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Abstract

Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas
torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study
compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under
wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an
upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both
frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions,
the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in
water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are
illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not
only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the
belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope
angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined
significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent
frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly
elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which
could facilitate drainage of excess fluid underneath the pad.
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Introduction

Tree frogs stick by wet adhesion in that a fluid film fills the

contact zone between the adhesive pad and the substrate [1,2].

The adhesive mechanism involves both capillarity and hydrody-

namic forces [3], though the precise mechanism remains elusive.

Their adhesive toe pads have a complex structure, the outer layer

consisting of hexagonal epithelial cells separated from each other

at their tips [4]. The fluid that fills the adhesive joint is mucus,

originating from mucous glands whose ducts secrete their contents

into the channels that separate the cells [5]. The mucus is a very

watery solution [6] but the exact chemical composition is

unknown. The channels serve to spread mucus over the surface

of the pad, and can possibly assist in getting rid of excess fluid from

underneath the pad. Good adhesion depends upon there being a

thin but continuous fluid layer beneath the pad [7]. On the surface

of these epithelial cells is an array of nanopillars (300–400 nm in

both diameter and height), separated by narrow channels [8].

Previous research suggested that friction forces, also important for

climbing frogs, depend on the tips of these nano-pillars making

direct contact with the substrate [6].

Much less is known about adhesion and toe pad morphology in

rock or torrent frogs. Ohler [9] carried out a preliminary study on

the toe pad morphology of torrent-living ranid frogs, demonstrat-

ing that the toe pads of Amolops had distinct anatomical differences

from the typical pattern seen in tree frogs. The only relevant

biomechanical work is a preliminary study of adhesion in the

Trinidadian stream frog, Mannophryne trinitatis [10]. This species is

good at adhering to rough wet surfaces, but very poor at sticking to

dry rough ones. It also slips on smooth wet surfaces. This suggests

that torrent frogs can cope with running water so long as the

surfaces are rough.

Brunei, with several species of torrent frog capable of adhering

to vertical rocks in waterfalls, and rock frogs capable of fast

movement over wet rocks [11], presented a very good opportunity

to study these frogs that are clearly specialists in adhesion under

wet and flooded conditions. The present study compares the

attachment capabilities of a torrent frog species to those of a tree

frog species to see first whether there are differences in
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performance between the two species under different conditions

(substrates varying in wetness and roughness), and second what

these differences are based upon. For instance, is adhesive

performance dominated by the area of contact used by the frogs,

or do the two species show a difference in force per unit area that

they can generate; i. e. are the toe pads of the torrent frogs more

effective under wet conditions?

Materials and Methods

This was a study of free-ranging animals temporarily brought

into a field-based laboratory and later released at their site of

capture. Individuals used for electron microscopy where given a

lethal dose of Benzocaine. The experimental protocol adhered to

the Animal Behaviour Society guidelines for the use of animals in

research and was approved by the University of Brunei

Darussalam Research Committee (UBD/DVC/32.10) and an

export permit JPH/TAD/30 PT 10. We confirm that the species

investigated are not endangered or protected.

Study animals
Our study focused on the comparison of a tree frog and a

torrent frog species (Figure 1). Tree frogs are known to be good

climbers [2,12] but, unlike torrent frogs, are not found on rocks

where there is fast flowing water. We chose male individuals of the

Harlequin Tree frog (Rhacophorus pardalis) and male individuals of

the Black-spotted Rock frog (Staurois guttatus). For an easier

distinction between the two, we will refer to R. pardalis as the

tree frog and to S. guttatus as the torrent frog. Both species were

abundant around the Kuala Belalong Field Studies Centre, Ulu

Temburong National Park (Brunei Darussalam, northern Borneo),

where the experiments were carried out during two six-week visits

(May/ June 2010 and 2012). The torrent frogs were found near

waterfalls on fast flowing streams, where they could be captured on

rocks (day) or surrounding vegetation (night). The tree frogs were

caught at night on vegetation near small ponds in the forest.

Although not identical in either body mass or snout-vent length

(SVL), they were the best species match that was obtainable in

sufficient numbers in the local area. Body mass was measured

using an electronic balance (Mettler), while SVL was measured

using callipers. Values are given in Table 1. The frogs were housed

in plastic tanks, containing structural elements (rocks, branches

and leaves) and ca. 1 depth of water. After the experiments, the

frogs were released at the sites where they were captured.

Measurement of the attachment abilities of the frogs
Attachment ability was measured on a rotating platform, using a

technique previously used by [1], [7] and [13]. Frogs were

challenged to cling onto the platform which could be rotated from

an initial horizontal orientation, through the vertical to an upside-

down orientation (Fig. 2). A custom-built geared motor system,

adapted from a Stuart SB3 rotator (Bibby Scientific Ltd, Stone,

Staffs, UK), ensured a constant rotation speed of 4+1u s21. The

platform consisted of a wooden base (20|30) with the possibility

of mounting different surfaces on top of it. The surfaces used in

our experiments were a smooth Perspex sheet, a fine rough surface

(30 mm aluminium oxide polishing discs, Ultratec, USA) and a

coarse rough surface (custom-built by gluing a single layer of

Ballotini glass beads (1125+125 mm) onto a Perspex sheet). As the

surfaces were made from different materials, the surface chemistry

between the surfaces may have differed. Previous work (Barnes,

unpublished) has shown that tree frogs stick equally well to glass,

Perspex and hydrophobic leaves, so it is reasonable to assume that

the effects observed here are primarily due to changes in wetness

and roughness.

We also equipped the platform with a running water system to

flood the surfaces in a controlled manner (Fig. 2). The water flow

system was gravity-fed by a large storage tank, placed ca. 1.2 m

above the platform. Two hoses led from the tank to a short pipe

placed across the top end of the platform where the water poured

out from small holes drilled into the pipe. The flow rate was

controlled by adjustable clamps on both hoses, and the flow was

measured prior to and following each experimental run. We used

three flow regimes: zero flow (i. e. ‘dry’), a low flow rate (ca. 50 mL

min21, i. e. ‘wet’) which wets the platform, and a fast flow rate (ca.

