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Abstract

Mice are housed at temperatures (20-26°C) that increase their basal metabolic rates and impose high energy
demands to maintain core temperatures. Therefore, energy must be reallocated from other biological processes to
increase heat production to offset heat loss. Supplying laboratory mice with nesting material may provide sufficient
insulation to reduce heat loss and improve both feed conversion and breeding performance. Naive C57BL/6, BALB/c,
and CD-1breeding pairs were provided with bedding alone, or bedding supplemented with either 8g of Enviro-Dri, 8g
of Nestlets, for 6 months. Mice provided with either nesting material built more dome-like nests than controls. Nesting
material improved feed efficiency per pup weaned as well as pup weaning weight. The breeding index (pups
weaned/dam/week) was higher when either nesting material was provided. Thus, the sparing of energy for
thermoregulation of mice given additional nesting material may have been responsible for the improved breeding and
growth of offspring.
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Introduction

Typical housing temperatures of 20-24 ‘C [1-3] are mild
compared to conditions wild mice might encounter in the
extremes of their natural habitats. In the laboratory, mice are
able to live and reproduce without insulation from nests. These
temperatures, however, are lower than the mouse’s lower
critical temperature, a point at which the mouse’s metabolism
begins to increase to counter heat loss, approximately 30°C [1].
Raising ambient temperatures in animal rooms to offset this
disparity is not a solution as mice prefer different temperatures
at different times of day, for different behaviors [4,5], and at
different life stages [6,7]. Furthermore, increases in ambient
temperature, even within the recommended range of 20-26 ‘C,
can increase aggressive interactions [8].

Mice in laboratory conditions must therefore use additional
energy to stay warm [9]. To meet these increased
thermoregulation-induced energy requirements, energy may be
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reallocated from other biological processes. The energetic
costs of gestation and lactation are substantial for female
mammals and when extreme thermal stress is imposed,
reduced production and survival of offspring are seen [10,11].
Laboratory environments are cooler than 36-38°C, the
temperature preferred by neonatal pups [6], and may
potentially impact the well-being of young mice after they are
born. At birth, mouse pups do not have the capacity to
thermoregulate [12] and must rely on conductive and radiant
heat from parents and other siblings in the nest and heat
retained by the nest itself for survival [13,14]. After parturition,
the most important factor for pup survival in the wild is the
condition of the nest [15,16]; mice that build dome-shaped,
rather than flat or cup-shaped, nests have better pup survival
[11]. Similarly, laboratory mice selected for superior nest
building have higher reproductive success than controls in both
laboratory and extreme conditions [11].

September 2013 | Volume 8 | Issue 9 | e74153



Behavior is generally the animal’s first response to thermal
stress and generally the most cost effective [1]. In the
laboratory, mice provided with an appropriate amount [17] and
type [18] of nesting material build better, more enclosed, nests.
This improvement in nest building provides better insulation
and reduced heat loss to the environment, resulting in reduced
feed consumption [2,19]. This is consistent with a reduction in
energy being burned for thermogenesis [2]. The provision of
nesting material does not alter body core temperature or its
variability [2], indicating that the mechanism of maintaining
homeothermy has been shifted away from energetically
expensive thermogenesis.

In this experiment, we hypothesized that suitable nesting
material would allow mice to reduce heat loss, thus freeing up
energy for reproduction and lactation, and subsequent pup
growth. We predicted that mice with nesting material would
build better nests than controls and that the increased
insulation from nesting material, as was found in a previous
experiment [2], would increase the number of pups born and
weaned, decrease the amount of feed needed to produce
those pups, decrease mortality (number weaned/ number
born), and improve the breeding index (Bl; pups weaned/dam/
week). Furthermore, because insulated pups will stay warmer,
once thermoregulatory processes have begun after
approximately 10 days, pups born into a nest will use energy
for growth rather than thermogenesis and will therefore be
heavier at weaning.

Materials and Methods

Ethics statement

All experimental work involving live animals was approved by
both the IACUC of Purdue University (Protocol 09-030) and the
IACUC of Charles River (P03272009).

