shows that the decomposition approach presents lower values in the medians and upper quartiles than those of diffusion deconvolution, suggesting
that diffusion decomposition is more sensitive than deconvolution.
doi:10.1371/journal.pone.0075747.g008

Figure 9. The boxplot showing the distribution of the angular error related to the specificity. The results from (A) 30-direction QBI and
(B) 40-direction DSI are shown in the figure. Diffusion deconvolution and diffusion decomposition was examined by 5 different parameters. The result
shows that the decomposition approach presents lower values in the medians and upper quartiles than those of diffusion deconvolution, suggesting
that the result obtained from diffusion decomposition is more specific.
doi:10.1371/journal.pone.0075747.g009
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the best estimation of the fiber volume fraction, whereas diffusion

decomposition slightly outperforms CSD.

Figure 3 shows the average angular deviation of CSD, ball-and-

sticks model, and diffusion decomposition applied to 55 diffusion

weighted images with SNR of 2.3. All methods were applied to

different combinations of crossing angle, fiber volume fractions,

and FA. As shown in the figure, the CSD shows higher angular

deviation in smaller crossing angles due to the false peaks,

demonstrating its problem of specificity. By contrast, the results of

the ball-and-sticks model show better accuracy in smaller crossing

angles but not in larger crossing angles. The error may be due to

model incompatibility (the ball-and-sticks model is a simplified

model for multiple tensors), and the incompatibility error can be

enhanced in low SNR conditions. Lastly, diffusion decomposition

showed substantial better performance than CSD and ball-and-

sticks model. The overall results suggest that diffusion decompo-

sition can be applied to a diffusion dataset with 1) substantially

reduced number of diffusion sampling and 2) low SNR.

Phantom study
Figure 4 shows the results of CSD, ball-and-sticks model, and

diffusion decomposition applied to 30u and 60u crossing phantoms.

The voxels at the center of the phantom are selected for

visualization. All three methods are able to resolve crossing fibers

at 60u crossing, however, ball-and-sticks model present a slight

tilting of the fiber orientations. A possible cause to this error can be

due to the discrepancy between the ball-and-sticks model and the

actual diffusion pattern in the phantom. CSD and diffusion

decomposition uses a consistent diffusion model (the response

function was estimated from the phantom), and thus they do not

have this drawback. At 30u crossing, CSD resolves one fiber

orientation with several false fibers crossing at the horizontal

direction. Ball-and-sticks model, despite the discrepancy of the

diffusion model, is able to resolve two fibers. Diffusion decompo-

sition method also resolves two crossing fibers and shows a clean

baseline—positive values at fiber orientations and zeros elsewhere,

underlining the sparsity feature of the decomposition algorithm.

This is in contrast to CSD, which has fluctuation around the origin

that may give rise to false fibers and compromise its specificity.

Figure 5 shows the angular error of CSD, ball-and-sticks model,

and diffusion decomposition applied to 30u and 60u crossing

phantom. At 60ucrossing, both CSD and diffusion decomposition

show angular deviations lower than 10u, while ball-and-sticks

model has a significant increase (p , 0.001) in angular deviation.

At 30u crossing, ball-and-sticks model and diffusion decomposition

shows similar angular deviations around 10u, while CSD has a

significant increase (p , 0.001) in the angular error due to false

fibers resolved at the horizontal directions.

In-vivo study
Figure 6 shows the fODFs obtained by applying diffusion

deconvolution and diffusion decomposition to the dODFs

acquired by DSI, QBI, and GQI. The figure is presented at the

coronal view of centrum semiovale. Both diffusion deconvolution

and diffusion decomposition are applicable to different q-space

imaging methods and different diffusion sampling schemes, and

the resulting fODFs show consistent fiber orientations. However,

the fODFs estimated by the decomposition method show sharp

spikes with a clean baseline owing to the sparsity feature. In

contrast, the fODFs estimated by the deconvolution method show

blunt lobes with a fluctuated baseline. The above comparison

suggests that diffusion decomposition can achieve better angular

resolution and specificity in the in-vivo study.

