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Abstract

IMAGE-HD is an Australian based multi-modal longitudinal magnetic resonance imaging (MRI) study in premanifest
and early symptomatic Huntington’s disease (pre-HD and symp-HD, respectively). In this investigation we sought to
determine the sensitivity of imaging methods to detect macrostructural (volume) and microstructural (diffusivity)
longitudinal change in HD. We used a 3T MRI scanner to acquire T1 and diffusion weighted images at baseline and
18 months in 31 pre-HD, 31 symp-HD and 29 controls. Volume was measured across the whole brain, and volume
and diffusion measures were ascertained for caudate and putamen. We observed a range of significant volumetric
and, for the first time, diffusion changes over 18 months in both pre-HD and symp-HD, relative to controls, detectable
at the brain-wide level (volume change in grey and white matter) and in caudate and putamen (volume and diffusivity
change). Importantly, longitudinal volume change in the caudate was the only measure that discriminated between
groups across all stages of disease: far from diagnosis (>15 years), close to diagnosis (<15 years) and after
diagnosis. Of the two diffusion metrics (mean diffusivity, MD; fractional anisotropy, FA), only longitudinal FA change
was sensitive to group differences, but only after diagnosis. These findings further confirm caudate atrophy as one of
the most sensitive and early biomarkers of neurodegeneration in HD. They also highlight that different tissue
properties have varying schedules in their ability to discriminate between groups along disease progression and may
therefore inform biomarker selection for future therapeutic interventions.
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Introduction

There is a global effort to test candidate treatments in
Huntington’s disease (HD) aimed at delaying, reversing or
preventing neural degeneration and the associated onset of
symptoms [1-3]. To assess the efficacy of such therapeutic
interventions, it is essential to be able to track in vivo the
pathogenesis and progression of the disease with robust,
quantitative clinical and neurobiological markers over relatively
short time-frames [4]. Also important is integration of measures
from various tissue properties, at both the macro- and micro-
structural levels [5,6]. This creates an opportunity to not only
identify which measure is the most sensitive in tracking change
at the earliest possible time, but also which measure is most

readily able to detect changes at a given stage during the
disease continuum [7,8].

Macrostructural changes indicate atrophy of the striatum,
cortical tissue and underlying white matter, which have been
well quantified by a number of cross-sectional T1-weighted
volumetric magnetic resonance imaging (MRI) studies during
both the premanifest (pre-HD) and symptomatic (symp-HD)
stages [9-16]. In addition, a number of longitudinal imaging
studies (including those from PREDICT-HD and TRACK-HD)
have reported robust increased rates of localized and
widespread grey and white matter, cortical and subcortical
atrophy in both pre-HD and symp-HD over periods as short as
one year [9,10,13,16-22].
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Microstructural change in HD has also been characterized,
via diffusion tensor imaging (DTI) [23-31], although longitudinal
investigation remains sparse. DTI measures the diffusion of
water molecules in the intra- and extra-cellular space, [e.g.,
mean diffusivity, MD; apparent diffusion coefficient, ADC; trace
of the diffusion coefficient, Trace(D)] and its directionality
(fractional anisotropy, FA; parallel diffusivity, λ||; perpendicular
diffusivity, λ⊥) thus providing information about tissue integrity.
Cross-sectional studies have revealed differences in magnitude
of white matter and striatal diffusivity in both pre-HD and symp-
HD, relative to controls [23-26,32]. Weaver et al. [29] observed
differences in white matter FA and λ|| throughout the brain
between a mixed HD group (pre- and symp-HD) and controls
over a one year period. Vandenberghe et al. [28] and Sritharan
et al. [31] are the only two studies to date to investigate
longitudinal diffusivity changes in subcortical grey matter
structures in symp-HD [Trace(D) and MD, respectively], both
reporting no significant change over time (two years and one
year, respectively) in the caudate, putamen or thalamus in
relatively small samples (<20 per group).

