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Abstract

Subcortical vascular dementia (SVaD), one of common causes of dementia, has concomitant Alzheimer’s disease (AD)
pathology in over 30%, termed ‘‘mixed dementia’’. Identifying mixed dementia from SVaD is important because potential
amyloid-targeted therapies may be effective for treatment in mixed dementia. The purpose of this study was to discriminate
mixed dementia from pure SVaD using magnetic resonance imaging (MRI). We measured brain amyloid deposition using
the 11C-Pittsburgh compound B positron emission tomography (PiB-PET) in 68 patients with SVaD. A PiB retention ratio
greater than 1.5 was considered PiB(+). Hippocampal and amygdalar shape were used in the incremental learning method
to discriminate mixed dementia from pure SVaD because these structures are known to be prominently involved by AD
pathologies. Among 68 patients, 23 (33.8%) patients were positive for PiB binding. With use of hippocampal shape analysis
alone, PiB(+) SVaD could be discriminated from PiB(-) SVaD with 77.9% accuracy (95.7% sensitivity and 68.9% specificity).
With use of amygdalar shape, the discrimination accuracy was 75.0% (87.0% sensitivity and 68.9% specificity). When
hippocampal and amygdalar shape were analyzed together, accuracy increased to 82.4% (95.7% sensitivity and 75.6%
specificity). An incremental learning method using hippocampal and amygdalar shape distinguishes mixed dementia from
pure SVaD. Furthermore, our results suggest that amyloid pathology and vascular pathology have different effects on the
shape of the hippocampus and amygdala.
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Introduction

Subcortical vascular dementia (SVaD) is one of common causes

of dementia [1], and is characterized by extensive white matter

hyperintensities (WMH) and multiple lacunes. Pathological studies

have demonstrated that some patients who have been clinically

diagnosed with SVaD also have co-associated Alzheimer’s disease

(AD) pathologies [2,3]. Thus, the concept of mixed dementia has

emerged. A recent study using the Pittsburgh compound B

positron emission tomography (PiB-PET) [4], a sensitive method

of detecting amyloid in fibrillary form, has shown that about 30%

of patients who have been clinically diagnosed with SVaD present

with significant amyloid burden, indicating that these patients

have mixed dementia [5].

There is a need to detect the presence of AD pathology in

subjects with clinical SVaD. Although there is considerable

overlap, mixed dementia and pure SVaD differ in terms of

clinical phenotype and treatment. A previous study indicated that,

clinically, patients with mixed dementia were older and performed

worse on memory tests than those with pure SVaD [5]. In regards

to treatment, patients with mixed dementia could potentially

benefit from future amyloid-targeted therapies while management

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e75602



of vascular risk factors and antiplatelet therapies may be more

focused in patients with pure SVaD.

Although amyloid PET and cerebrospinal fluid (CSF) studies

can detect concomitant amyloid burden in the brain, these

methods are limited in clinical practice in the following ways.

Primarily, the half-life of 11C, a radio ligand of PiB-PET, is only

20–30 minutes; while another amyloid PET, Amyvid (using

amyloid ligand 18F), has been approved by the United States Food

and Drug Administration [6], it is expensive and not yet widely

available. An alternative method can detect low amyloid beta 42

and high tau levels in CSF [7]. However, CSF studies are invasive

and results can vary among laboratories. Thus, it is important to

diagnose mixed dementia patients using widely available data such

as structural magnetic resonance imaging (MRI), before using

expensive or invasive tools.

It is well known that the medial temporal regions including

hippocampus and amygdala are structures that are atrophied in

patients with AD [8]. Pathological studies suggested that AD

pathology is involved in hippocampus and amygdala even in the

early stage [9]. Thus imaging analysis of these structures has

recently been used in research of AD [10–12]. Therefore it can be

assumed that concomitant AD pathology in SVaD may also give

rise to atrophy in the hippocampus and amygdala. Indeed, a

previous study has shown that by using a visual rating, mixed

dementia patients have demonstrated more severe hippocampal

atrophy than pure SVaD patients [5].