4000 mL min21, i. e. ‘flooded’), both within the range of flow rates

found in the torrent frog’s natural habitat. The water formed a

more or less uniform layer across the surfaces, and stayed attached

to it until the platform was close to the upside down orientation

(ca. 170u).
Frogs were placed onto the platform, starting from a horizontal

position (0u). In the majority of cases, frogs that initially faced

downhill would turn so that they faced uphill as platform rotation

progressed. We recorded the angle at which the frogs showed an

initial slip and when they were completely dislodged from the

platform. From those angles we calculated the maximum friction

and adhesion forces using trigonometry. In cases where the frog

slipped completely off the platform below 90u, the values for the

fall angles were set equal to the slip values. In cases where the frogs

showed an initial slip beyond 90u, the slip angles were set to 90u,
since this would be the orientation where maximum friction would

occur. The angles were measured by reading the position of a

needle mounted on the platform against a 360u protractor

(estimated measurement error was below 2u).
Each individual frog was tested ten times on all three surfaces

and all three flow regimes. The order of each combination of

surface roughness and flow regime was randomised to avoid order

Figure 1. Frog species used in this study. Males of the (A)
Harlequin Tree Frog (R. pardalis) and (B) the Black-spotted Rock Frog (S.
guttatus) in their natural habitats.
doi:10.1371/journal.pone.0073810.g001

Table 1. Masses and lengths of the two species used in the
experiments.

Species Mass (g) SVL (mm) N

R. pardalis 4.060.4 4562 34

S. guttatus 2.760.3 3461 39

SVL, snout-vent length.
doi:10.1371/journal.pone.0073810.t001
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effects. The frogs were given time to recover between trials. In a

few cases, where the performance of the frog deteriorated

significantly, we stopped the experiment and replaced the frog

with a fresh individual.

Measurement of contact area
In order to see which body parts of the frogs were in contact

with the substrate, we used a special illumination technique on a

transparent glass surface (dimensions: 200|300|4 mm). The

illumination technique was adapted from Betts [14] and consisted

of arrays of LEDs (Tru Opto, ultra-bright 5 mm, narrow angle)

attached to each of the four edges of the glass plate so that the light

entered the glass plate and was totally internally reflected within it

(refractive index nair~1,nglass~1:5). Normally, very little light

escaped from the sheet. However, as soon as an object with a

similar or higher refractive index to the glass (like the watery frogs’

mucus, nwater&1:3, or the toe pad tissue ntissue&1:7) came into

contact with the glass, light escaped at this spot and resulted in a

bright spot. Like the platform described above, the glass platform

was rotated (in this case manually) from a horizontal to an upside

down orientation at a velocity of 3.8+1.1u s21. A digital video

camera (Basler A602f, Ahrensburg, Germany) was mounted onto

the platform and rotated with it in order to film the ventral body

area of the frogs in contact with the glass surface and the

protractor that monitored the angle of tilt of the platform. The

video recordings (25 frames21) were captured using Streampix

(Version 3, Norpix Corp.) and analysed frame by frame using

custom-built Matlab routines [15]. The routines converted the

frames into binary images based on a threshold value. The

resulting images comprised white areas (where the contact

occurred) against a black background.

Force measurements on individual toe pads, belly and
thigh skin
For both species of frog, adhesive and friction forces for various

adhesive body parts were measured using a custom-built force

transducer. These body parts comprised belly and thigh skin (used

by the frogs to aid their attachment on steep and overhanging

surfaces) in addition to the adhesive toe pads. They were tested

under both dry and wet conditions on surfaces of different

roughness (smooth, 0.3 mm and 16 mm average particle size of

polishing discs; Ultratec, USA). Pads were tested under ‘wet’

conditions by pipetting 10 mL water onto the body part prior to

the measurements, while surface roughness was varied using cut

out pieces of the polishing discs.

The experimental set-up was similar to that used in previous

single toe pad studies on tree frogs [16]. Held in position within a

plastic Petri dish using foam cushioning, frogs were positioned

upside-down underneath a two-dimensional force transducer by

means of a micromanipulator to allow specific body parts to come

into contact with it. For toe pad measurements, the actual force

plate consisted of a 1 thick piece of flat polyethylene (15|15 mm)

that provided a smooth surface for toe pad contact (self-adhesive

pieces of polishing disc as described above were attached to the

force plate for the measurements on rough surfaces). For belly or

thigh skin measurements, the force plate was a circular, curved

glass surface (18 mm diameter, radius of curvature 9 mm), a

curved surface being more suited to measurements on extended

skin areas. The area of contact during such force measurements

was measured using the same technique as for whole frogs

described above, an array of LEDs surrounding the force plate in

such a way that totally internally reflected light only escaped where

contact was made, the bright spot representing the contact area

being filmed with a digital video camera (Basler A602f, 10–30

frames21).

Figure 2. Diagram of the key elements of the tilting platform. Not drawn to scale.
doi:10.1371/journal.pone.0073810.g002
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Forces were measured in two dimensions, lateral (which

measured friction) and normal (which measured adhesion). The

applied vertical or horizontal movements were made manually by

turning the knob of a micromanipulator and were recorded by

means of a potentiometer. These inevitably led to some variation

between different movements, means and standard deviations

being as follows: amplitude 2.9+0.7 mm, velocity 1.4+1.1u s21.

A custom-built LabVIEW interface (National Instruments, Austin,

Texas) was used to display and save force recordings, which were

retrieved from the transducer via a portable data acquisition

device (NI 9237, National Instruments, Austin, Texas). The video

recordings and the force data acquisition were synchronised using

a stop trigger pulse from a manual switch.

Scanning Electron Microscopy
For a closer inspection of the adhesive toe pads and other areas

of ventral skin used by the frogs to aid their adhesion on steep and

overhanging surfaces (belly and thigh skin), a few individual frogs

were sacrificed using a lethal dose of Benzocaine. Fore- and hind

limbs were severed at the base of the wrist or ankle, respectively,

while belly and thigh skin samples were obtained by carefully

cutting out rectangular pieces of skin using a scalpel. All specimens

were fixed in a solution of 2.5% gluteraldehyde buffered at pH 7.4

for 24 h. After washing in distilled water, specimens were

dehydrated in an alcohol series and critical point dried. Samples

were mounted and gold-coated before viewing with a JSM-7500F

scanning electron microscope (JEOL UK Ltd.).