Figure 7 shows the fODFs obtained from diffusion decompo-

sition applied to the 30-direction QBI, 252-direction QBI, 40-

direction DSI, and 202-direction DSI. The figure presents the

centrum semiovale in the coronal view. As shown in Fig. 7,

diffusion decomposition can reveal crossing fibers formed by the

corpus callosum (horizontal fibers) and corticospinal tracts (vertical

fibers) using reduced sampling schemes, and the crossing fiber

orientations are consistent with those of the full schemes. The

specificity of diffusion decomposition can be appreciated in the

mid corpus callosum, where it presents single fiber population with

correct orientation and is free from false fibers. The above results

suggest that diffusion decomposition can be applied to a reduced

dataset to provide correct information about fiber orientations.

Figure 8 shows the boxplot of the angular error related to

sensitivity. Figure 8A shows the results obtained from the 30-

direction QBI, whereas Figure 8B shows the results obtained from

the 40-direction DSI. Both diffusion deconvolution and diffusion

decomposition were tested using 5 different parameters to

compare their performance. In both QBI and DSI, diffusion

Table 4. Mean angular error of diffusion deconvolution and
diffusion decomposition in 30-direction QBI and 40-direction
DSI.

Sensitivity test Dataset Results under different parametersa

Diffusion
deconvolution

30-dir QBI 20.19u 20.60u 20.77u 21.02u 22.12u

40-dir DSI 18.36u 17.98u 17.73u 17.84u 18.33u

Diffusion
decomposition

30-dir QBI 16.39u 16.29u 16.08u 15.90u 15.68u

40-dir DSI 16.11u 16.04u 15.80u 15.45u 14.87u

Specificity test

Diffusion
deconvolution

30-dir QBI 49.02u 48.33u 47.20u 44.67u 38.75u

40-dir DSI 47.12u 48.62u 49.54u 49.69u 48.61u

Diffusion
decomposition

30-dir QBI 33.35u 33.44u 33.73u 34.02u 34.51u

40-dir DSI 28.73u 28.86u 29.23u 29.85u 30.89u

aDiffusion deconvolution was conducted by regularization parameters of 1, 2, 4,
8, and 16. Diffusion decomposition was conducted by decomposition fractions
of 0.01, 0.02, 0.05, 0.1, and 0.2.
doi:10.1371/journal.pone.0075747.t004

Figure 10. Fiber volume mapping versus FA mapping. (A) The
mapping of the total fiber volume calculated from diffusion decompo-
sition and (B) the mapping of the fractional anisotropy (FA) calculated
from the diffusion tensor analysis applied to the same data. The FA
mapping shows decreased values in the centrum semiovale due to the
crossing fibers in this region (annotated), whereas the total fiber
volume mapping shows a relatively homogeneous intensity throughout
the white matter. This suggests that the fiber volume can provide a
better gray-white matter separation and facilitate further investigation
into structural integrity.
doi:10.1371/journal.pone.0075747.g010
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decomposition shows lower values in medians and upper quartiles

regardless of the parameter settings applied, suggesting that

diffusion decomposition is more sensitive to crossing.

Figure 9 shows the boxplot of the angular error related to

specificity. Figure 9A shows the results obtained from the 30-

direction QBI, whereas Figure 9B shows the results obtained from

the 40-direction DSI. In both datasets, diffusion decomposition

shows substantially lower values in medians and upper quartiles,

regardless of the parameter settings. This specificity study suggests

that the fibers resolved by diffusion decomposition are more

specific than those by diffusion convolution.

Table 4 lists the mean angular error of diffusion deconvolution

and diffusion decomposition in the sensitivity and specificity tests.

In the sensitivity test, the mean angular errors of diffusion

deconvolution are around 20u in 30-direction QBI and 18u in 40-

direction DSI, whereas those of the decomposition method are

around 16u in both 30-direction QBI and 40-direction DSI. The

decomposition method has an average of 4.87u less angular error

in 30-direction QBI and 2.39u less angular error in 40-direction

DSI. The difference is statistically significant (p-value , 0.001).

Similarly, the specificity test demonstrates consistent conclusion

but with a more substantial difference. The mean angular errors of

diffusion deconvolution range from 38u to 49u in 30-direction QBI

and 47u to 49u in 40-direction DSI, whereas those of the

decomposition method are around 33u in 30-direction QBI and

29u in 40-direction DSI. The decomposition method has an

average of 11.78u less angular error in 30-direction QBI and

19.20u less angular error in 40-direction DSI. The difference is

statistically significant (p-value , 0.001). In terms of sensitivity and

specificity, diffusion decomposition achieved significantly better

performance than diffusion deconvolution.