Characteristics of mixed dementia that differ from pure SVaD

have been proposed [5]. However, an individual subject classifi-

cation model rather than a group analysis would provide more

practical information to individual patients. Numerous classifica-

tion models have been suggested to discern between certain groups

in clinical practice. In general, clinical and imaging data have been

used to classify individual patients for diagnosis [13,14] or for

predicting disease progression [15,16]. Most classification models

have been based on the Alzheimer’s Disease Neuroimaging

Initiative dataset, and thus have focused on AD dementia and

its prodromal stage [14,15,17]. To our knowledge, there have

been no previous studies that have provided an individual subject

classification model to distinguish mixed dementia from pure

SVaD.

In this study, we aimed to discriminate mixed dementia from

pure SVaD by employing surface-based subcortical shape analysis

methods. Our methods combine MRI information that is typical

for AD, including changes in hippocampal and amygdalar shape.

Both hippocampal and amygdalar shape information were

combined to construct the feature vector in high-dimensional

space (i.e., more than 8000 dimensions). In order to effectively

reduce the feature data, we used a manifold harmonic transform

and principal component analysis (PCA), which facilitates

classification with high accuracy [16]. Furthermore, an incremen-

tal learning method [16] was used to train our classifier. MR

images are usually obtained during disease diagnosis and, thus, the

volume of data increases steadily, which justifies our classification

method based on incremental learning.

Methods

Ethics Statement
The study was approved by the Institutional Review Board of

the Samsung Medical Center. We obtained written informed

consent from all the participants. Structured written consent

procedures were used by research staff when approaching

participants with cognitive impairment. The assent of ‘‘next of

kin’’ was required for participation of people with cognitive

impairment who were unable to provide informed consent.

Participants
From September 2008 to August 2011 we prospectively

recruited 98 patients with SVaD. SVaD was determined using

the diagnostic criteria for vascular dementia as defined by the

Diagnostic and Statistical Manual of Mental Disorders–Fourth

Edition (DSM-IV). Patients were evaluated in a clinical interview

and neurological and neuropsychological examinations as previ-

ously described [18]. All SVaD patients had a significant ischemia

on their MRI scans, which was defined as having a cap or band of

$10 mm as well as a deep white matter lesion of $25 mm, as

modified from the Fazekas ischemia criteria [19]. We excluded

patients with territory infarctions and those with high signal

abnormalities on the MRI due to radiation injury, multiple

sclerosis, vasculitis, or leukodystrophy. We also excluded patients

who met Diagnostic and Statistical Manual of Mental Disorders,

Fourth Edition criteria for psychotic disorder or mood disorder

such as schizophrenia or major depressive disorder. In order to

exclude secondary causes of cognitive deficits, all patients

completed laboratory tests including a complete blood count,

blood chemistry, vitamin B12/folate, syphilis serology, and thyroid

function tests. Brain MRI scanning confirmed the absence of

structural lesions including territorial cerebral infarction, brain

tumor, hippocampal sclerosis, and vascular malformation.

Of the 98 SVaD patients, 70 patients completed a [11C] PiB-

PET scan. During the process of imaging analysis, an error

occurred in two patients. Thus a total of 68 patients were analyzed

in this study.

[11C] PiB-PET
All 70 patients completed the [11C] PiB-PET scan at Samsung

Medical Center or Asan Medical Center. All subjects completed

the same type of PETscan with a Discovery STe PET/computed

tomography scanner (GE Medical Systems, Milwaukee, WI, USA)

in a 3-D scanning mode that examined 35 slices of 4.25-mm

thickness that spanned the entire brain. The 11C-PiB was injected

into an antecubital vein as a bolus with a mean dose of 420 MBq

(range, 259e550 MBq). A computed tomography scan was

performed for attenuation correction at 60 minutes after the

injection. A 30-minute emission static PET scan was then initiated

[5].

PiB-PET images were coregistered to individual MRI scans,

which were normalized to a T1-weighted MRI template. Using

these parameters, MRI-coregistered PiB-PET images were nor-

malized to the MRI template. The quantitative regional values of

PiB retention on the spatially normalized PiB images were

obtained by an automated volume of interest (VOI) analysis using

the automated anatomical labeling atlas. Data processing was

performed using the SPM version 5 (SPM5) under Matlab 6.5

(Mathworks, Natick, MA, USA). To measure PiB retention, we

used the cerebral cortical region to cerebellum uptake ratio

which is identical to the standardized uptake value ratios (SUVRs).