Statistics
All statistical tests were carried out using the statistical toolbox

in Matlab (v2012a, Mathworks Corp., USA). Data for contact area

was extracted at angles of 45u intervals from 0u to 180u, which
allowed us to draw statistical comparisons between these

categories.

For comparisons between two samples we used the Mann-

Whitney U-test. For each test we provided the sample size (N), the

sum of the ranks (R), the computed z-statistics (only for large

sample sizes) and the error probability (p). Test results are either

highlighted in the text or summarised in tables listed in

Supplementary Materials S1. For the plots, we have indicated a

significant difference between two samples using the ‘*’-symbol if

pv0:05, ‘**’ if pv0:01 and ‘***’if pv0:001. If a test just failed to

reach the significance level, we stated the computed p-value, e. g.

p~0:056. Multiple tests on the same set of data were adjusted

using the Bonferroni correction.

Where we have plotted data using box plots, the median value is

represented by a line, and the 25th and 75th percentiles by the box.

The plotted ‘whiskers’extend to the adjacent values, which are the

most extreme data values that are not outliers. Points are drawn as

outliers if they are larger than q3zw(q3{q1) or smaller than

q1{w(q3{q1), where w~1:5 and q1 and q3 are the 25
th and 75th

percentiles, respectively. Where we have averaged data, the mean

is given together with the standard deviation, if not stated

otherwise.

Results

Effect of surface roughness and wetness
Frogs were challenged to cling onto smooth, fine rough (30 mm

diameter particles) and coarse rough (1125 mm diameter particles)

surfaces attached to a rotating platform. Each surface was used

under three flow regimes: ‘dry’ ‘low flow rate’and ‘high flow rate’

These data allowed us to examine both the effects of changing flow

rate on each surface and vice versa. Figure 3 shows the slip and fall

angles of the two frog species on the platform and a comparison

between them. Results of the statistical tests are listed in Tables S1

to S6 in Supplementary Materials S1.

We will begin by examining the performance of the tree frog

(Figure 3, white boxes), which forms the reference for judging the

performance of the torrent frog. Slip angles are a measure of the

frog’s friction force, though are limited to the mass of the frog,

since maximum values are given by an absence of slipping at 90u.
On the dry and wetted surfaces (low flow rates), very few of the

tree frogs (R. pardalis) slipped at angles below 90u, regardless of

Figure 3. Attachment performance of the two frog species under varying conditions. Comparison of (A) slip angles and (B) fall angles
between the tree frog (Rhacophorus pardalis) and the torrent frog (Staurois guttatus) on different wet (‘low’& ‘high’flow rate) and rough surfaces. The
details of the statistical tests between the two frog species are listed in Tables S4 and S6 in Supplementary Materials. Intraspecific differences of frog
performance on both different surfaces and under different flow regimes are listed in Tables S1 to S3 and S5 in Supplementary Materials S1.
doi:10.1371/journal.pone.0073810.g003
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surface roughness. Only on the flooded surfaces (high flow rates)

did performance decrease dramatically (pv0:001, Test No. 3 in

Table S1 in Supplementary Materials S1). Lowest slip angles

occurred on the smooth surface, but recovered slightly with

increased surface roughness (Figure 3A).

Fall angles, on the other hand, are a measure of the frog’s

adhesive force, the force normal to the surface. They too are

limited to the mass of the frog, since maximum values are given by

the frog adhering in an upside-down position (180u). Although, as
Figure 3B shows, they broadly reflected the pattern of the slip

angles, there were differences. For instance, the fall angles

achieved by the tree frogs on a smooth dry surface (median value

161u) decreased both with increasing roughness and with increased

rate of flow (pv0:01, Tests Nos. 2, 3, 10 and 11 in Table S2 in

Supplementary Materials S1). For the two higher roughnesses,

however, wetting the surface increased adhesion (i. e. resulted in a

higher fall angle) (pv0:001, Tests Nos. 4 & 7 in Table S2 in

Supplementary Materials S1). Finally, under the flooded condi-

tion, performance dropped to low levels on both of the rough

surfaces (pv0:001, Tests Nos. 6 & 9 in Table S2 in Supplemen-

tary Materials S1).

Identical procedures to those just described for the tree frog

were carried out on the torrent frog, S. guttatus (Figure 3, grey

boxes). On all three surfaces under both dry and low flow rate

conditions, the frictional performance of the torrent frogs was

excellent, very few individuals slipping before 90u. Indeed, as far as
slip angles are concerned, the performance of the two species

could not be separated statistically on any surface under either dry

or low flow rate conditions (Figure 3A). At a high flow rate,

however, the performance of the torrent frogs was much worse,

particularly on a smooth surface, but, with increasing surface

roughness, it improved and went back to maximum in some cases

on the coarse rough surface (pv0:01, Tests Nos. 16–19 in

Table S3 in Supplementary Materials S1). When these data are

compared to the equivalent data for tree frogs, it can be seen that

the torrent frogs perform better on all three surfaces under the fast

flow rate condition (pv0:01, Tests Nos. 3, 6 and 9 in Table S4 in

Supplementary Materials S1; Figure 3).

Fall angles for S. guttatus, which were high on a smooth dry

surface, significantly decreased when surface roughness was

increased (Tests Nos. 10–12 in Table S5 in Supplementary

Materials S1). However, when there was some water present

(low flow rate), performance recovered, median values on all three

surfaces being 180u. For the high flow rate conditions, perfor-

mance was variable on the smooth and 30 mm surfaces, but

stabilised at a median of 170u on the roughest surface. Indeed, it is

at this high flow rate on the rough surfaces that the torrent frogs

excelled in comparison to the tree frogs, the difference between the

two species being most dramatic on the roughest surface

(pv0:001, Tests Nos. 6 & 9 in Table S6 in Supplementary

Materials S1). The remarkable ability of the torrent frog, S.

guttatus, to remain attached to these rough surfaces when water is

pouring over their bodies can best be appreciated by watching

Video S1.