Figure 10 shows the mapping of the total fiber volume fraction

derived from diffusion decomposition (Fig. 10A) and the mapping

of FA (Fig. 10B). The total fiber volume fraction was calculated by

summing all fiber volume fractions in our mixed diffusion model

(f0 excluded), whereas the FA was calculated from the tensor

analysis. Both images were obtained from the same 202-direction

DSI dataset in an axial view at the level of the corpus callosum.

The intensities of the images were scaled by their relative contrast

so that the maximum value corresponded to the maximum

intensity. Although the total fiber volume fraction mapping shows

a pattern similar to the FA mapping, decreased values of FA can

be observed in the regions where the corpus callosum crosses the

corticospinal tracts (indicated by arrows). By contrast, the total

fiber volume fraction mapping shows a relative homogeneous

distribution of the intensity throughout the white matter. The

above comparison suggests that the total fiber volume fraction is

less affected by crossing fibers and may serve as an index specific to

fiber volume fraction of white matter tracts.

Discussion

This paper proposes a sparse fODF estimation method called

diffusion decomposition, which obtains fODF by decomposing the

dODF acquired from DSI, QBI, or GQI. The simulation study

shows that diffusion decomposition offers better accuracy than

CSD and ball-and-sticks model in the dataset with substantially

reduced number of diffusion sampling directions. The phantom

study shows that the fODF of diffusion decomposition presents the

sparsity feature—zero values at most orientations and positive

values only at fiber orientations. This is in contrast to the fODF of

CSD, which presents fluctuation at the baseline and often requires

filtering to eliminate false fibers. Further quantitative analysis

shows that diffusion decomposition presents significantly lower

angular error than that of CSD at 30u crossing or ball-and-sticks

model at 60u crossing. Similar conclusion can be drawn from the

results in the in-vivo study where diffusion decomposition

outperforms diffusion deconvolution owing to the sparsity feature

of the solution.

From the perspective of computation, diffusion decomposition

seems to be a hybrid of the model-fitting (e.g. ball-and-sticks

model) and deconvolution approach. The performance in

resolving crossing fibers is improved by promoting sparsity.

Compared with model-fitting approach such as ball-and-sticks

model, an interesting finding in our study is that while diffusion

decomposition presents similar performance in both simulation

and phantom study, ball-and-sticks model seems to perform worse

in the phantom at 60u crossing than it does in the simulation. One

possible reason for this underperformance may be due to the poor

fitting of ball-and-sticks with the actual diffusion model in the

phantom study. It is possible that the diffusion model is more

complicated in real world scenario, and ball-and-sticks may not be

adequate for fitting its signal responses. Compared with deconvo-

lution, the outperformance of diffusion decomposition can be

summarized in two aspects: sensitivity and specificity. The

increased sensitivity can be attributed to the spiky fODF obtained

by L1 regularization, whereas the fODF obtained by L2

regularization still retains part of the dODF blurring that leads

to less sensitive results. The second aspect of the outperfor-

mance—specificity—is even more substantial. While the angular

error related to sensitivity is improved by ,3u in the reduced

datasets, almost negligible in terms of the ODF angular resolution,

the angular error related to specificity is improved by ,15u. The

substantial improvement in the specificity can be expected. As we

have pointed out in our previous deconvolution study [11], the

deconvolution method does not guarantee a good specificity

although it has been shown to achieve a good sensitivity to crossing

fibers. Higher smoothing or ODF filtering is often required to

remove false fibers, but less salient fibers will also be removed

indiscriminately. By contrast, diffusion decomposition offers a

better specificity owing to the sparsity nature of L1 regularization.

The clean baseline of the sparse fODFs can avoid false

identification of the crossing fibers. One should note that this

outperformance does not come without a price. Diffusion

decomposition sacrifices smoothness for sparsity to obtain better

resolving power. Consequently, it cannot portray fiber dispersion

due to the sparsity assumption. Nonetheless, since the fiber

dispersion phenomenon is more obvious in low spatial resolution

images, it may be possible to mitigate this limitation by acquiring

diffusion images at a higher spatial resolution. Further study may

be needed to fully investigate this limitation under different

resolutions.