The cerebellum was used as a reference region because it did not

show group differences. We selected 28 cortical VOIs from left

and right hemispheres using the automated anatomical labeling

atlas. The cerebral cortical VOIs which were chosen for this study

consisted of bilateral frontal (superior and middle frontal gyri,

medial part of the superior frontal gyrus, opercular part of the

inferior frontal gyrus, triangular part of the inferior frontal gyrus,

supplementary motor area, orbital part of the superior, middle,

and inferior orbital frontal gyri, rectus, and olfactory cortex),

posterior cingulate gyri, parietal (superior and inferior parietal,

SVaD Classifier

PLOS ONE | www.plosone.org 2 October 2013 | Volume 8 | Issue 10 | e75602



supramarginal and angular gyri, and precuneus), lateral temporal

(superior, middle, and inferior temporal gyri, and Heschl gyri), and

occipital (superior, middle, and inferior occipital gyri, cuneus,

calcarine fissure, and lingual and fusiform gyri). Regional cerebral

cortical SUVRs were calculated by dividing each cortical VOI’s

standardized uptake value by mean standardized uptake value of

the cerebellar cortex. Global PiB retention ratio was calculated

from the volume-weighted average SUVR of 28 bilateral cerebral

cortical VOIs [5]. A PiB retention ratio greater than 1.5 was

considered PiB(+).

MR imaging techniques
T2, T1, FLAIR and T2 Fast Field Echo (FFE) MR images were

acquired from 70 subjects with SVaD at the Samsung Medical

Center using the same 3.0 T MRI scanner (Philips 3.0T Achieva).

In all patients, these images were obtained in one session and all

MR images were obtained in the same orientation and slice

positions. FLAIR MR images were acquired in the axial plane

with the following parameters: axial slice thickness of 2 mm, no

gap; repetition time (TR) of 11000.0 ms; echo time (TE) of

125.0 ms; flip angle of 90u; and matrix size of 512x512 pixels. T2

Fast Field Echo (FFE) images were obtained using the following

parameters: axial slice thickness of 5.0 mm; inter-slice thickness of

2 mm; TR, 669 ms; TE 16 ms; flip angle of 18u; and matrix size of

5606560 pixels.

Our method aimed to classify mixed dementia from pure SVaD

by employing the following three steps: subcortical shape analysis,

multivariate classifier learning, and individual subject classifica-

tion. Figure 1 presents an overview of our method. Details of each

step are described in the following sections.

Shape analysis of subcortical structures
We performed shape analysis of subcortical structures by

measuring relative deformation of subcortical surface meshes

against the template mesh. The shape analysis process consists of

four steps: volume parcellation, surface extraction, registration,

and surface deformity computation (see Figure 1[a]). The first step

obtains the anatomical parcellations of human subcortical

structures from the T1 images of each patient using the FreeSurfer

software package (Version 5.0, Athinoula A. Martinos Center at

the Massachusetts General Hospital, Harvard Medical School;

http://www.surfer.nmr.mgh.harvard.edu/). The parcellated im-

ages were then transformed to native anatomical space for surface

extraction. The second step extracts surface meshes of the

subcortical structures for each subject by deforming the template

surface models. Specifically, we utilized the subcortical shape atlas

models [20] as a template surface and used the Laplacian-based

surface deformation method [21,22] in order to extract the

subcortical surfaces of each subject. The third step involved

surface registration in order to establish the vertex correspondence

of subcortical surface meshes across the sample. We used the

surface registration method developed by Cho et al. (2012) for

accurate registration. Finally, surface deformity of each subcortical

structure was measured against the template surface model by

calculating the vertex-wise spatial displacement along its outward

normal direction. In order to correct the brain size effect when

computing the shape deformity data, each subcortical surface

mesh was transformed from native anatomical space to the

template space using the inverse of the registration mapping.

In order to quantitatively validate our method for subcortical

surface construction, we performed a comparison test using

manually-delineated hippocampal volumes. An expert neuroanat-

omist manually delineated hippocampal volumes of 20 healthy

subjects from the T1 images slice-by-slice using version 4.2.2 of 3D

Slicer [23]. For the same set of healthy subjects, we extracted

hippocampal surface meshes using our surface construction

method described above. The hippocampal volume images were

then reverse-engineered from the reconstructed surface meshes by

superimposing the meshes on top of the input MR images. We

traversed every voxel of the input MR images, and tested if the

voxel is inside/outside the hippocampal surface mesh to construct

the hippocampal volume images. Finally, the volume overlap was

measured between the reverse-engineered volumes and the

manually delineated ones: we observed that the two hippocampal

volumes were overlapped for more than 90% of the manually-

parcellated volumes. This result shows that our Laplacian-based

surface modeling method [24,25] accurately constructs subcortical

surface meshes from the automatically-parcellated subcortical

volumes.