To summarise, there was no significant difference in perfor-

mance between the species on all the dry surfaces. However,

differences appeared on some of the wet surfaces (low flow rate)

and were most dramatic under the high flow rates on the two

rougher surfaces. The results clearly indicate that the torrent frog

(S. guttatus), in contrast to the tree frog (R. pardalis), is extremely well

adapted to adhering to rough surfaces under flooded conditions.

Contact area on a dry, smooth surface
In order to quantify contact area and to see which parts of the

frog’s body would come into contact over the course of the

rotation of the platform, we filmed the frogs from the ventral side

through a transparent (dry and smooth) illuminated glass surface

so that areas of contact were highlighted (see upper images of frog

contact areas in Figure 4). Such videos also provided information

on the behavioural strategies used by the frogs as they attempted to

hang on to the platform at increasing angles of tilt.

In the tree frog, R. pardalis, there was little change until the angle

of the platform reached ca. 70u. From this point on, legs were

spread out sideways, the spread also having a fore-aft component.

This was forwards in the case of the fore limbs and backwards in

the case of the hind limbs. Typically, as in Video S2 or Figure S1,

this occurred in two ‘steps’ an initial small spread at around 70u
followed by a second larger spread at around 135u, similar to the

behaviour observed in a different tree frog species [17].

Additionally, if the frog were facing downhill initially, the frog

would rotate to face uphill at an angle between 90u and 135u.
Finally, in 48% of the trials (20/42), the frog fell from the platform

between 135u and the fully inverted position. In terms of contact

area, thigh and, to a lesser extent, belly skin (plus other areas of

ventral skin) were used as well as the toe pads at low angles of tilt

(Figure 4A). Then, at an angle in excess of 135u (or at time of body

reorientation for frogs that were initially facing downhill), body

contact would often be lost so that the frog was hanging on by its

toe pads alone (Figure 4A, top right image). In such cases, the toe

pads on both, the fore- and hind limbs would continuously slide

proximally and would be replaced in an extended position at

intervals. In addition, the pads of the fore limbs would also slide

towards the centre of each hand. Such behaviour gives the

observer the impression that the frogs are ‘dancing’on the inverted

platform (see Video S2). Only in 24% of trials (10/42) were the

tree frogs able to maintain body (as opposed to toe pad) contact

using their thigh and belly skin up to and including the upside-

down orientation.

The torrent frogs (S. guttatus) used a similar amount of total

ventral body area when they were resting against a horizontal

surface (0 rotation of the platform). Pad contact area was,

however, much smaller (approximately 25% of that in the larger

tree frogs). As in the tree frogs, there was little change in behaviour

until the platform rotation passed 70u, at which point total contact

area began to increase, mainly through use of belly skin. At angles

between 90u and 135u, the limbs were spread out sideways as in

the tree frogs (though to a lesser degree) and frogs initially facing

downhill would reorientate to face head-up (Video S3 or

Figure S1). We tested whether this turning behaviour influenced

the amount of contact area before and after the frog’s re-

orientation. In contrast to tree frogs, nearly all individual torrent

frogs managed to reattach their belly skin after they turned around

and increased their contact area even further (Mann-Whitney U-

test: N~44,z~{3:3408,R~2908,pv0:001). This ability might

be crucial when climbing areas of fast flowing water, where quick

re-attachment is a vital necessity.

To summarise, S. guttatus increased contact area with the

substrate as they were rotated from 0u to 180u, mainly by the use

of the belly skin, while the tree frogs exhibited a decline in contact

area, so that the majority were hanging on by their toe pads alone

(Figure 4A, B). Note, however, that this increasing use of the body

did not give torrent frogs any advantage on this smooth dry

surface, as only 33% (11/33) maintained their attachment until

180u, compared to 52% of the tree frogs. Total pad area was also

clearly smaller in the torrent frogs, even when the difference in

body size is taken into account, but they did show a greater ability

Sticking under Wet Conditions
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to recover body contact area after a behavioural manoeuvre.

Finally, limb spreading was a common behavioural feature

exhibited by both frog species when rotated. Thus, it illustrates

an important strategy for enhancing attachment on overhanging

surfaces [17].

Force measurements on individual pads, belly and thigh
skin
As described above, torrent frogs use parts of their ventral body

surface in order to stay attached to overhanging surfaces. In

contrast, tree frogs often relied solely on their toe pads. It was

therefore desirable to measure the adhesive and friction forces of

the body parts used by the frogs to stay attached. We used a 2D-

force-transducer with a transparent surface attached to the end as

a probe. This allowed us to record contact area using the LED

system described above, while simultaneously measuring adhesion

and friction forces. We tested the different body parts under two

conditions: natural condition (referred to here as ‘dry’, and with

added water (referred to here as ‘wet’.

Figure 5 shows a comparison of the shear and adhesive stress of

the different body parts under varying conditions. Under dry

conditions, the toe pad forces of both species greatly exceeded the

forces per unit area previously recorded in other frogs. For

instance, median adhesive forces of 1.5 mN mm22 for the tree

frogs and 3.0 mN mm22 for the torrent frogs can be compared to

0.7–1.0 mN mm22 for the adhesive forces of several species of

hylid tree frogs [7]. Torrent frogs adhered significantly better than

the tree frogs on the dry surface of the force plate in respect of both

adhesion (normal forces) and friction (shear forces) (see Test No. 1

in Table S7 in Supplementary Materials S1 and 10, respectively).

Under wet conditions, the force levels of the pads in both species

dropped to a tenth of their adhesive capability under dry

conditions (see Test No. 2 in Tables S7 and S8 in Supplementary

Materials S1, respectively). This was not entirely unexpected, since

similar results have been obtained for the tree frog Litoria caerulea

by [18]), and are thought to reflect a lowering of the capillary

forces resulting from an increase in the thickness of the fluid layer

under the pad.

