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Introduction

The social sciences have entered the age of data science,
leveraging the unprecedented sources of written language that
social media afford [1-3]. Through media such as Facebook and
Twitter, used regularly by more than 1/7™ of the world’s
population [4], variation in mood has been tracked diurnally
and across seasons [5], used to predict the stock market [6], and
leveraged to estimate happiness across time [7,8]. Search patterns
on Google detect influenza epidemics weeks before CDC data
confirm them [9], and the digitization of books makes possible the
quantitative tracking of cultural trends over decades [10]. To
make sense of the massive data available, multidisciplinary
collaborations between fields such as computational linguistics
and the social sciences are needed. Here, we demonstrate an
instrument which uniquely describes similarities and differences
among groups of people in terms of their differential language use.

Our technique leverages what people say in social media to find
distinctive words, phrases, and fopics as functions of known attributes
of people such as gender, age, location, or psychological
characteristics. The standard approach to correlating language
use with individual attributes is to examine usage of a priort fixed
sets of words [11], limiting findings to preconceived relationships
with words or categories. In contrast, we extract a data-driven
collection of words, phrases, and topics, in which the lexicon is based
on the words of the text being analyzed. This yields a
comprehensive description of the differences between groups of
people for any given attribute, and allows one to find unexpected
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results. We call approaches like ours, which do not rely on a prior:
word or category judgments, open-vocabulary analyses.

We use differential language analysis (DLA), our particular method
of open-vocabulary analysis, to find language features across
millions of Facebook messages that distinguish demographic and
psychological attributes. From a dataset of over 15.4 million
Facebook messages collected from 75 thousand volunteers [12], we
extract 700 million instances of words, phrases, and automatically
generated topics and correlate them with gender, age, and
personality. We replicate traditional language analyses by applying
Linguistic Inquiry and Word Count (LIWC) [11], a popular tool in
psychology, to our data set. Then, we show that open-vocabulary
analyses can yield additional insights (correlations between person-
ality and behavior as manifest through language) and more
information  (as measured through predictive accuracy) than
traditional a priort word-category approaches. We present a word
cloud-based technique to visualize results of DLA. Our large set of
correlations is made available for others to use (available at:
http:www.wwbp.org/).

Background

This section outlines recent work linking language with
personality, gender, and age. In line with the focus of this paper,
we predominantly discuss works which sought to gain psycholog-
ical insights. However, we also touch on increasingly popular
attempts at predicting personality from language in social media,
which, for our study, offer an empirical means to compare a closed
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vocabulary analysis (relying on a priorn word category human
judgments) and an open vocabulary analysis (not relying on a priort
word category judgments).

Personality refers to the traits and characteristics that make an
individual unique. Although there are multiple ways to classify
traits [13], we draw on the popular Five Factor Model (or “Big 57),
which classifies personality traits into five dimensions: extraversion
(e.g., outgoing, talkative, active), agreeableness (e.g., trusting, kind,
generous), conscientiousness (e.g., self-controlled, responsible, thor-
ough), neuroticism (e.g., anxious, depressive, touchy), and openness
(e.g., intellectual, artistic, insightful) [14]. With work beginning
over 50 years ago [15] and journals dedicated to it, the FFM is a
well-accepted construct of personality [16].

Automatic Lexical Analysis of Personality, Gender,
and Age

By examining what words people use, researchers have long
sought a better understanding of human psychology [17-19]. As
Tauszczik & Pennebaker put it:

Language is the most common and reliable way for people
to translate their internal thoughts and emotions into a form
that others can understand. Words and language, then, are
the very stuft of psychology and communication [20].

The typical approach to analyzing language involves counting
word usage over pre-chosen categories of language. For example,
one might place words like ‘nose’, ‘bones’, ‘hips’, ‘skin’, ‘hands’,
and ‘gut’ into a body lexicon, and count how often words in the
lexicon are used by extraverts or introverts in order to determine who
talks about the body more. Of such word-category lexica, the most
widely used is Linguistic Inquiry and Word Count or LIWC,
developed over the last couple decades by human judges
designating categories for common words [11,19]. The 2007
version of LIWC includes 64 different categories of language
ranging from part-of-speech (i.e. articles, prepositions, pasi-lense verbs,
numbers,...) to topical categories (i.e. family, cognitive mechanisms, affect,
occupation, body,...), as well as a few other attributes such as total
number of words used [11]. Names of all 64 categories can be seen
in Figure 2.