Multivariate classification using linear discriminant
analysis

Patterns of subcortical structure atrophies using MR structural

imaging have been utilized as significant biomarkers for the

diagnosis of Alzheimer’s disease (AD). In this study, we adopted

the incremental learning method proposed by Cho et al. (2012) to

analyze multivariate patterns of subcortical shape change that are

particularly useful in discriminating mixed dementia from pure

SVaD. The multivariate pattern analysis (MVPA) identifies

regions where spatially distributed patterns of subcortical shape

differences are evident between the two groups. In order to train

the multivariate classifier, we used linear discriminant analysis

(LDA) in combination with principal component analysis (PCA),

which was developed in machine learning to classify items based

on a linear separation in high-dimensional feature space [26–28].

LDA provides not only statistical measures of classification

accuracy, but also regional information about differences of two

groups based on how accurately or poorly they can be

discriminated with LDA.

Our multivariate pattern classification method consisted of two

steps: classifier training and individual subject classification (see

Figures 1[a] and [b]). The former step trained a classifier with

labeled MR volumes. We represented the shape deformity data of

subcortical structures for each subject in terms of their spatial

frequency components by using the manifold harmonic transform.

Specifically, for a surface mesh with m vertices, the shape

deformity data is represented using a m-dimensional vector X .

In our study, m~2562 for the hippocampal and amygdale surface

meshes. Then, the transformed vector �XX can be represented as
�XXi~

Pm
i~1 xifi, where \fi is the ith eigenvector of the manifold

harmonic transform. This step then filtered out high frequency

components from the shape deformity data at vertices, which had

been extracted from the MR volumes in order to remove noise.

The resulting feature vector is now X
_

~(x1,x2,:::,xF ), where F is a

cut-off frequency: in our study, F~16, which was determined in a

similar manner to our previous study [16]. We then used PCA to

reduce the dimension of the feature space, which prevents the

singularity problem in performing LDA. We empirically decided

the dimension of the reduced feature space by setting the

percentage of the total variance to 70%. Finally, the classifier

was obtained by using LDA with the transformed training data ~XXi,

i~1,2,:::,N in the reduced PCA space. Among human subcortical

structures, shape deformities of both hippocampi and the

amygdala were used to represent high-dimensional features of

brain atrophy since those structures have been well known to be

substantially more vulnerable in AD.

SVaD Classifier
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The latter step classified unlabeled subjects by using an

individual subject classifier. This classifier was initialized with

the classifier trained in the previous step and incrementally

updated. Given the MR volume of a subject, the feature vector

representing the noise-filtered subcortical shape deformity data

was acquired, as in classifier training. Finally, the classifier

performed the multivariate classification using the high-dimen-

sional feature vector.

The LDA analysis between PiB(+) and PiB(-) SVaD was

completed using three different types of feature vectors: hippo-

campal shape deformity, amygdalar shape deformity, and their

combination. For each type of feature vector, we measured

classification accuracy and analyzed the multivariate patterns that

showed discriminative regions. Since different types of feature

vectors were given and standardized scores were not available, a

principal component analysis was performed separately to reduce

the number of dimensions to N eigenvectors, where N was the

minimum number of components that accounted for at least 70%

of the variance.

For assessment of classification performances, we performed a

10-fold, cross-validation procedure. We first trained three classi-

fiers for the PiB(+) versus PiB(-) SVaD classification using the three

different types of feature vectors. Specifically, for training a

classifier, we used 90% of the patients (those patients were selected

randomly from the total set of patients) as a training data set to

train the LDA-based multivariate classifier. We then used the

other 10% of the patients as test data for identifying their label and

for extracting multivariate patterns of subcortical shape change.

This process of training a classifier with 90% of the patients and

testing on the other 10% of the patients was repeated 10 times

until all patients had been used as test data at least once.

Prediction accuracy, sensitivity, specificity, and discriminative

regions were calculated.

In order to measure the prediction accuracy unbiased to a

specific ordering of the patients in the data sets, we generated 500

random permutations of all the training patients for each of the

training data for the three classifiers. For each permutation, we

measured the accuracy of the classifier using the corresponding

test patient data by incrementally updating the classifier; the

training data for 10 patients were iteratively supplied at a time for

incremental learning until all the training data were used.