Under dry conditions, both belly and thigh skin made a

significant contribution to adhesion and friction in both species.

Friction forces from these body areas were particularly high in the

torrent frogs and appeared to be due in part to the wrinkling of the

skin against the force plate, the skin being rather loosely attached

to underlying tissues at these points. As with the toe pads, forces

were much lower under wet conditions for both body areas in both

species (see Tests Nos. 3–6 of Table S7 in Supplementary

Materials S1).

In summary, the toe pads of both species produced high

adhesive and frictional forces in comparison to other frogs

previously studied, with significant contributions also coming from

ventral parts of the body skin (thighs and belly). However, under

Figure 4. Contact areas of the two frog species at 5 tilting positions. Using a special illumination technique (see Materials and Methods), the
contact area of ventral body parts (toe pads, belly, thighs and uncategorised areas) of (A) the tree frog (R. pardalis) and (B) the torrent frog (S.
guttatus) was measured at 0u, 45u, 90u, 135u and 180u. The photos at the top are images of the frogs at horizontal (0u) and inverted (180u) tilting
positions. The plots represent medians of 42 trials from 6 frogs (tree frogs) and 33 trials from 6 frogs (torrent frogs), the percentages at the top
representing the proportion of frogs still attached at each tilt angle.).
doi:10.1371/journal.pone.0073810.g004
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wet conditions, values were significantly reduced. Additionally,

preliminary data using rough surfaces (not shown) also produced

low levels of adhesion, particularly under wet conditions.

Scanning Electron Microscopy
In the present study, we found that unrestrained torrent frogs

adhered better than tree frogs to rough surfaces under wet

conditions. Are there any morphological adaptations which could

help to explain their better performance? Most tree frogs have

hexagonal cells that are uniformly shaped (width-to-length ratio of

the hexagons close to 1). However, previous work on torrent frogs

[9] showed that the toe pad epithelium of ranid torrent frogs from

a number of genera consisted of elongated cells (i. e. cells that

deviate from a regular hexagonal shape), resulting in the channels

between them providing shorter and straighter pathways from the

centre of the toe pad to its edge. This has been presumed to be an

adaptation for better drainage of water from under the toe pads in

their flooded environment. Here we show images of the toe pads of

the tree frog and torrent frog under study (Figure 6A, B), together

with an image of another torrent frog species, Odorrana hosii, also

found in the Brunei rainforest in the region of fast flowing rivers

(Figure 6C). All three images are at the same magnification and

are oriented so that the nearest edge of the pad is approximately at

the top of the page. O. hosii shows the elongated shape typical of

torrent frogs (width-to-length ratio smaller than 1 in the radial

direction). Although usually surrounded by six other cells, the cells

are not hexagons, as they mainly have curved rather than straight

edges. Their ends are often pointed, especially the ends nearest the

edges of the pad (see arrows in Figure 6C). As you can see from the

line drawn on the image, the channels directing water towards the

edge of the pad are almost straight. In our tree frog species, the

pattern of epithelial cells is a lot more variable than the patterns of

regular hexagons illustrated in [13] for hylid tree frogs. Most of the

cells do, however, have six neighbours and straight edges, and so

are irregular hexagons. Channel lengths in the direction of the

edge of the pad are thus not shorter than across the pad (compare

lengths of white solid and dashed lines). In our torrent frog species

(S. guttatus), cell shape seems to vary with the region of the pad. In

central regions, there is a tendency towards a pattern of roughly

regular hexagons, but peripherally they are more elongated, the

overall pattern being intermediate between those of the tree frog

and O. hosii (Figure 6B). In such regions, channel lengths in the

direction of the pad edge are relatively short, certainly shorter than

across the pad (see lines on Figure 6B). We have also examined the

structures of thigh and belly skin in both our species (Figure 7).

Like the toe pad epithelium, the epithelium of the ventral surface

of the tree frog (belly and ventral thigh skin) was subdivided by

deep channels at intervals of about 200 mm, giving a quilted

appearance, the cells being irregularly hexagonal, ca. 20 mm in

diameter. In contrast, the belly and thigh skin of the torrent frog

was relatively smooth, again consisting of approximately hexag-

onal cells of ca. 20 mm diameter. It is however unclear how these

structures aid adhesion or friction.

Discussion

The first part of this paper describes behavioural experiments

which show that, while both representative tree (R. pardalis) and

torrent (S. guttatus) frogs adhere equally well to smooth, dry

surfaces, the torrent frog species excels on rough surfaces covered

by fast-flowing water, i. e. in conditions that replicate their natural

habitat of wet rock in the immediate vicinity of waterfalls [19].

The second part of this paper seeks an explanation for the torrent

frog’s remarkable ability by visualizing contact area at different

angles of tilt for both species, and by measuring adhesive and shear

forces from single toe pads and portions of ventral skin used by the

frogs to adhere to steep and overhanging surfaces. Additionally, we

used scanning electron microscopy to look for possible structural

adaptations for adhesion and friction.

Effect of surface wetness and roughness
Both frog species were affected in their attachment abilities by

surface roughness and the amount of water on the surfaces. When

no water was involved, frogs performed best on the smooth

surface. We speculate that, under these conditions, the contact

area can be maximised by the secreted mucus of the frogs alone.