By investigating a diverse set of multi-modal neuroimaging
approaches it may be possible to track the trajectory of
different tissue properties in a more meaningful way. This could
yield an appropriate set of biomarkers not only for HD
characterization, but also for therapeutic intervention studies. In
a recent study [5], our group found volume, MD and FA differed
across pre-HD, symp-HD and controls; a Quadratic
Discriminant Analysis revealed that the highest discriminative
accuracy of pre-HD from controls was achieved in a multi-
modality approach, including volume and diffusivity measures
from the basal ganglia, accumbens and thalamus together with
motor and neurocognitive scores. Sánchez-Castañeda et al. [6]
reported atrophy and diffusion changes (MD and FA) in the
basal ganglia, as well as iron accumulation (restricted to the
globus pallidus) in pre-HD and symp-HD groups, relative to
controls. They also found that MD was the most powerful
predictor of HD development in the caudate and putamen,
explaining 50% of the variance of disease progression.

IMAGE-HD is an Australian based intensive longitudinal
multi-modal MRI study investigating the sensitivity of
macrostructural, microstructural and functional markers at three
time points: baseline, 18 and 30 months. For this investigation
we report on T1 and diffusion weighted images from pre-HD,
symp-HD and healthy controls collected at baseline and 18
months. We performed segmentation-based whole brain
analyses, as well as region of interest analyses of the caudate
and putamen. We selected these two structures as they exhibit
the most pronounced neurodegeneration in HD and have
consequently been a major focus of research [33]. We aimed to
determine the efficacy with which longitudinal disease
progression in HD could be tracked using macrostructural
(volume) and microstructural (diffusivity) neuroimaging
measures with a relatively small sample. Specifically, we
expected to find increased rates of atrophy over 18 months
across all volume measures in both pre-HD and symp-HD,
relative to controls. With respect to diffusion measures, we
predicted an increase in both FA and MD in caudate and
putamen in pre-HD and symp-HD, relative to controls, as

suggested by previous cross-sectional reports [6,27].
Moreover, we investigated which of these measures were the
most sensitive in detecting disease related longitudinal
changes, and the earliest time point during pre-HD at which
change is detectable. A final objective was to evaluate the
relationship between longitudinal change and disease
progression from pre-HD through to symp-HD stages.

Materials and Methods

Ethics Statement
The study was approved by the Monash University and

Melbourne Health Human Research Ethics Committees, and
each participant gave written informed consent.

Participants
One hundred and eight participants took part at baseline, 93

of whom returned for the 18 months session (4 pre-HD, 4
symp-HD and 7 controls did not take part at follow-up).
Structural T1-weighted, and diffusion weighted scans were
acquired for these participants. Scans containing image
artefacts or for which measurements failed altogether were
excluded, leaving a T1-weighted sample of 87 participants (31
pre-HD, 31 symp-HD and 27 controls) and a diffusion weighted
sample of 86 participants (29 pre-HD, 29 symp-HD and 28
controls). In total, imaging data was available for 31 pre-HD, 31
symp-HD and 29 controls. CAG repeat length, established prior
to enrolment in the study, ranged from 39 to 49 (mean 42.7, SD
2.1 for pre-HD; 42.7, 2.2 for symp-HD). Pre-HD and symp-HD
participants were clinically assessed (by A.C. or P.C.) with the
Unified Huntington’s Disease Rating Scale (UHDRS), total
motor score (TMS) [34]. Consistent with criteria employed by
Tabrizi et al. [15], individuals with a UHDRS TMS ≤ 5 were
included in the pre-HD group and those with UHDRS TMS
greater than 5 were included in the symp-HD group. Diagnostic
confidence score was not taken into consideration for
assignment into symp-HD group. However, the mean
diagnostic confidence score for symp-HD was 2.9 (±1.24) at
baseline and 3.33 (±1.30) at 18 months. At baseline, mean pre-
HD estimated years to clinical diagnosis (calculated using
Langbehn and colleagues’ [35] survival analysis regression
equation based on CAG repeats) was 14.7 (8.0) years and
mean symp-HD years since diagnosis (by means of clinical
records provided by the study neurologists) was 2.1 (1.5)
years. Healthy controls were matched to pre-HD participants by
age, gender and estimated IQ (National Adult Reading Test
2nd edition, NART-2) [36]; IQ did not differ between groups.
Demographic and clinical data are presented in Table 1. We
also subdivided pre-HD into farther from (pre-HDfar) and closer
to (pre-HDclose) diagnosis at the group median years to
diagnosis (median = 14.6 years). These two groups differed
from each other in terms of age, UHDRS TMS, Disease Burden
Score (DBS = age×[CAG repeats-35.5] [30]; and IQ (see Table
1).