Pennebaker & King conducted one of the first extensive
applications of LIWC to personality by examining words in a
variety of domains including diaries, college writing assignments,
and social psychology manuscript abstracts [21]. Their results
were quite consistent across such domains, finding patterns such as
agreeable people using more articles, mtroverts and those low in
conscientiousness using more words signaling distinctions, and neurotic
individuals using more negative emotion words. Mehl et al. tracks
the natural speech of 96 people over two days [22]. They found
similar results to Pennebaker & King and that newrotic and agreeable
people tend to use more first-person singulars, people low in
openness talk more about social processes, extraverts use longer words.

The recent growth of online social media has yielded great
sources of personal discourse. Besides advantages due to the size of
the data, the content is often personal and describes everyday
concerns. Furthermore, previous research has suggested popula-
tions for online studies and Facebook are quite representative
[23,24]. Sumner et al. examined the language of 537 Facebook
users with LIWC [25] while Holtgraves studied the text messages
of 46 students [26]. Findings from these studies largely confirmed
past links with LIWC but also introduced some new links such as
neurotics using more acronyms [26] or those high in gpenness using
more quotations [25].
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The larger sample-sizes from social media also enabled the first
study exploring personality as a function of single-word use.
Yarkoni investigated LIWC categories along with single words in
connection with Big-5 scores of 406 bloggers [27]. He identified
single word results which would not have been caught with LIWC,
such as ‘hug’ correlating positively with agreeableness (there is no
physical affection category inLIWC), but, considering the sparse
nature of words, 406 blogs does not result in comprehensive view.
For example, they find only 13 significant word correlations for
conscientiousness while we find thousands even after Bonferonni-
correcting significance levels. Additionally, they did not control for
age or gender although they reported roughly 75% of their
subjects were female. Still, as the most thorough point of
comparison for LIWC results with personality, Figure 2 presents
the findings from Yarkoni’s study along with LIWC results over
our data.

Analogous to a personality construct, work has been done in
psychology looking at the latent dimensions of self-expression.
Chung and Pennebaker factor analyzed 119 adjectives used in
student essays of “who you think you are” and discovered 7 latent
dimensions labeled such as “sociability” or “negativity”’ [28]. They
were able to relate these factors to the Big-5 and found only weak
relations, suggesting 7 dimensions as an alternative construction.
Later, Kramer and Chung ran the same method over 1000 unique
words across Facebook status updates, finding three components
labeled, “positive events”, “informal speech”, and “school” [29].
Although their vocabulary size was somewhat limited, we still see
these as previous examples of open-vocabulary language analyses
for psychology — no assumptions were made on the categories of
words beyond part-of-speech.

LIWC has also been used extensively for studying gender and
age [21]. Many studies have focused on function words (articles,
prepositions, conjunctions, and pronouns), finding females use
more first-person singular pronouns, males use more articles, and
that older individuals use more plural pronouns and future tense
verbs [30-32]. Other works have found males use more formal,
affirmation, and informational words, while females use more
social interaction, and deictic language [33-36]. For age, the most
salient findings include older individuals using more positive
emotion and less negative emotion words [30], older individuals
preferring fewer self-references (ie. I’, ‘me’) [30,31], and
stylistically there is less use of negation [37]. Similar to our
finding of 2000 topics (clusters of semantically-related words),
Argamon et al. used factor analysis and identified 20 coherent
components of word use to link gender and age, showing male
components of language increase with age while female factors
decrease [32].