The attachment ability of both frog species decreased on dry

surfaces when roughness increased. We believe that this could be

Figure 5. Friction and Adhesion forces per area of different body parts. Statistical differences are denoted as follows: ‘*’ pv0:05, ‘**’:
pv0:01, ‘n.s.’: not significant.
doi:10.1371/journal.pone.0073810.g005
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due to insufficient mucus production to fill all the asperities of a

rough surface, so that real contact area and therefore adhesive

forces decreased. This is supported by the fact that additional

water (under the low flow rate regime) helped to increase

performance significantly. However, at the highest flow rates,

friction forces dramatically decreased, presumably because of the

lubricating effect of the water flow, with follow-on effects on

adhesion. It was here, on the 30 mm and 1125 mm surfaces, that

the torrent frog outperformed the tree frog. Indeed, the difference

on the roughest surface was dramatic. Almost all of the tree frogs

were swept off the platform before the angle reached 90u, while the
torrent frogs stayed attached until the platform was almost upside-

down. Thus, on these rough, wet surfaces, torrent frogs clearly

have better attachment (pv0:001, Test No. 9 in Table S6 in

Supplementary Materials S1). The few tree frogs that remained

attached on such surfaces beyond 90u (7 out of 50) did not perform

quite as well as the torrent frogs (median fall angle of 145u for the
tree frogs compared to 172u for the torrent frogs), but this

Figure 6. Scanning electron micrographs of toe pad epithelia in different frog species. (A) the tree frog R. pardalis, (B) the torrent frog S.
guttatus near the edge of pad, and (C) the torrent frog, Odorrana hosii. White solid lines illustrate shortest routes to the edge of pad. White dashed
lines are routes across the pad. Arrows show examples of the pointed ends of the epithelial cells of O. hosii. Scale bars: 20 mm.
doi:10.1371/journal.pone.0073810.g006

Figure 7. Scanning electron micrographs of ventral body skin. Belly (A,B) and ventral thigh epithelium (C,D) of the tree frog (R. pardalis, left
column) and the torrent frog (S. guttatus, right column). Insets show structures at higher magnification.
doi:10.1371/journal.pone.0073810.g007
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difference is not statistically significant (Mann Whitney U-test,

p~0:074) probably because of the small sample size. So, whether

the torrent frogs have better adhesion as well as having better

friction on these rough, wet surfaces remains unclear.

Adhesive strategies
As our results indicate, the two species exhibit rather different

behaviours when adhering to steep and overhanging smooth, dry

surfaces. Although both species use part of their ventral body

surface to adhere at low angles of tilt, this is no longer true at

angles between 135u and 180u. In the tree frog, the body tends to

detach, so that, in the majority of trials, the frogs are hanging on

by their pads alone. The limbs are spread out sideways, but slide

towards the body before being replaced by rapid limb extensions.

The frogs appear to ‘ance’on the inverted glass surface (see

Video S2). As analysed in another frog species, this limb spreading

behaviour seems to be a mechanism for both increasing the

available adhesive force and reducing the chance of unintended

toe pad detachment, since spreading the pads keeps the pad/

surface angle low. At low pad/surface angles, adhesion is

proportional to the area of the surface, while at high angles it is

proportional to the length of the peel zone [20] in accordance with

peeling theory [17]. Additionally, toe pad detachment occurs

readily at high pad/surface angles [3]. In contrast, the torrent

frogs, although they also spread their limbs (but to a lesser extent

than the tree frogs), tended to increase the contribution of thigh

and belly skin at high angles of tilt. These different strategies did

not result in significantly different adhesion capabilities on these

Table 2. Combining the contact area with the force per area measurements to calculate maximum attainable forces under
different conditions.

R. pardalis S. guttatus

Friction (dry)

pads belly thigh pads belly thigh

Area at 90u (mm2) 65.1 72.4 108.1 20.1 38.8 119.1

Force per area (mN mm2) 1.5 1.0 0.5 3.0 7.3 6.9

Force (Area6Force
per area)

98.3 74.5 53.0 60.9 284.1 820.3

Total force (mN) 225.8 1165

Force required (at
90u)

45.1 24.5

Friction (wet)

pads belly thigh pads belly thigh

Area at 90u (mm2) 65.1 72.4 108.1 20.1 38.8 119.1

Force per area (mN mm2) 0.2 0.3 0.3 0.1 0.1 0.3

Force (Area6Force
per area)

11.1 23.9 28.1 2.2 3.9 35.7

Total force (mN) 63.1 41.8

Force required (at
90u)

45.1 24.5

Adhesion (dry)

pads belly thigh pads belly thigh

Area at 180u (mm2) 77.2 0 0 22.4 136.2 155.1

Force per area (mN mm2) 1.3 1.0 0.5 2.4 1.5 0.7

Force (Area6Force
per area)

103.5 0 0 54.5 208.3 110.1

Total force (mN) 103.5 373.0

Force required (at
180u)

45.1 24.5

Adhesion (wet)

pads belly thigh pads belly thigh

Area at 180u (mm2) 77.2 0 0 22.4 136.2 155.1

Force per area (mN mm2) 0.2 0.7 0.3 0.1 0.3 0.3

Force (Area6Force
per area)

17.8 0 0 2.9 39.5 46.5

Total force (mN) 17.8 88.9

Force required (at
180u)

45.1 24.5

Values are medians, as mean values were sometimes distorted by the occasional rogue value. All calculations were performed before reduction to a single decimal
place.
doi:10.1371/journal.pone.0073810.t002
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smooth, dry surfaces, but could be significant on wet, rough ones.

This remains an area of uncertainty, since our experimental

method for measuring contact area could not be applied to such

surfaces.

Correlating force and contact area
The data on contact area and force per unit area can be

combined and compared to the adhesive and friction forces

needed to support the frogs at different angles of tilt. Table 2

shows such an analysis. For friction forces, we measured contact

area for each species at 9u; for adhesion forces we measured it at

180u. We have used median values rather than means, so that the

results are not affected by the occasional rogue value (our force

measurements occasionally produced very high values, which we

had no reason to exclude). Total force (area | force per unit area)

for each surface (toe pads, ventral thigh skin and belly skin) were

summed to give the maximum available adhesive and friction

force available under both dry and wet conditions. In all but one

case, the total force was more than enough to support the frog.

This provides a degree of validation for our force measurements.

The one exception (tree frog adhesion under wet conditions) is

entirely due to the use of median values rather than means, as the

use of mean values gave a total force of 88.0 mN, more than

enough to support the frog. These results suggest that the frogs

have significant safety factors, in some cases far higher than would

have been expected. Interestingly, even higher values can be

calculated for gecko adhesion by multiplying the maximum

adhesive force of a single seta with the number of such setae on

a gecko’s subdigital pads [21,22]. In both cases, such values are

probably overestimates, since the frogs often struggle to adhere at

angles near 180u, and there is no evidence that a tokay gecko can

actually support the weight of two humans as the calculations

suggest! Of particular relevance to this study is first that the safety

factors of torrent frogs are higher than those of the tree frogs for

the equivalent experimental situation and second that the toe pads

have a relatively minor role compared to ventral body skin in the

adhesion/friction of torrent frogs. On wet rock, the torrent frogs

progress by a series of jumps, so body skin can play a role in

attachment in a way that would be impossible in a walking animal.