There are several other methods that have promoted sparsity in

the spherical harmonics, whereas we promoted it in the ODF

space. The advantage of our approach is that a sparse fODF can

be easily represented by an ODF vector but not by spherical

harmonics. This can be readily examined by calculating the

spherical harmonics of a delta function (i.e. the fODF of a single

fiber). It results in infinite non-zero responses of spherical

harmonics, meaning that one cannot use a finite order of spherical

harmonics to represent a single-fiber fODF. Methods based on

spherical harmonics inevitably truncate higher responses of the

spherical harmonics, and their estimated fODF becomes a

smoothed version of the true fODF. Consequently, enforcing

sparsity in the ODF space may achieve better accuracy.

In addition to the outperformance, another noteworthy feature

of diffusion decomposition is its ability to resolve crossing fibers

based on 30-direction QBI and 40-direction DSI. This feature is
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particularly important since QBI and DSI have long been

criticized for lengthy scanning time that limits their applications

in clinical study. As shown in an optimization study [31], QBI and

DSI typically requires maximal diffusion sensitivity about 3000 to

4000 s/mm2 and more than 200 diffusion encoding directions,

resulting in a scanning time of approximately 30 min. In this study,

the 30-direction QBI was acquired using the built-in DTI

sequence in the clinical scanner, which is readily available for

the most of the MRI facilities. The 40-drection DSI needs only a

maximum b-value of 2300 sec/mm2, a setting that greatly reduces

the demand for the gradient performance. For either 30-direction

QBI or 40-direction DSI, the scanning time of the diffusion

acquisition is approximately 5 minutes, making it a realistic option

for inclusion in clinical studies. Nevertheless, one should note that

the reduction of the number of gradient directions still has its

shortcoming. Although diffusion decomposition can resolve

crossing fibers in the white matter, we observe that its sensitivity

is compromised at the gray-white matter junction. This could be

due to the low SNR of diffusion MR signals in the region, and

there seems to be a trade-off between the SNR and the number of

diffusion gradient directions.

Lastly, diffusion decomposition has other features that are also

worth mentioning. 1) It is equally applicable to grid, single-shell,

and multi-shell encoding schemes. This makes the algorithm a

convenient tool for data with various combinations of b-values and

diffusion encoding schemes. 2) The fiber volume fraction is

assigned to a specific fiber orientation, and thus it can be used as

an index to quantify structural connectivity for human con-

nectome study. The total fiber volume fraction derived from the

decomposition method can also be used to delineate the gray-

white matter junction and may be used to examine structural

integrity.

There are drawbacks in diffusion decomposition. Similar to

deconvolution methods, diffusion decomposition uses a putative

common characteristic dODF to model the single fiber direction

compartment despite the fact that the characteristic dODF varies

across different regions in the white matter. As shown in our

previous study, the dODFs obtained from the corpus callosum,

cingulum bundle, and corticospinal tracts have different profiles

[11]. Applying a universal characteristic ODF to fit all scenarios

may introduce additional errors, and this drawback has been

reported to decrease the specificity of spherical deconvolution

[18]. Although this problem was not rigorously examined in this

study, we believe that our method is also susceptible to this

drawback as long as a universal characteristic dODF is used.

Possible improvement may be achieved by using multiple

characteristic dODFs instead of a common dODF or using an

unsupervised clustering approach to characterize the component

dODFs. Furthermore, the 642-direction ODF has a limited

angular resolution around 8 degrees, and diffusion decomposition

therefore has an inherent error due to limited resolution of an

ODF. Lastly, a fixed value of decomposition volume was used for

all voxels in our study. In practice, it is possible to optimize this

value for each voxel using cross-validation, and this is a potential

future work to further improve the performance of diffusion

decomposition.

In conclusion, diffusion decomposition has a particular role in

diffusion datasets with substantially reduced number of diffusion

encoding directions, making it highly feasible for clinical studies

that allows a limited scanning time. The decomposition algorithm

provides a sparse solution of fODF to improve the ability in

resolving crossing fibers and to avoid false fibers as encountered in

diffusion deconvolution. The algorithm can be applied to diffusion

data and to facilitate further fiber tracking algorithms. These

features may be valuable for future human connectome study to

define brain connectivity.
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