All participants underwent a rigorous screening process prior
to recruitment. Participants were all free from brain injury,
neurological and/or severe diagnosed psychiatric conditions
(e.g., bipolar, psychosis), other than HD. Participants remained
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on their normal medication regime, which included
antidepressants, medications for vascular and heart conditions,
anxiety/mood stabilizers and neuroleptic medications
(exclusive to symp-HD). (See Methods S1 for details.)

Consistent procedures were followed at baseline and 18-
months. At each assessment, detailed demographic and
clinical information was recorded, including an extensive motor,
neurocognitive and neuropsychiatric battery of tests and
questionnaires. T1 and diffusion weighted brain images were
also acquired during the same session.

Procedures
A set of pen-and-paper and computerized cognitive tests

were selected based on their sensitivity in discriminating
between controls, pre-HD and symp-HD groups [15,37,38].
These tests assessed visuomotor speed and attention (Symbol
Digit Modalities Test, SDMT; [39]), reading speed (Stroop Word
Test [40]), odour recognition (University of Pennsylvania Smell
Identification Test, UPSIT [41]) and motor performance
(speeded and self-paced tapping tasks [42,43]). In addition,
participants completed questionnaires associated with frontal-
striatal brain dysfunction, including executive function and
neuropsychiatric disturbances (Frontal Systems Behavior
Scale, FrSBe [44];; Schedule of Obsessions, Compulsions and
Psychological Impulses, SCOPI [45];). Two additional
questionnaires included the Hospital Anxiety and Depression
Scale (HADS; [46]) and the Beck Depression Inventory Version
II (BDI-II [47]).

Table 1. Demographic and clinical baseline data across
groups.

 Controls Pre-HDfar Pre-HDclose Pre-HDall Symp-HD
Participant No. 29 16 15 31 31

Age (years) 42.8 (12.9) 37.5 (9.5) 45 (8.5)* 41.1 (9.6)
53.1 (9.0)***
+++

IQ estimate 118.1(10)
120.8
(10.1)

112.2
(12.4)*

116.6
(11.9)

114.5 (11.5)

UHDRS TMS - 0.4 (0.7) 1.5 (1.5)* 0.9 (1.3)
17.6 (9.6) +
++

CAG repeats - 42.2 (2.2) 42.7 (1.8) 42.7 (2.1) 42.7 (2.2)
Disease
Burden Score

-
235.4
(43.5)

306.4
(37.6)^^^ 284 (74) 370 (67) ***

Estimated
Years to
Diagnosis

- 20.5 (6.3)
10.6 (3.1)
^^^ 14.7(8) -

Years Since
Diagnosis

- - - - 2.1 (1.5)

Data represent mean(SD) at baseline and significance (superscript); IQ (NART:
National Adult Reading Test 2nd Edition); UHDRS TMS: Unified Huntington’s
Disease Rating Scale, total motor score (pre-HD <5; symp-HD ≥5); CAG: cytosine-
adenine-guanine repeat length; Disease Burden Score = age x (CAG
repeats-35.5). Significance of group differences: any HD vs. controls * = p ≤ .05; ***

= p ≤ .001; symp-HD vs. pre-HD: +++ = p ≤ .001; Pre-HDclose vs. Pre-HDfar: ^^ ^ =
p ≤ .001.
doi: 10.1371/journal.pone.0074131.t001

Structural and diffusion MRI data acquisition protocols,
spatial pre-processing and methods to derive regions of
interest (ROIs) were consistent across testing sessions (see
Methods S1 for details.) MRI data were acquired at 3T with
standardized protocols. Rigorous quality control was carried
out on all images. FMRIB’s Software Library (FSL, version
4.1.61) was used to delineate volumetric baseline and follow-
up regions including whole brain (WB), grey matter (GM), white
matter (WM) and cerebrospinal fluid (ventricular and intergyral).
A semi-customised procedure based on SPM8 routines was
used for segmentation of caudate and putamen in volumetric
images. FSL tools were used for segmentation of these
subcortical ROIs in diffusion weighted images. MD and FA
measures were then computed for each these ROIs.
Registrations and segmentations were visually inspected
independently by two analysts to ensure their accuracy.
Cortical and subcortical regions were derived independently for
baseline and follow-up scans. In order to obtain the most
precise MD measurements, we calculated change in ventricular
MD across scanning sessions and controlled for this in MD
analyses.