Occasionally, studies find contradictory results. For example,
multiple studies report that emoticons (i.e. )" “~() are used more
often by females [34,36,38], but Huffaker & Calvert found males
use them more in a sample of 100 teenage bloggers [39]. This
particular discrepancy could be sample-related — differing
demographics or having a non-representative sample (Huffaker
& Calvert looked at 100 bloggers, while later studies have looked
at thousands of twitter users) or it could be due to differences in the
domain of the text (blogs versus twitter). One should always be
careful generalizing new results outside of the domain they were
found as language is often dependent on context [40]. In our case
we explore language in the broad context of Facebook, and do not
claim our results would up under other smaller or larger contexts.
As a starting point for reviewing more psychologically meaningful
language findings, we refer the reader to Tauszczik & Penneba-
ker’s 2010 survey of computerized text analysis [20].
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Eisenstein et al. presented a sophisticated open-vocabulary lan-
guage analysis of demographics [41]. Their method views
language analysis as a multi-predictor to multi-output regression
problem, and uses an L1 norm to select the most useful predictors
(i.e. words). Part of their motivation was finding interpretable
relationships between individual language features and sets of
outcomes (demographics), and unlike the many predictive works
we discuss in the next section, they test for significance of
relationships between individual language features and outcomes.
To contrast with our approach, we consider features and outcomes
individually (i.e. an “L0 norm”), which we think is more ideal for
our goals of explaining psychological variables (i.e. understanding
openness by the words that correlate with it). For example, their
method may throwout a word which is strongly predictive for only
one outcome or which is collinear with other words, while we want
to know all the words most-predictive for a given outcome. We
also explore other types of open-vocabulary language features such as
phrases and topics.

Similar language analyses also occurred in many fields outside
of psychology or demographics [42,43]. For example, Monroe
et al. explored a wvariety of techniques that compare two
frequencies of words — one number for each of two groups [44].
In particular, they explored frequencies across democratic versus
republican speeches and settled on a Bayesian model with
regularization and shrinkage based on priors of word use. Lastly,
Gilbert finds words and phrases that distinguish communication
up or down a power-hierarchy across 2044 Enron emails [45].
They used penalized logistic regression to fit a single model using
coefficients of each feature as their “power”; this produces a good
single predictive model but also means words which are highly
collinear with others will be missed (we run a separate regression
for each word to avoid this).

Perhaps one of the most comprehensive language analysis
surveys outside of psychology is that of Grimmer & Stewart [43].
They summarize how automated methods can inexpensively allow
systematic analysis and inference from large political text
collections, classifying types of analyses into a of hierarchy.
Additionally, they provide cautionary advice; In relation to this
work, they note that dictionary methods (such as the closed-
vocabulary analyses discussed here) may signal something different
when used in a new domain (for example ‘crude’ may be a
negative word in student essays, but be neutral in energy industry
reports: ‘crude oil’). For comprehensive surveys on text analyses
across fields see Grimmer & Stewart [43], O’Connor, Bamman, &
Smith [42], and Tausczik & Pennebaker [46].

Predictive Models based on Language

In contrast with the works seeking to gain insights about
psychological variables, research focused on predicting outcomes
have embraced data-driven approaches. Such work uses open-
vocabulary linguistic features in addition to a prior: lexicon based
features in predictive models for tasks such as stylistics/authorship
attribution [47-49], emotion prediction [50,51], interaction or
flirting detection [52,53], or sentiment analysis [54-57]. In other
works, ideologies of political figures (i.e. conservative to liberal)
have been predicted based on language using supervised
techniques [58] or unsupervised inference of ideological space
[59,60]. Sometimes these works note the highest weighted features,
but with their goal being predictive accuracy, those features are
not tested for significance and they usually are not the most
individually distinguishing pieces of language. To elaborate, most
approaches to prediction penalize the weights of words that are
highly collinear with other words as they fit a single model per
outcomes across all words. However, these highly collinear words
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which are suppressed, could have revealed important insights with
an outcome. In other words, these predictive models answer the
question “‘what is the best combination of words and weights to
predict personality?”” whereas we believe answering the following
question is best for revealing new insights: ‘“‘what words, controlled
for gender and age, are individually most correlated with
personality?”.