Scanning Electron Microscopy
Some torrent frogs, including members of the genus Amolops,

have been shown to possess elongated cells, which create more

direct channels between the centre of the pad and the outside [9].

Odorrana hosii, whose toe pad epithelium is illustrated in Figure 6C,

is one such species, while S. guttatus only has elongated epithelial

cells around the margins of its pads (Figure 6B). Recent studies on

mimics of tree frog toe pads [23,24] and insect-inspired artificial

adhesive surfaces [25] have highlighted the importance of

patterned surfaces for good adhesion and friction in the presence

of a fluid. If drainage of excess fluid is facilitated by the channel

system, repulsive hydrodynamic forces that delay close contact

between pad and substrate will be minimized. However, such

channels will also minimize hydrodynamic drag, which could be

an important component of adhesion on flooded surfaces when

there is no meniscus (air-water interface) around the edge of each

toe pad to generate capillary forces.

Effect of body mass
The simplest hypothesis that might explain the differences in

adhesive capabilities of tree- and torrent frogs is that it is entirely

explicable in terms of body mass. We tried to find tree- and torrent

frogs of equivalent size to compare, but were limited to relatively

abundant species, and the species chosen were the closest match

that was possible. However, the tree frogs were heavier than the

torrent frogs (Table 1). It is not unreasonable to believe that this

might make a difference. After all, adhesion in tree frogs scales

with area [7,26], so that larger frogs are potentially at a

disadvantage. Large frog species do not normally have dispropor-

tionately larger feet [7,13], but they often have slightly more

efficient toe pads (i. e. their toe pads are capable of producing

higher adhesive stresses [7,13]). To test this hypothesis, we

investigated the performance of female torrent frogs on the

rotation platform. Such frogs (mean mass 8.1 g) were significantly

heavier than the male tree frogs and, of course, much heavier than

males of their own species. Thus, if mass were the only factor, they

would be expected to perform worse than both tree frogs and male

torrent frogs. Our sample size (N~16) was small as these frogs

were only caught occasionally. However, as Figure 8 shows, their

performance on the rotating platform on the roughest surface at

the highest flow rate was significantly better than that of the much

lighter male tree frogs (pv0:001, Mann Whitney U-test), although

worse than that of the male torrent frogs (pv0:001, Mann-

Whitney U-test). We conclude that, although body mass is a factor,

it is not the main explanation for the torrent frogs’ superior

performance on rough wet surfaces.

Conclusions
Our experiments clearly demonstrate that, under controlled

laboratory conditions, the torrent frog, Staurois guttatus, adheres

extremely well to rough surfaces covered in fast-flowing water,

staying attached until the rotation platform is close to the upside-

down position. Although the tree frog, Rhacophorus pardalis, also

adheres well under most experimental conditions, its performance

did not match the torrent frog on rough flooded surfaces. In an

attempt to understand the biomechanical basis of this difference in

performance, we have measured contact area, adhesive and shear

forces in both frog species. These experiments illustrate the high

Figure 8. Attachment performance of male tree frogs (R.
pardalis) and male and female torrent frogs (S. guttatus) on
the 1125 mm rough surface at a high flow rate. Male data are
from Figure 3. Angles of fall for female torrent frogs are significantly
higher than those of male tree frogs (Mann-Whitney U-test,
N~14,pv0:001,z~{4:19,R~255:5), but lower than those of male
torrent frogs (Mann Whitney U-test, N~50,pv0:001,z~4:68,R~849).
doi:10.1371/journal.pone.0073810.g008
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forces that the toe pads of both species can generate, and

demonstrate different strategies for staying attached to a rotating

platform. Combining the data shows that, even under wet

conditions where adhesive and friction forces were considerably

reduced, there was more than enough force available to support

the animals. Disappointingly, however, these force and contact

area measurements could not be applied to the experimental

situation where the torrent frogs excelled. Nevertheless, a number

of important conclusions are possible that explain why torrent

frogs stick so well under these extreme conditions.

1. Being small helps: Body mass was only a small factor in this

particular comparison, but the much heavier torrent frog

Odorrana hosii (mean body mass 12.0 g) did not perform well on

our tilting apparatus (data not shown).

2. Use of ventral body skin as well as toe pads: Observations of

the torrent frogs on the rough, wet surface indicate that they

use the same strategy for adhesion as they show on the dry

smooth surface. Thus, as Table 2 shows, toe pads play a

relatively minor role in torrent frog adhesion at high angles of

tilt. Although we failed to detect areas of thigh or belly skin that

showed adaptations for adhesion (e. g. nanopillars or cells

surrounded by deep channels), the large area involved means

that high adhesive or shear stresses are not required. Structural

adaptations, like straightened channels, which might aid rapid

drainage of excess fluid from under the toe pads, characteristic

of many torrent frogs [9], were poorly developed in S. guttatus.

Given the relatively minor role of the toe pads in comparison to

thigh and belly skin in our experiments, it is unlikely that they

are important here.

3. High friction forces: The behavioural data demonstrated that

the torrent frogs generated superior friction compared to the

tree frogs on rough, wet surfaces. Indeed, their ability not to be

swept off by the high flow rate showed that friction was the

major factor in their superior performance.

4. Behavioural strategies: Although the few tree frogs that

performed well on the rough, wet surface appeared to be

using a similar strategy to the torrent frogs (i. e. using plenty of

ventral body skin to aid adhesion), it did appear that not all tree

frogs used optimal strategies to remain attached to a smooth

surface being rotated from the horizontal to the upside-down

position. While adhesion to wet, rough substrates is normal for

a torrent frog, the same is not true for tree frogs. Thus,

suboptimal behavioural strategies may be expected on such

surfaces.