Statistical analysis
Statistical analyses were conducted by group assignment at

baseline (given that, according to UHDRS criteria, eight
participants changed grouping between pre-HD and symp-HD
at follow-up; see Methods S1). We assessed longitudinal
change in neurocognitive measures in pre-HD, symp-HD and
control groups as well as longitudinal differences between HD
groups and controls. We used a random-effects model with a
generalized least squared estimator (GLM), as it allows for
correlations between measurements from the same participant.
Outcome measures were accuracy: number correct (SDMT,
Stroop), response time: intertap interval (sTAP), and precision
(the inverse of intertap interval standard deviation * 1000;
sPTAP, fPTAP). Age was included in all models as a covariate
of no interest. Post-hot tests were corrected for multiple
comparisons at p < 0.05.

Percent change of baseline was calculated for each volume,
MD and FA measure (averaging across the left and right
hemispheres for subcortical structures). Linear regressions
were then used to estimate longitudinal between-group
differences. Age (mean centred) was included in all models as
a covariate of no interest. To guard against violations of
distributional assumptions and reduce the influence of outliers,
we report results from bootstrapped regressions performed on
the basis of 5000 permutations. In addition, a small number of
extreme scores (with a residual greater than ±3) were
excluded.

We also investigated the earliest point in time before
diagnosis at which group differences could be detected in any
of the imaging modalities. To achieve this, we split pre-HD (at
the median years to diagnosis) into pre-HDfar (far from
diagnosis) and pre-HDclose (close to diagnosis) and compared
them to age matched control sub-groups (mean ages[SD]: pre-
HDfar = 37.5 [9.5]; and their matched control group, controlsfar =
37.1 [6.3]; pre-HDclose = 45 [8.5]; controlsclose = 44.7 [9.5]; pre-
HDfar and controlsfar were 7.5 years older than pre-HDclose and
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controlsclose (p < .001); see Table 1). Sample sizes for these
sub-analyses are comparable to those in the studies by
Sritharan et al. [31] and Vandenberghe et al. [28]. In these sub-
analyses we focused exclusively on the caudate since our
original analyses revealed the largest amount of 18 month
change in this structure across the imaging modalities and
there is extensive research documenting caudate sensitivity in
HD pathology [5,9,10,18,19,21,22,48,49].

Finally, associations between specific changes in volume
and diffusion measures were assessed by means of partial
correlations controlling for the effects of covariates (DBS and
age). We also conducted partial correlations to investigate the
relationship between change in different MR measures and

clinical scores (at baseline), including DBS, disease
progression and UHDRS TMS. Our definition of disease
progression, a measure used previously by Sánchez-
Castañeda, et al. [6] (which they termed HD development), is a
composite of estimated years to diagnosis (in pre-HD) and
years since symptom onset (in symp-HD). We also assessed
the association between change in MR measures and
estimated years to diagnosis and years since symptom onset
separately. Associations with DBS were adjusted for age. The
effects of DBS and age were removed from correlations with
UHDRS TMS. Lastly, we controlled for CAG repeat length
when the independent variable was disease progression. All
analyses were performed with Stata 11 [50].

Figure 1.  Mean percent change of baseline (%Δ) and significant group differences in volume and diffusion measures
adjusted for age.  Top row: brain-wide percent volume change: whole brain (WB), gray matter (GM) and white matter (WM); middle
and bottom rows: subcortical percent volume, MD and FA change (caudate and putamen, respectively). Stars indicate significant
between-group differences: * p ≤ .05; ** p ≤ .01; *** p ≤ .001. Cortical and subcortical segmentations overlaid on MNI T1 1 mm3

standard brain are provided in right column: A) grey and white matter depicted in blue and green, respectively; B) caudate and C)
putamen are represented in red-yellow.
doi: 10.1371/journal.pone.0074131.g001
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Figure 2.  Significant correlations between percent change
of baseline (%Δ) in caudate and putamen MR measures
and clinical scores.  Plots show fitted lines (and 95% CI,
shaded area) adjusted for covariates. DBS: Disease Burden
Score; HD progression is a composite of estimated years to
clinical diagnosis (expressed in negative numbers as count to
0) and years since diagnosis (count from 0).
doi: 10.1371/journal.pone.0074131.g002

Results

Longitudinal change in neurocognitive measures
Precision in fPTAP significantly improved in pre-HD (p < .02).