Animals

All mice in this study were bred and housed at Charles
River's Association for the Assessment and Accreditation of
Laboratory Animal Care, International accredited facility in
Portage, MI. We housed naive C57BL/6NCrl (C57BL/6), BALB/
cAnNCrl (BALB/c), and Crl:CD1(ICR) (CD-1) breeding pairs (n
= 30 pairs per strain/stock) in typical barrier rooms. The mice
were bred in accordance with the standard breeding protocols
of Charles River, in which breeding pairs that are not
productive within 60 days after initial set up or 45 days after
delivery of a first litter are euthanized.

Housing

C57BL/6 and BALB/c mice were housed in one barrier room
with an average temperature of 20.6°C and CD-1s were housed
in a second room which averaged 20.1°C. Because our goal
was to test nesting material in an existing commercial breeding
setting, it was not possible to avoid confounding room with
strain. Animals were housed in wire-topped polycarbonate
shoebox cages (Lab Products, Inc., Seaford, DE), bedded with
chipped hardwood bedding (Beta-Chip; NEPCO, Warrensburg,
NY). Animals were kept on a 12:12 light: dark cycle (lights on at
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05:00) and had ad libitum access to water and feed (Lab Diet
5L79; Purina Mills, Richmond, IN). Feed was weighed as
added and weighed back at the end of the experiment to obtain
total food use over the 6 month period. Colony animals within
the barrier rooms were routinely monitored for infectious
agents. All animals included in the study tested negative for a
comprehensive list of viral, bacterial, fungal, and parasitic
agents. Details may be found here: http://www.criver.com/
SiteCollectionDocuments/hmsummary.pdf All  testing was
conducted Charles River's Research Animal Diagnostic
Laboratory; in Wilmington MA.

Nesting material

Breeding pairs of one outbred and two inbred mice were
housed with one of three nesting material treatments for 6
months (i.e. a 3x3 factorial design; n = 10 pairs per strain and
treatment combination; a total of 90 breeding cages). Mice
were provided either 8g of Enviro-Dri® (Fibercore, Cleveland,
OH), 8g Nestlets® (Ancare, Bellmore, NY), or no nesting
material (controls) at cage change each week. These
treatments were chosen as the nesting treatments because
they are commonly used materials and have been previously
studied by our laboratory [2,5,17,18].

Nests were scored once a week using a 1-5 scale from a
previously published protocol [18]. A score of 1. was
manipulated material but no central nest cite was evident; 2:
was a flat nest; 3: was a cup nest; 4: was an incomplete dome;
5: was a complete and enclosed dome (see [18] for further
description of the scoring protocol). Nest scores were recorded
from all treatments because mice will attempt to build a simple
nest out of bedding material when other substrate is not
provided [18].

Breeding performance

Cages were observed three times per week and the number
of pups born dead or alive and the number of pups weaned in
each cage was recorded. Age at weaning (ranging between
16-32 days in this study) was subject to protocols within the
barrier room. Pups were weighed and sexed at the time of
weaning. We calculated an overall breeding index (BI) for each
cage at the end of the experiment as the number of pups
weaned per dam per week. The number of litters born per cage
varied from 0-8 during the the 6-month study. Litters born
before the end of the 6-month study were followed until
weaning to record weaning weights and sex.

Statistical analyses

Analyses were performed GLM in JMP 6 for Windows. All
data, unless otherwise stated, were averaged per cage and
were analyses using a simple model of Strain, Treatment, and
their interaction. If the interaction was not significant, it was
removed from the analysis and rerun without it. This means
that if a strain-by-treatment interaction is not reported for an
analysis then the reported treatment effect did not differ
significantly between the strains. Logged average weaning
weight per litter utilized a similar model as above but was
blocked by cage and included age at weaning as a covariate
and all second order interactions. The food consumption model
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also included the total number of pups weaned and the number
of days caged as a covariate, since some mice were retired
early due to being unproductive. Pup mortality was calculated
per cage as 1-(number of pups weaned/number of mice born,
either dead or alive). After data were collected, it appeared that
nest scores declined when litters were born; therefore an
additional term of Litter Presence was added to the nest score
analysis to account for this difference. The assumptions of
GLM (normality of error, homogeneity of variance, and linearity)
were confirmed post-hoc, and appropriate transformations
were made to meet these assumptions [20]. Significant effects
were then analysed using post-hoc Tukey tests or Bonferroni
corrected planned contrasts using custom contrasts in JMP. All
values are given as least squares means and standard error.