Recently, researchers have started looking at personality
prediction. Early works in personality prediction used dictionary-
based features such as LIWC. Argamon et al. (2005) noted that
personality, as detected by categorical word use, was supportive for
author attribution. They examined language use according to the
traits of neuroticism and extraversion over approximately 2200 student
essays, while focused on using function words for the prediction of
gender [62]. Mairesse et al. used a variety of lexicon-based
features to predict all Big-5 personality traits over approximately
2500 essays as well as 90 sets of individual spoken words [63,64].
As a first pass at predicting personality from language in Facebook,
Golbeck used LIWC features over a sample of 167 Facebook
volunteers as well as profile information and found limited success
of a regression model [65]. Similarly, Kaggle held a competition of
personality prediction over Twitter messages, providing partici-
pants with language cues based on LIWWC [66]. Results of the
competition suggested personality is difficult to predict based on
language in social media, but it is not clear whether such a
conclusion would have been drawn had open-vocabulary language
cues been supplied for prediction.

In the largest previous study of language and personality,
Tacobelli, Gill, Nowson, and Oberlander attempted prediction of
personality for 3,000 bloggers [67]. Not limited to categorical
language they found open-vocabulary features, such as bigrams, to
be better predictors than LIWC features. This motivates our
exploration of open-vocabulary features for psychological insights,
where we examine multi-word phrases (also called n-grams) as well
as open-vocabulary category language in the form of automatically
clustered groups of semantically related word (LDA topics, see
“Linguistic Feature Extraction” in the “Materials and Methods”
section). Since the application of Iacobelli et al. ’s work was
content customization, they focused on prediction rather than
exploration of language for psychological insight. Our much larger
sample size lends itself well to more comprehensive exploratory
results.

Similar studies have also been undertaken for age and gender
prediction in social media. Because gender and age information is
more readily available, these studies tend to be larger. Argamon
et al. predicted gender and age over 19,320 bloggers [32], while
Burger et al. scaled up the gender prediction over 184,000 Twitter
authors by using automatically guessed gender based-on gender-
specific keywords in profiles. Most recently, Bamman et al. looked
at gender as a function of language and social network statistics in
twitter. They particularly looked at the characteristics of those
whose gender was incorrectly predicted and found greater gender
homophily in the social networks of such individuals [68].

These past studies, mostly within the field of computer science
or specifically computational linguistics, have focused on predic-
tion for tasks such as content personalization or authorship
attribution. In our work, predictive models of personality, gender,
and age provide a quantitative means to compare various open-
vocabulary sets of features with a closed-vocabulary set. Our primary
concern is to explore the benefits of an open-vocabulary approach for
gaining wmsights, a goal that is at least as import as prediction for
psychosocial fields. Most works for gaining language-based insights
in psychology are closed-vocabulary (for examples, see previous
section), and while many works in computational linguistics are
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open-vocabulary, they rarely focus on insight. We introduce the
term “open-vocabulary” to distinguish an approach like ours from
previous approaches to gaining sight, and in order to encourage
others seeking insights to consider similar approaches. “Differen-
tial language analysis” refers to the particular process, for which
we are not aware of another name, we use in our open-vocabulary
approach as depicted in Figure 1.

Contributions
The contributions of this paper are as follows:

® First, we present the largest study of personality and language
use to date. With just under 75,000 authors, our study covers
an order-of-magnitude more people and instances of language
features than the next largest study ([27]). The size of our data
enables qualitatively different analyses, including open vocab-
ulary analysis, based on more comprehensive sets of language
features such as phrases and automatically derived topics. Most
prior studies used a priori language categories, presumably due
in part to the sparse nature of words and their relatively small
samples of people. With smaller data sets, it is difficult to find
statistically significant differences in language use for anything
but the most common words.