No significant longitudinal change in any other neurocognitive
measure was observed in pre-HD or symp-HD. There was a
significant longitudinal difference in sPTAP between pre-HD
and controls (p < .05) and symp-HD and controls (p < .02), but
this difference was driven by significantly better performance in
controls between baseline and 18 months (p < .001).
Performance in this measure remained unchanged in pre-HD
and symp-HD. No other significant longitudinal group
differences were observed.

Longitudinal group differences in brain-wide volume
change

Pre-HD and symp-HD groups demonstrated significantly
higher 18-month WB and GM rates of atrophy, compared with
controls. Symp-HD also exhibited significantly higher
longitudinal rates of atrophy in WB compared with pre-HD, and
in WM relative to controls (see Figure 1; see Tables S1 and S2
for a full inventory of longitudinal within- and between-group
regression coefficients and their statistical significance; see
Table S4 for annualized rates of change across volume, FA
and MD measures). While no difference was observed
between longitudinal rate of change in WM volume between
pre-HD and controls, there was a significant difference of
2.03% (p = .01) in WM volume loss when comparing pre-HDclose

to their age-matched controls.

Longitudinal group differences in subcortical volume
change

The rate of atrophy over 18 months in the caudate was
significantly higher in pre-HD and symp-HD, compared with
controls, as well as in pre-HD, compared to symp-HD (see
Figure 1 and Table 2). In addition, while symp-HD showed
significantly higher longitudinal rates of atrophy in the putamen
compared with controls, there was no difference between pre-
HD and controls. The difference between symp-HD and pre-HD
in the rate of putamen volume loss exhibited a trend toward
significance (see Figure 1; see Tables S1 and S2 for a full
inventory of longitudinal within- and between-group regression
coefficients and their statistical significance).

Longitudinal group differences in subcortical diffusivity
change

While there was a significant within-group longitudinal
increase in caudate MD across all groups, no significant
longitudinal between-group difference was observed. Pre-HD
exhibited a significant longitudinal reduction in putamen MD,
relative to symp-HD. The longitudinal increase in caudate FA
was significantly higher in symp-HD (8.1%), relative to controls
(1.5%). Although the pre-HD group showed a trend in the same
direction, the difference between pre-HD and symp-HD
exhibited only a trend toward significance (p = .058), and the
difference between pre-HD and controls was not significant
(see Figure 1 and Table 2; see Tables S1 and S2 for a full
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inventory of longitudinal within- and between-group regression
coefficients and their statistical significance).

While longitudinal change in caudate volume and FA
discriminated symp-HD from controls, neither measure was
better at detecting a difference between these groups. The
difference between symp-HD and controls in FA change (6.6%)
was higher than the difference in volume change (4.82%), but
not significantly so, as revealed by a direct post-estimation
comparison.

Longitudinal change in caudate volume, MD and FA in
pre-HDfar and pre-HDclose

We observed a significant (p < .01) group difference in rate
of caudate atrophy (2.8%) for pre-HDfar, compared with
controlsfar (see Table 2). The difference in rate of atrophy
between pre-HDclose and controlsclose (2.6%) was also significant
(p < .01). No significant group differences were observed in MD
or FA.

MR and clinical correlations
After controlling for covariates, we found significant negative

associations between rate of change in the caudate for volume
and FA (r = -.35, p < .05) and the putamen for volume and MD
(r = -.32, p < .01), and for FA and MD (r = -.36, p < .01).
Regarding clinical measures, increased rate of WB volume loss
negatively correlated with disease progression. Percent change
in caudate volume negatively correlated with DBS, HD

Table 2. Within- and between-group longitudinal rate of
change in caudate volume, FA and MD in controls, pre-HD
and symp-HD.