Whenever the classifier was updated with the training patients,

all the test data were used to estimate the accuracy of the classifier.

We then measured the accuracy of the classifier with respect to the

number of used training data by averaging the results over all

permutations.

Our learning method was based on both PCA and LDA, which

train the classifier in an incremental manner. Specifically,

whenever a new data set was obtained, our classification method

trained the classifier incrementally with the newly obtained data

set. In contrast, conventional classification methods train the

classifier with an entire data set, including new data, in order to

additively reflect the new data, which is not much in general. Since

new data are obtained usually from the disease diagnosis stage, the

volume of data increases steadily. Under these circumstances, our

incremental learning-based classification method effectively ad-

dresses the problem of continued data acquisition at this stage.

Please refer to our previous paper [16] for more details of the

incremental learning-based classification method.

Identification of the discriminative regions
In order to analyze regional information about the differences

between PiB(+) and PiB(-) SVaD groups, we computed the

distinguishing regions that contributed to classifying the two

groups. LDA finds a separating axis w that maximally separates

groups for learning a classifier. The value of the ith component of

the vector w represents the contribution of the component to

classification. That is, if the value of the ith component of w is

zero, the ith element of every feature vector does not affect the

classification result. Conversely, if the value is larger than the

others, the classification result is more sensitive to the ith element

than the other elements. Therefore, the analysis of w provides the

discriminative region for classification. We visualized the axis w of

LDA by converting it to a pair of vectors on the left and right atlas

meshes. The w in the PCA space is first transformed to a vector in

the feature space. The vector is then divided into two parts:

frequency components for the left and right atlas meshes. These

frequency components are finally transformed to two subcortical

deformity vectors on the left and right atlas meshes, respectively.

We divided these vectors by their magnitudes to obtain two unit

vectors for visualization.

Statistics
We compared the demographic and clinical data among the

groups using Student t tests for continuous variables and Chi-

square tests for dichotomous variables.

Results

Clinical results
As shown in Table 1, PiB(+) SVaD and PiB(-) SVaD patients

showed significant differencies in age, number of lacunes, and

Apolipoprotein E (APOE) genotype. Patients with PiB(+) SVaD

were older, had fewer lacunes, and had more APOE4 carriers, as

compared to PiB(-) SVaD patients.

Multivariate classification results
To assess classification performances, we performed a 10-fold,

cross-validation procedure using the proposed LDA algorithm.

Table 2 shows the results using three different feature vectors:

hippocampal shape deformity, amygdalar shape deformity, and

the combination of the two shape deformities. We denote each of

the three feature vectors as feature 1, feature 2, and feature 3,

respectively, for simplification. The sensitivity and the specificity

were 95.7% and 68.9% for feature 1, 87.0% and 68.9% for feature

2, and 95.7% and 75.6% for feature 3, respectively (Figure 2(a)).

We further assessed the classification accuracy using leave-one-out

cross validation, which showed almost the same results for every

classifier. Figure 2(c) shows the ROC curve of each classifier. As

shown in these results, the performance of our classifier was

highest using the whole feature vectors (82.4% accuracy). In the

ROC curves, the AUC value for the classifier with feature 3 was

0.8203.

We further demonstrated the effectiveness of our incremental

classification method. For each of the feature vector, we measured

the accuracy of the classifier with respect to the number of patients

used in training data. Figure 2(b) depicts the accuracy of every

classifier. As shown in the figure, accuracy tended to converge with

that of the respective classifier trained with the entire training data

as the number of used training patients approached to that of the

Figure 1. Overview of the proposed classification method: (a) subcortical shape analysis, (b) multivariate classifier training, and (c)
individual subject classification.
doi:10.1371/journal.pone.0075602.g001
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training patients in the data set. We also extracted the

discriminative regions for our classifiers, which provided multi-

variate patterns contributing to the discriminability between the

mixed dementia and pure SVaD groups. Figure 3 depicts the

discriminative regions on the atlas surface meshes for our

classification. The anterior head, superior portion of body

subregions in the hippocampus and the lateral, medial, and

central subregions of the amygdala were the discriminative

regions.