Results

Nest Scores

Nest score were significantly altered by the nesting material
treatment as well as the presence of a litter in the nest (GLM:
F,g; = 38.5; P < 0.001; Figure 1a). In control mice, nest scores
were significantly higher when a litter was present compared to
when no litter was present (Tukey: P < 0.05). In contrast, the
nests of mice provided with nesting material on average scored
higher when there was no litter present compared to when a
litter was present (Tukey: P < 0.05).

Strains differed in the effect of whether a litter was in the nest
(GLM: F,4, = 7.2; P = 0.001; Figure 1b). CD-1 and BALB/c
mice both built better nests when no litter was present (Tukey:
P < 0.05). However, C57BL/6 mice showed no difference in
nest score based on litter presence (Tukey: P > 0.05). The
extent to which nest scores differed between the nesting
material conditions varied among mouse strains (GLM: F g, =
5.12; P = 0.001; Figure 1c). BALB/c and C57BL/6 mice built
similar nests with Enviro-Dri (Tukey: P > 0.05), but they were
significantly higher scoring nests than CD-1s (Tukey: P < 0.05).
When given Nestlets, BALB/c mice built the best scoring nests
between the three strains (Tukey: P < 0.05). C57BL/6 mice
built the next best nests, which were significantly higher scoring
than CD-1 mice (Tukey: P < 0.05). When given the control
nesting condition, C57BL/6 and BALB/c mice built similar nests
(Tukey: P > 0.05), which were again better than CD-1mice
(Tukey: P < 0.05).

Breeding Performance

The number of pups born alive per cage over the 6 month
experiment differed significantly between nesting treatments
(GLM: F,g; = 4.36; P = 0.02). Mice receiving Enviro-Dri (51.1
3.0) delivered more live pups than control mice (39.2 + 3.0;
Tukey: P < 0.05) but the number of pups born to mice that
received Nestlets did not significantly differ from the other two
conditions (48.1 + 3.0; Tukey: P > 0.05). Genetic composition
also affected the average number of pups born alive (GLM:
F,e5 = 95.5; P < 0.001). As expected, outbred CD-1 mice had
significantly more pups than the two inbred strains tested (79.0
+ 3.0; Tukey: P < 0.05) but the inbred strains (BALB/c 33.8 +
3.0; C57BL/6 mice 25.7 £ 3.0) did not differ in the total number
of pups born (Tukey: P > 0.05).
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Figure 1. LSM and SE values of mean nest score for (a)
Treatment by litter presence, (b) Strain by litter presence,
and (c) Strain by treatment averaged by cage over six
month experiment. Letters indicate significant differences
using Tukey tests.

doi: 10.1371/journal.pone.0074153.g001
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Figure 2. Mean six month breeding index is the number of pups weaned per female in a cage per week of pairing. LSM and
SE values are plotted, and letters indicate significant differences using Tukey tests.

doi: 10.1371/journal.pone.0074153.g002

The number of pups weaned was significantly altered by the
nesting treatment provided (GLM: F, 45 = 5.21; P = 0.007). Both
nesting materials resulted in more pups weaned (Enviro-Dri:
49.1 + 2.9; Nestlets: 46.7 + 2.9) compared to controls (36.6 +
2.9; Tukey: P < 0.05). Mouse strain also affected the average
number of pups weaned (GLM: F,g = 102.5; P < 0.001).
Outbred CD-1 mice weaned significantly more pups (77.5 +
2.9) over the 6 month period than the two inbred strains
(Tukey: P < 0.05). BALB/c mice weaned 32.9 + 2.9 pups,
significantly more than C57BL/6 mice (21.9 = 2.9; Tukey: P <
0.05).