 N Volume MD FA
Within-groups %Δ     
Controlsfar 22 0.38 (0.44) 0.56 (1.08) 0.004 (1.89)
Controlsclose 18 0.41 (0.56) 2.05 (1.29) 1.29 (2.15)
Controlsall 29 0.39 (0.42) 2.52 (0.96)** 1.45 (1.58)
Pre-HDfar 16 -1.75 (0.62)** -0.58 (1.30) 3.61 (2.50)
Pre-HDclose 15 -2.19 (0.91)* 5.62 (1.97)** 1.90 (2.28)
Pre-HDall 31 -1.92 (0.58)*** 3.12 (1.47)* 3.21 (1.63)*

Symp-HDall 31 -4.43 (0.71)*** 4.17 (1.62)** 8.08 (2.00)***

Between-groups %Δ     
(Pre-HD vs. Controls)far  -2.13 (0.75)** -1.14 (1.71) 3.61 (3.16)
(Pre-HD vs. Controls)close  -2.61 (1.06)** 3.56 (2.38) 0.62 (3.15)
(Pre-HD vs. Controls)all  -2.31 (0.69)** 0.60 (1.74) 1.76 (2.29)
(Symp-HD vs. Controls)all  -4.82 (0.87)*** 1.64 (1.96) 6.63 (2.53)**

(Symp-HD vs. Pre-HD)all  -2.51 (0.96)** 1.04 (2.20) 4.86 (2.57)+

Within-groups % Δ (percent change of baseline): Data represent mean (SE) rates
of change (adjusted for age at baseline). Controls far and close are subsamples of
the control group matching in age the respective pre-HDfar and pre-HDclose

groups. Subscript all indicates full samples. Stars (*) indicate p value for within-
group effect on rate of change: * p ≤ .05; ** p ≤ .01; *** p ≤ .001. Between-groups %
Δ: Data represent differences in the rate of change between groups (SE). Stars (*)
and plus sign (+) indicate p value for the between-group differences: * p ≤ .05; ** p
≤ .01; *** p ≤ .001; + p = .058.
doi: 10.1371/journal.pone.0074131.t002

progression and UHDRS TMS. Putamen atrophy was
negatively correlated with HD progression; and putamen rate of
change in MD was associated positively with DBS, HD
progression, pre-HD progression and UHDRS TMS (See
Figure 2 and Table S3).

Discussion

In the present study we report a range of significant
volumetric and diffusion changes over an 18 month period in
both pre-HD and symp-HD, relative to controls, detectable at
both the brain-wide level and in the caudate and putamen. Our
findings also characterise the differential patterns of rate of
change across multiple measures and at different stages of the
disease continuum and provide further insight into early
neuropathological changes in HD. Below we summarise these
results and their significance.

Longitudinal group differences in the caudate
Consistent with previous reports [9,10,18,19,21,22,48,49],

we observed higher rates of caudate atrophy over 18 months in
pre-HD and symp-HD, compared with controls, and in symp-
HD, compared to pre-HD. In addition, we report for the first
time longitudinal FA change in HD. In particular, caudate FA
increased over 18 months by 8% in symp-HD, which was
significantly greater than the increase observed in controls
(1.5%). Caudate MD increased in all groups over the same
period (seemingly higher in symp-HD, followed by pre-HD then
controls), but no significant differences were observed on this
measure between the groups. We also observed a difference in
the rate of change in caudate volume between pre-HDfar and
controlsfar, and pre-HDclose and controlsclose. There were no
diffusion related differences in the caudate between pre-HDfar

or pre-HDclose and controls. However, we observed a marked
longitudinal increase in MD in pre-HDclose, sustained after
diagnosis, suggesting a likely change in the magnitude of
diffusion with the approach of symptom onset.

The caudate findings highlight the complexity of longitudinal
change in multimodal MR measures by their varying schedules
in discriminating between groups along the disease continuum.
Specifically, longitudinal volume change in the caudate was the
only measure that discriminated between groups across all
stages of disease: far from diagnosis (>15 years), close to
diagnosis (<15 years) and after diagnosis. Of the two diffusion
metrics, only longitudinal FA change was sensitive to group
differences but only after diagnosis. Caudate MD exhibited a
trend toward increasing across far, close and after symptom
onset, which suggests that MD may become sensitive to group
differences at more advanced stages of disease. These
findings further confirm caudate atrophy as one of the most
sensitive measures of neurodegeneration in HD, capable of
detecting group differences at >15 years from diagnosis.

Longitudinal group differences in the putamen
In line with previous findings, we observed significant

longitudinal putamen volume decrease in symp-HD, compared
with controls; however, and contrary to findings by a number of
groups, there was no difference between pre-HD and controls
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[17,18,21,49]. This discrepancy may be due to characteristics
of our sample. However, our results may also have been
affected by segmentation difficulties intrinsic to the putamen
(even after stringent quality control) and/or differences in the
tools used in delineating the corresponding masks. In addition,
greater variability in the rate of volume loss in this structure has
been previously reported [21].