Discussion

Using standard T1 weighed MRI, and incremental learning,

mixed dementia was distinguished from pure SVaD with 82.4%

accuracy. We found that hippocampal shape analysis alone was

able to classify mixed dementia from pure SVaD with 77.9%

accuracy (95.7% sensitivity and 68.9% specificity). Amygdalar

shape analysis was able to classify the two groups with75.0%

accuracy (87.0% sensitivity and 68.9% specificity). When both

hippocampi and amygdalar shape were incorporated into the

analysis, the classification accuracy increased to 82.4% (95.7%

sensitivity and 75.6% specificity).

Our individual analysis method has strengths in several aspects.

In general, nearby regions within a subcortex have correlated

brain functions and are similarly deformed by brain diseases. Our

method represents the subcortical deformity data of a subject in

terms of spatial frequency components by employing manifold

harmonic transform. Thus, the resulting feature vector exploits the

spatial coherency of the subcortical deformity data in both

learning and classification. The vertex-wise subcortical deformity

representation poorly reflects spatial relationship of the feature

data since it handles each element of the deformity data

independently. On the other hand, a method based on a region-

wise representation of the deformity exploits a single value in a

region as a feature by averaging all the deformity data in the

region, which therefore poorly reflects detailed spatial variation of

the deformity data. Our method combines the advantages of the

vertex- and region-based methods, while reducing their short-

comings.

It is noteworthy that hippocampal shape alone could discrim-

inate mixed dementia from pure SVaD with 77.9% accuracy.

Hippocampi are known to be involved in AD pathologies, and

hippocampal volume and shape show significant differences across

normal aging, amnestic mild cognitive impairment and AD

dementia patients [8,29]. However, recent studies indicate that

white matter lesions are also associated with hippocampal atrophy

[30] and that SVaD patients show hippocampal atrophy as well

[31,32]. Furthermore, a recent study from our research group

reports that pure SVaD showed significant hippocampal atrophy

and shape deformity [33]. In using our method of incremental

learning analysis, we found subregions that contributed to

discriminating between the two groups. The bilateral anterior

head and the medial portion of body of hippocampus (Blue in

Figure 3) distinguished mixed dementia from pure SVaD in an

opposite direction relative to the bilateral lateral portion of body of

hippocampus (yellow in Figure 3). That is, the combination of

inward deformities in Blue and outward deformities in Yellow

regions, respectively, determines the pattern of shape deformity

specific to a certain group in the high-dimensional feature space.

Additional information from the amygdalar shape analysis

increased the classification accuracy, both in sensitivity and

specificity. According to pathologic studies, the amygdala is one

of the brain structures that is involved in the early stages of AD [9].

In addition, MR volumetric studies repeatedly demonstrate

amygdalar atrophy in patients with AD dementia [34,35]. In a

study with AD patients, the most affected subregions were the

basolateral ventral medial (BLVM) nucleus, which is connected to

hippocampus, medial nucleus, and central nucleus [36]. In our

classification model, the amygdalar subregions that primarily

distinguished mixed dementia from pure SVaD were the right

dorsolateral, left dorsomedial, and bilateral ventro-central subre-

Table 1. Clinical characteristics of patients with PiB(-) and
PiB(+) SVaD.

PiB(-) (n = 45) PiB(+) (n = 23) p

Demographics

Age 71.967.4 78.164.7 ,0.001

Gender, M:F 21:24 06:17 0.101

Education 8.364.8 9.165.5 0.523

Risk factors

Hypertention 36 (80%) 18 (78.3%) 1.000

Diabetes 11 (24.4%) 6 (26.1%) 0.882

Hyperlipidemia 20 (44.4%) 6 (26.1%) 0.141

Cognition

MMSE 21.464.7 18.764.9 0.036

CDR-SOB 6.063.8 6.563.8 0.61

MRI markers

WMH volume, ml 41.9615.6 45.5622.9 0.447

Total lacune, n 21.1618.3 7.066.9 ,0.001

Intracranial volume 1381.46134.3 1390.46155.1 0.804

APOE genotype

APOE4 carriers 9 (21.4%) 10 (43.5%) 0.062

Medication

Antipsychotics 1 (2.2%) 2 (8.7%) 0.219

Antidepressant 5 (11.1%) 2 (8.7%) 0.756

Anxiolytics 4 (8.9%) 4 (17.4%) 0.303

Abbreviations: PiB, Pittsburgh compound B; MMSE, Mini-Mental State
Examination; CDR-SOB, clinical dementia rating sum of boxes; WMH, white
matter hyperintensities; APOE4, Apolipoprotein E epsiolon 4.
doi:10.1371/journal.pone.0075602.t001

Table 2. Classification accuracy for the three different features.