Bl was also significantly improved by the provision of nesting
material (GLM: F,g; = 6.9; P = 0.002; Figure 2); mice that
received Enviro-Dri (1.8 + 0.08) or Nestlets (1.7 + 0.08) had
significantly higher breeding indices than controls (1.3 + 0.08;
Tukey: P < 0.05). Mouse strains significantly differed on their Bl
(GLM: F g5 = 161.9; P < 0.001). As expected, the outbred CD-1
mice had the highest Bl (2.91 + 0.08), which was significantly
different from the two inbred strains tested (Tukey: P < 0.05).
BALB/c mice had a Bl of 1.19 + 0.08 which was significantly
greater than C57BL/6 mice (0.83 + 0.08; Tukey: P < 0.05).
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An interaction between nesting treatment and strain
significantly altered pup mortality (GLM: F, ., = 6.38; P < 0.001;
Figure 3). C57BL/6 mice were the only strain to show a
significant reduction in percent mortality due to the nesting
treatments (Tukey: P < 0.05). Control C57BL/6 mice had
approximately 30% mortality, which was nearly thirteen times
higher than the controls in the other two strains.

Nesting material treatments significantly altered the weaning
weight of pups from inbred mice (GLM: F, 3,3 = 5.85; P < 0.001;
Figure 4). BALB/c and C57BL/6 mice receiving Enviro-Dri
weaned heavier pups than controls (Tukey: P < 0.05), while the
weight of pups weaned from Nestlet cages did not differ
significantly from either the control or Enviro-Dri (Tukey: P >
0.05). Nesting treatments in outbred CD-1 mice do not appear
to affect pup weaning weights (Tukey: P > 0.05). The
treatments also differentially affected weaning weight
depending on the age at which the pups were weaned (GLM:
F,315 = 4.14; P = 0.02; Figure 5). The slope of weight gain for
both nesting material treatments was significantly different from
the controls (GLM: F, 544 = 7.25; P = 0.007). At 17 (Custom test:
Fi3158 = 16.03; P < 0.001) and 21 days of age (Custom test:
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doi: 10.1371/journal.pone.0074153.g003

Fi31s = 21.3; P < 0.001), mice from cages with nesting material
were significantly heavier than control mice. However, if mice
were weaned at 25 (Custom test: F, ;3 = 0.041; P = 0.84) there
was no difference in body weight.

Food consumption

Nesting material conditions did not significantly affect the
total amount of food consumed by mice over the 6 month
breeding period (GLM: F,q, = 2.82; P = 0.065). However, the
three strains did show differences in food consumption (GLM:
Foeo = 19.8; P < 0.001). Outbred CD-1 mice ate significantly
more food (4056.1 + 105.9g) than did C57BL/6 (3091.4 +
79.2g) and BALB/c mice (3122.4 + 69.8g) over the 6 month
experiment (Tukey: P < 0.05).

Although the amount of food eaten by mice in all the
treatments was not significantly different, the nesting material
treatments significantly altered the conversion of food to pups
weaned (GLM: F,g, = 6.0; P = 0.004; Figure 6). Enviro-Dri and
Nestlets weaned approximately 12.5 + 0.59 and 12.4 + 0.59
pups respectively per kilogram of food. This was significantly
more pups weaned than control mice (9.9 + 0.61; Tukey: P <
0.05). Strains also differed in the number of pups weaned
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(GLM: Fyg, = 41.5; P < 0.001). On average, CD-1 mice weaned
approximately 15.7 + 0.61 pups per kilogram of food, which
was significantly higher than BALB/c mice (11.1 + 0.59) and
C57BL/6 mice (8.1 + 0.59; Tukey: P < 0.05).