Putamen FA exhibited a significant longitudinal increase in
pre-HD; however, there was no statistically significant
difference in the rate of change between groups. While this
study is the first to demonstrate longitudinal change in putamen
FA, our cross-sectional data [5] is consistent with previous
results [6,25,27] which indicate that FA increases with disease
progression likely due to selective fibre degeneration. Putamen
MD showed no longitudinal change in symp-HD, although there
was a significant longitudinal decrease in both pre-HD and
controls. The lack of longitudinal change in symp-HD is also in
accord with previous studies [28,31].

Of interest are the divergent results for MD measures across
caudate and putamen. These structures have the same
phylogenesis, share a predominance of medium-size spiny
neurons, and have similar patterns of connectivity and dendritic
arborisation, so one might expect a similar pattern of
deterioration [51,52]. However, while caudate MD significantly
increased longitudinally in all groups, putamen MD significantly
decreased in controls and pre-HD, and no change was
observed in the symp-HD group.

In pre-HD (and controls), we observed an 18 month MD
decrease in putamen. This is surprising, especially when
considering that, cross-sectionally, MD was highest in symp-
HD, followed by pre-HD then controls (a finding consistent with
previous reports [5,6,23,53]. There are a number of
neuropathological and age-related processes that may possibly
account for this pattern of longitudinal change. These include
for example increased oligodendroglial numbers present in HD
developmentally [30,52,54], homeostatic attempts to
remyelinate [55], and iron accumulation. The latter occurs
naturally with the aging process [56-58], but also increases with
greater numbers of oligodendroglia and remyelination in HD
[6,55,59]. Larger numbers of oligodendroglia, remyelination
and iron accumulation may contribute to real and apparent
decreases in diffusivity, the former two by increasing barriers to
water diffusivity and the latter by introducing magnetic
susceptibility effects. These processes may combine to
produce a pattern of short-term striatal MD decreases against
the backdrop of a long-term trend toward higher diffusivity (e.g.,
[30] reported reduced caudate MD in pre-HD far from diagnosis
relative to controls). In the putamen, this pattern may be
amplified due to the combination of two factors: the putamen
has a higher iron concentration than the caudate [56,57]; and
second, the rate of iron deposition keeps increasing throughout
the lifespan in this structure whereas it plateaus in the caudate
around the third decade of life [57,58]. Inter-individual
fluctuations in iron deposition, that occur with increased age
[58], may also play a role. The lesser putamen MD reduction in
controls may be accounted for by similar processes occurring
in the absence of pathology. However, it is important to
highlight that the present results may have been affected by

difficulties in the segmentation procedures. Validation is
therefore required from further studies.

Brain-wide longitudinal group differences
Symp-HD demonstrated the largest longitudinal rates of

atrophy in WB, GM and WM, which were significantly different
from controls in all cases, and in pre-HD for WB only. Pre-HD
also showed larger rates of atrophy, compared with controls, in
WB and GM. Longitudinal atrophy in WB also discriminated
symp-HD from pre-HD. These results are largely in agreement
with previous studies [13,17,18,21,49]; however, pre-HD did
not exhibit a significantly larger longitudinal rate of loss in WM.
While this is consistent with our cross-sectional findings, where
no WM difference was observed between pre-HD and controls
[5], both PREDICT-HD [49] and TRACK-HD [21] have reported
cross-sectional and longitudinal differences between pre-HD
(far and close to onset) and controls. The discrepancy may be
in part due to different methods (voxel-based morphometry vs.
whole volume segmentation), sample sizes, and disease
stages. When restricting our analysis to pre-HDclose, however,
we observed that the rate of WM atrophy was significantly
higher than in controls, suggesting that by 10.6 years prior to
diagnosis a sample of n = 17 per group may be sufficient to
detect significant WM atrophy.