In conclusion, we do find anatomical evidence to support the

idea that the toe pads of our torrent frog species have some

specializations to promote better drainage of fluid from under its

pads, but such adaptations seem to be restricted to the edge of the

pad. Such features may lend inspiration to man-made adhesive

pads which would work under similar (wet) conditions. In contrast,

however, neither belly nor thigh skin of either species seems to be

specialized for adhesion or friction, but as these body parts have a

much greater surface area than the toe pads, they may still play an

important role in adhesion and friction. We recognise, as Garland

and Adolph [27] have argued, that two species comparisons are

limited in their ability to allow broader conclusions about

evolutionary adaptations to different habitats. However, such a

two species comparison was necessary in order to test whether the

torrent frog species, Staurois guttatus has abilities not shared by a

tree frog of comparable size.

Supporting Information

Figure S1 Reorientation behaviour of the frogs. A & B)

Individual frames of a tree- and a torrent frog, respectively, in

contact with a transparent surface at two tilt angles (45u and 135u).
C & D) Plots of total contact area against rotation angle of the

platform. When frogs initially faced downhill, they usually re-

orientated themselves during the course of the platform rotation to

face uphill again (arrows). While turning around, tree frogs often

lost the contact of their belly with the surface; in contrast, torrent

frogs managed to increase the contact area of their ventral surface.

(TIF)

Supplementary Materials S1 Supplementary Tables S1
to S8. Table S1, Mann-Whitney U-tests for the compar-
isons of the slip angles for R. pardalis under different
testing regimes. ‘smooth’, ’30 mm’ and ‘1125 mm’ refers to the

substrate roughness; ‘dry’, ‘low flow rate’ and ‘high flow rate’ refer

to the amount of water on the surface. Table S2, Mann-
Whitney U-tests for the comparisons of the fall angles for
R. pardalis under different testing regimes. ‘smooth’,

’30 mm’ and ‘1125 mm’ refers to the substrate roughness; ‘dry’,

‘low flow rate’ and ‘high flow rate’ refer to the amount of water on

the surface. Table S3, Mann-Whitney U-tests for the
comparisons of the slip angles for S. guttatus under
different testing regimes. ‘smooth’, ’30 mm’ and ‘1125 mm’

refers to the substrate roughness; ‘dry’, ‘low flow rate’ and ‘high

flow rate’ refer to the amount of water on the surface. When the

sample size was too small no z-value could be computed; when

both samples contained identical values, no p-value could be

obtained (‘NA’: not applicable). Table S4, Mann-Whitney U-
tests for the comparisons of the slip angles between the
two frog species under different testing regimes.
‘smooth’, ’30 mm’ and ‘1125 mm’ refers to the substrate roughness;

‘dry’, ‘low flow rate’ and ‘high flow rate’ refer to the amount of

water on the surface.When the sample size was too small no z-

value could be computed; when both samples contained identical

values, no p-value could be obtained (‘NA’: not applicable). Table
S5, Mann-Whitney U-tests for the comparisons of the fall
angles for S. guttatus under different testing regimes.
‘smooth’, ’30 mm’ and ‘1125 mm’ refers to the substrate roughness;

‘dry’, ‘low flow rate’ and ‘high flow rate’ refer to the amount of

water on the surface. Table S6, Mann-Whitney U-tests for
the comparisons of the fall angles between the two frog
species under different testing regimes. ‘smooth’, ’30 mm’

and ‘1125 mm’ refers to the substrate roughness; ‘dry’, ‘low flow

rate’ and ‘high flow rate’ refer to the amount of water on the

surface. Table S7, Mann-Whitney U-tests for the compar-
ison of friction force per contact area for different body
parts under different conditions between the two frog
species. ‘smooth’, ‘0.3 mm’ and ’16 mm’ refers to the substrate

roughness; ‘dry’ and ‘wet’ refer to the absence or presence of water

on the surface, respectively. When the sample size was too small

no z-value could be computed; when both samples contained

identical values, no p-value could be obtained (‘NA’: not

applicable). Table S8, Mann-Whitney U-tests for the
comparison of adhesive force per contact area for
different body parts under different conditions between
the two frog species. ‘smooth’, ‘0.3 mm’ and ’16 mm’ refers to

the substrate roughness; ‘dry’ and ‘wet’ refer to the absence or

presence of water on the surface, respectively. When the sample

size was too small no z-value could be computed; when both

samples contained identical values, no p-value could be obtained

(‘NA’: not applicable).

(PDF)
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Video S1 Torrent frog (S. guttatus) adhering to the
rotating platform, on a rough surface (1125 mm parti-
cles) under high flow rate (ca. 4000 mL min21) condi-
tions. Although the frog slides early on, it does not fall from the

platform until the fully upside-down (180u) position is reached.

(MOV)

Video S2 Use of the LED-illuminated platform enabled
the visualisation and measurement of contact area
during adhesion to a rotating glass platform. Here, at

near 180 degrees (fully upside-down position), the tree frog (R.

pardalis) shows dynamic stability, using its toe pads alone. Under

the influence of gravity, the limbs slide towards the body and are

re-extended at intervals, while the fingers of the fore-limbs slide

centripetally towards the hand, again being replaced in an

extended position at intervals. Such ‘dancing’ behaviour allows

the frog to avoid falling for it keeps the angle between pad and

surface as small as possible, avoiding detachment by peeling (see

[17] for a full explanation).

(MPEG)

Video S3 Comparison of typical turning behaviour of
the tree frog (R. pardalis) (upper video and animated
graph) and the torrent frog (S. guttatus) (lower video and
animated graph) on the LED-illuminated platform. Such
turning takes place during rotation whenever the frogs find

themselves facing downhill. Typically, body turning in the tree

frog results in loss of body contact, so that the frog is subsequently

attaching by its toe pads alone. However, torrent frogs usually turn

without permanently losing body contact. Indeed, body contact

area increases with the angle of tilt. The graphs show total contact

area against platform rotation angle (a measure of time), the

moving vertical line indicating the position in the video.

(MPEG)
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