Discussion

The provision of 8g of nesting material (either Enviro-dri or
Nestlets) significantly improved breeding performance in two
commonly used inbred strains and one outbred stock. All three
types of mice built higher scoring nests when provided either
type of nesting material. Interestingly, nests scores differed
both depending on the nesting treatment and whether there
was a litter present in the nest at the time of nest scoring.
Lactating mice have been reported to build superior nests
compared to pregnant and virgin mice [21]. Levels of maternal
progesterone have also been found to correlate with nest
building [22,23] and the resulting improvements are thought to
predict the survivability of the pups in the wild [15,16]. Our
control animals displayed the same increase in nest score
when pups were present in the nest. However, other research
has documented decreases in nest building after parturition
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Breeding Performance and Nesting Material in Mice

=1 Control
16 1 | B Enviro
I Nestlets

Mean Weaning Weight (g)

BALB/c C57BL/6 CD-1
Strain

Figure 4. Mean weaning weight of pups raised in cages with different nesting material treatments is represented on the y
axis as a log transformed scale. LSM and SE are plotted and significant differences using Tukey comparisons are indicated by
asterisks.

doi: 10.1371/journal.pone.0074153.g004

—~ 151
2
E 14 < ———’
2 134 v
()]
; 12
(@)
S 114
c
©
% 10
Control

% o4 Enviro
o Nestlets
c Control
8 8 4 ] seeeses Elnvit:ot
= estlets

[

T T T T T T T T

16 18 20 22 24 26 28 30 32

Age at Weaning (d)

Figure 5. Mean pup weaning weight (g) is represented on the y axis as a log transformed scale. Observations at each
weaning age were averaged per treatment for visual purposes. Data points without SE bars depict a singular observation at that
weaning age. Solid and fragmented lines depict the least squares line for each treatment.

doi: 10.1371/journal.pone.0074153.g005

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e74153



Breeding Performance and Nesting Material in Mice

0.30

0.25 A

0.20 -

0.15

0.10 -

0.05 -

Feed conversion efficiency
(g of pup per g of food)

0.00

Strain

BALB/c C57BL/6 CD-1

Enviro Nestlets

Control

Treatment

Figure 6. Mean number of pups weaned per kilogram of food. LSM values have been normalized to depict the number weaned
per 1000 grams of food. Letters indicate significant differences using Tukey tests.

doi: 10.1371/journal.pone.0074153.g006

[24], as was seen in the mice receiving nesting material. The
energetic demands of lactation render females hyperthermic,
and the increased need for heat dissipation may be the reason
for the decrease in nest score [25-27]. Others have proposed
that as pups develop fur and their own endothermy, huddling
and lower nest building are sufficient means of behavioral
thermoregulation [24]. Our data provide a possible explanation
for this apparent disagreement in the literature. Mice receiving
either type of nesting material had decreased nest scores when
pups were in the nest, while controls showed the opposite
effect. This suggests that the overall improved nest quality
provided by nesting material may have made nests too warm
for females and therefore nests became more open to increase
heat loss for the female; whereas control mice still needed to
improve nest quality to optimize pup thermoregulation.

Nesting material may help the hyperthermic females and
endothermically incompetent pups find some middle ground in
terms of thermal comfort. On average, 11 more pups were
weaned at heavier weights by BALB/c and C57BL/6 mice with
Enviro-Dri. Parental investment is often partitioned between the
number of offspring or the quality, or survivability, of those
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offspring [28]. Generally, increasing the number of offspring
decreases their quality because the same parental resources
must now be split between a larger group [28]. Since the inbred
mice with Enviro-Dri produced more pups of improved quality,
more parental resources must have been available to be
dispersed amongst, and utilized by, the offspring for growth.
This appears to be especially true during the earlier growth
phase of the pups (less than 25 days of age). This idea is
further evidenced by equal food consumption between the
treatments over the 6 month period. Therefore, increased
reproductive output cannot be from increased food
consumption but from increased resource availability for pup
growth and development.