Feature 1 Hippocampal Shape Feature 2 Amygdalar Shape Feature 1+Feature 2

Sensitivity 95.65% 86.96% 95.65%

Specificity 68.89% 68.89% 75.56%

Accuracy 77.94% 75.00% 82.35%

doi:10.1371/journal.pone.0075602.t002
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Figure 3. Discriminative regions in classification: (a) left hippocampus, (b) right hippocampus, (c) left amygdala, and (d) right
amygdala. Each figure visualizes the LDA axes on the atlas meshes.
doi:10.1371/journal.pone.0075602.g003

Figure 2. Accuracy of individual subject classifiers: (a) classifiers were trained using all entire training data and (b) the classifiers
were trained in an incremental manner. For incremental learning, averaged accuracies of individual subject classifiers were shown with respect
to the number of training subjects used. The average accuracy of each classifier tended to increase with the number of training subjects used. (c) the
ROC curves of each classifier are shown.
doi:10.1371/journal.pone.0075602.g002
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gions as colored in yellow in Figure 3, and the right dorsomedial,

bilateral ventro-medial subregions as colored in blue in Figure 3.

Similarly to the result of hippocampal analysis, different patterns

of shape deformity in the blue and yellow colored areas discern

mixed dementia from pure SVaD.

In the current study, we hypothesized that AD pathology

involve predominantly in the hippocampi and amygdala, which in

turn leads to differentiation of mixed dementia from pure SVaD.

As shown in figure 3, the colored areas are the regions where it

discriminates mixed dementia from pure SVaD. However, strictly

speaking, it does not provide information about whether shape

deformities in those subregions are more specific to a certain

group.

In order to assess classifier performance, we further employed a

framework of permutation tests [37–39]. Performing 10-fold cross-

validation in our experiments, permutation tests were employed to

estimate the statistical significance of the classification accuracy.

Specifically, we randomly permuted the subject labels of the

training data prior to training. The permutation was repeated

10,000 times and the accuracy value of the trained classifier at

every permutation was chosen as the statistic, which in turn form a

null permutation distribution. The significance level was then

estimated over the null distribution by computing the percentile of

the accuracy value calculated by the classifier trained on the real

subject labels. We conducted this experiment for the classifier

using the Feature 3. The resulting p-value was 0.0002 indicating

that the classifier learned the relationship between the data and the

labels reliably.

This study has several limitations. First PiB-PET may not be

sufficiently sensitive to detect soluble amyloid oligomers or diffuse

amyloid plaques. Second, we were not able to detect neurofibril-

lary tangles. Thus, PiB(-) SVaD might not be true ‘pure’ SVaD.

Third, the specificity of each classification model was relatively low

compared to high sensitivity. It might be related to the fact that

shape features specific to pure SVaD are not salient enough to

discriminate pure SVaD from mixed dementia. Unbalanced

sample sizes could be another important factor for the low

specificity. In order to resolve the imbalance between specificity

and sensitivity, one may employ classification strategies consider-

ing trade-off between them [40]. Fourth, there were differences in

age between PiB(+) SVaD and PiB(-) SVaD. It might be related to

the fact that age is one of the most important risk factors of

amyloid pathology. Therefore, it might be further needed to

develop a new classification method that deals with the clinical

information. Another limitation of our method is that it requires

an empirical selection of two parameters: cut-off frequency F and

the dimension of the reduced PCA space. In our study, we used

the goodness of fit to determine the cut-off frequency F : we set the

goodness of fit to a bit conservative value and obtained F~16.

However, the accuracy of a classifier could be improved by

selecting optimal F in a classifier-specific manner. A similar

argument could be applied to the determination of the reduced

PCA space. Nevertheless, this is the first study to provide an

individual subject classifier to discriminate mixed dementia from

pure SVaD. Our classification method provides a useful tool for

classifying mixed dementia from pure SVaD with relatively high

accuracy, which has clinical implications for diagnosis and

treatment. There are numerous ongoing trials testing amyloid-

targeted therapies, whereas no potential disease modifying

therapies have emerged for cerebral ischemia. Thus with the use

of our classification model, mixed dementia patients may benefit

from amyloid-targeted therapies.
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