MR and clinical associations
We found for the first time evidence that changes in volume

and diffusion metrics are interrelated, as indicated by the
significant correlations between longitudinal change in caudate
volume and longitudinal change in caudate FA; and between
longitudinal change in putamen MD and longitudinal change in
putamen volume and FA. In line with previous reports
[18,21,49], we observed significant negative associations
between rate of longitudinal change in a number of volume
measures and several clinical measures: caudate atrophy was
correlated with DBS, HD progression and UHDRS TMS; and
WB and putamen atrophy were correlated with HD progression.
Regarding the diffusion metrics, positive correlations were
found between change in putamen MD and DBS, HD
progression, pre-HD progression and UHDRS TMS. These
positive putaminal correlations point to an on-going reversal of
the decrease in diffusivity in pre-HD, which illustrates the
longitudinal MD reduction prior to diagnosis and is consistent
with a return to a long-term trend of increased diffusivity. These
findings collectively provide further support that longitudinal
neuropathological changes in caudate, putamen and WB
volume and in putamen MD are related to functional measures
of disease severity.

The clinical metrics used in the present study measure
closely related constructs (i.e., clinical severity, disease
progression). However, they can be expected to have different
variability and may therefore differ in their sensitivity to
changes in MR measures. This is particularly the case when
directly comparing DBS and HD progression, which are used to
evaluate the clinical relevance of changes in MR measures
across the entire spectrum of the disease. Care should
however be taken when interpreting correlations comprising the
HD progression variable. This variable treats as a continuum
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two separate measures: estimated years to onset and years
since diagnosis with potentially different trajectories as well as
levels of uncertainty and variability. This makes it necessary to
consider these stages separately. In addition, different clinical
measures have been used across published studies and
comparing them side by side may provide insights as to which
one is potentially more sensitive for any given structure and
modality. For example, DBS was more strongly correlated with
change in caudate and putamen volume than HD progression.
However, only HD progression was found to be associated with
whole brain volume.

Longitudinal change in neurocognitive measures
We found no longitudinal deterioration in neurocognitive

measures in either pre-HD or symp-HD. This is in agreement
with previous findings which show that clinical scores, and
performance on neurocognitive tests, do not deteriorate to the
same extent in HD as cortical and subcortical measures of
volume loss [22], likely due to compensatory neural processes
to maintain function [60]. The absence of cognitive decline also
highlights the superior sensitivity of MR measures in detecting
differences relating to neuropathology.

Variability across multi-modal measures
One factor that is likely to influence the sensitivity of imaging

measures is their high degree of variability. In the caudate
nucleus, although diffusivity measures exhibited larger
longitudinal rates of change, they were more variable than
volume (FA having the largest variability, followed by MD, then
by volume). Therefore, there may be a trade-off between
smaller variability in longitudinal volume change and higher
effect sizes in longitudinal diffusivity change. This greater
variability in longitudinal diffusivity may have contributed to the
non-significant longitudinal change between groups in caudate
MD (two previous studies with smaller samples failed to report
longitudinal within-group change in the magnitude of diffusion
in symp-HD [28,31]). Our results therefore indicate that change
in caudate volume is a more sensitive measure of longitudinal
group differences compared with the diffusivity measures.

Conclusions

This study sought to determine the sensitivity of
macrostructural and microstructural change longitudinally in HD
at different stages of the disease. Our findings highlight the
importance of understanding how different tissue properties
can change over time, whether such changes progress at the
same rate, which commence earlier, and whether change in
different types of tissue is comparatively more sensitive at
different stages. Our findings also lend further support to
previous studies documenting longitudinal volumetric sensitivity
in various structures (WB, GM, WM), which we found to be
associated with clinically relevant symptoms. Most importantly,
our results show for the first time that while both structural and
microstructural measures of longitudinal change in the caudate
are sensitive to disease progression, volume is more sensitive
than MD and FA to longitudinal group differences; it is the only
metric sensitive to such differences before diagnosis; it is

capable to detect differences very early (i.e., >15 years prior to
symptom onset); and it is highly relevant clinically. These
findings illustrate the sensitivity of multi-modal longitudinal
imaging at detecting and tracking short-term change along the
progression of the disease and may inform biomarker selection
for future therapeutic interventions.
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Figure S1.  Automated identification of subcortical regions
of interest in diffusion weighted images across participant
groups. Provided are representations of one control and one
symp-HD participant for illustrative purposes. A) Raw FA and
T1 weighted images. B) T1 weighted images were first linearly
and then non-linearly registered to the corresponding FA
images. C) Segmentation of subcortical structures of interest
(caudate and putamen) was performed on the non-linearly
registered T1 image; these structures were then boundary
corrected (eroded boundary in yellow). Eroded masks for the
caudate (red) and putamen (blue) are displayed over FA map.
(TIF)
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registration of T1 and diffusion images.
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