Outbred CD-1 mice can be almost double the size of BALB/c
mice at 7-8 weeks old. The combination of larger size and
lactation-induced hyperthermia [25,27] may have affected CD-1
mice more than the smaller C57BL/6 and BALB/c mice. It is
also possible that this result is confounded with room.
Unfortunately, this confound could not be avoided since the
main goal of this experiment was to determine the effect of
providing two types of nesting material to mice in a production
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setting. C57BL/6 and BALB/c mice were housed in the same
room but comparisons to CD-1 mice should be made
cautiously, because we were unable to determine if the
external environment or the animals themselves were driving
the differences seen.

C57BL/6, unlike other mice used in this study, did not show
any nest building differences when a litter was present in the
nest. C57BL/6 mice are often considered poor nest builders
[18], but this may have to do with thermal sensitivity as well as
the material they are provided for nest building. C57BL/6 [18]
as well as CD-1 mice (unpublished data) have shown difficulty
with building using materials that are highly compressed. While
the Nestlets used in this study appeared to be less compressed
compared to similar compressed cotton nesting material used
in other studies, these two strains built higher-scoring nests
with Enviro-Dri. BALB/c mice however, do not appear to have
trouble processing compressed materials (unpublished data).

When provided with enough nesting material, pup mortality in
C57BL/6 mice was reduced by nearly 27%. Previous research
suggests that this strain favors the thermoregulatory behavior
of thermotaxis (movement in response to temperature) over
nest building [5]. Nest building of C57BL/6 mice does respond
to temperature, where mice build more enclosed nests in
cooler temperatures [5]. Regardless of their primary mode of
behavioral thermoregulation, providing materials C57BL/6 are
better able to build with appears to improve survivability of
pups, likely through improved insulation.

Breeding performance is also easily influenced by stressors
other than the thermal stress explored in this paper [29]. The
absence of a retreat or hiding place in various species has
been shown to be stressful [30], resulting in stereotypy
development and heightened behavioral indicators of
fearfulness [31-33]. The psychological benefits of providing
mice with a retreat space may also improve overall well-being
and may have also impacted breeding performance. Thus, the
provision of materials to produce a naturalistic retreat space or
nest may be an avenue to decreasing stress associated with
various aversive stimuli [30].

Nesting material provisions in laboratory mice produce two
major benefits to end-users. First, a reduction of thermal stress
renders mice better models for experimentation. Animals
housed at or just below recommended housing temperatures
are under thermal stress and have altered metabolism,
behavior, and immune function [1,4,34]. Increased metabolism,
in turn, can induce a variety of diseases via increased
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generation of oxidative stress during normal metabolism [35];
these profound and wide reaching changes can easily alter
scientific outcomes. For instance immune-suppressed animals
may not respond to vaccination [36] or animals with elevated
metabolic rates may have altered pharmacokinetics [37].

The second benefit is the mean increase in breeding
performance. An increase in 0.5 and 0.4 pups per week from
Enviro-Dri and Nestlets respectively, results in a substantial
monetary gain, especially for poor breeding strains. A single
C57BL/6 mouse, the most widely used inbred strain, costs
between $16-26, depending on the weight and age [38]. This
small increase yielded 13 more weanlings on average,
grossing an extra $273 per cage at the average price ($21). In
addition to the increased productivity per cage, less food is
needed to produce 1 pup. Thus, nesting material results in
more pups produced at a lower cost. Considering the increase
in revenue from each cage, an increased cost of $0.624 for
Enviro-Dri or $3.24 for Nestlets per cage over the 6 month
breeding period is a sensible expenditure.

We conclude that nesting material, via increased insulation,
frees up energetic resources from thermogenesis which were
reallocated to improve reproductive performance. All strains
built higher scoring nests when given either Enviro-Dri or
Nestlets. This resulted in more pups born, and weaned, and a
decrease in pup mortality in C57BL/6 mice. In addition, the
amount of food needed to produce one pup was significantly
decreased when cages were provided with nesting material.
Improved nest building most likely improves the thermal
microenvironment for both adults as well as pups. The addition
of nesting material is both a cost effective and simple
enrichment that can be provided to the home cage to eliminate
thermal stress as well as improve reproductive performance.
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