® Our open-vocabulary analysis yields further insights into the
behavioral residue of personality types beyond those from «
priort word-category based approaches, giving unanticipated
results (correlations between language and personality, gender,
or age). For example, we make the novel discoveries that
mentions of an assortment of social sports and life activities
(such as basketball, snowboarding, church, meetings) correlate with
emotional stability, and that ntroverts show an interest in Japanese
media (such as anime, pokemon, manga and Japanese emoticons:
~). Our inclusion of phrases in addition to words provided
further insights (e.g. that males prefer to precede ‘girlfriend’ or
‘wife’ with the possessive ‘my’ significantly more than females
do for ‘boyfriend’ or ‘husband’. Such correlations provide
quantitative evidence for strong links between behavior, as

Volunteer Data
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social media I
messages age health
a) words and
phrases
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extraction analysis
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revealed in language use, and psychosocial variables. In turn,
these results suggest undertaking studies, such as directly
measuring participation in activities in order to verify the link
with emotional stability.

® We demonstrate open-vocabulary features contain more
information than a prori word-categories via their use in
predictive models. We take model accuracy in out-of-sample
prediction as a measure of information of the features provided
to the model. Models built from words and phrases as well as
those from automatically generated topics achieve significantly
higher out-of-sample prediction accuracies than a standard
lexica for each variable of interest (gender, age, and personality).
Additionally, our prediction model for gender yielded state-of-
the-art results for predictive models based entirely on
language, yielding an out-of-sample accuracy of 91.9%.

® We present a word cloud visualization which scales words by
correlation (i.e., how well they predict the given psychological
variable) rather than simply scaling by frequency. Since we
find thousands of significantly correlated words, visualization is
key, and our differential word clouds provide a comprehensive
view of our results (e.g. see Figure 3).

® Lastly, we offer our comprehensive word, phrase, and topic
correlation data for future research experiments (see:
wwbp.org).

Materials and Methods

Ethics Statement

All research procedures were approved by the University of
Pennsylvania Institutional Review Board. Volunteers agreed to
written informed consent.

In seeking insights from language use about personality, gender,
and age, we explore two approaches. The first approach, serving
as a replication of the past analyses, counts word usage over
manually created a prion word-category lexica. The second
approach, termed DILA, serves as out main method and is

3) Visualization
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Figure 1. The infrastructure of our differential language analysis. 1) Feature Extraction. Language use features include: (a) words and phrases:
a sequence of 1 to 3 words found using an emoticon-aware tokenizer and a collocation filter (24,530 features) (b) topics: automatically derived groups
of words for a single topic found using the Latent Dirichlet Allocation technique [72,75] (500 features). 2) Correlational Analysis. We find the
correlation (f of ordinary least square linear regression) between each language feature and each demographic or psychometric outcome. All
relationships presented in this work are at least significant at a Bonferroni-corrected p<0.001 [76]. 3) Visualization. Graphical representation of

correlational analysis output.
doi:10.1371/journal.pone.0073791.g001
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open-vocabulary — the words and clusters of words analyzed are
determined by the data itself.

Closed Vocabulary: Word-Category Lexica

A common method for linking language with psychological
variables involves counting words belonging to manually-created
categories of language. Sometimes referred to as the word-count
approach, one counts how often words in a given category are
used by an individual, the percentage of the participants’ words
which are from the given category:

> freq (word, subject)

wordecategory

t bject) =
p (category | subject) freq (word, subject)

wordevocab (subject)

where freq (word,subject) is the number of the times the
participant mentions word and vocab (subject) is the set of all
words mentioned by the subject.

We use ordinary least squares regression to link word categories
with author attributes, fitting a linear function between explan-
atory variables (LIWW( categories) and dependent variables (such as
a trait of personality, e.g. extraversion). The coeflicient of the
target explanatory variable (often referred to as f§) is taken as the
strength of relationship. Including other variables allows us to
adjust for covariates such as gender and age to provide the unique
effect of a given language feature on each psychosocial variable.

Open Vocabulary: Differential Language Analysis
Our technique, differential language analysis (DLA), is based on
three key characteristics. It is

1. Open-vocabulary — it is not limited to predefined word lists.
Rather, linguistic features including words, phrases, and topics
(sets of semantically related words) are automatically deter-
mined from the texts. (Le., it i3 “data-driven”.) This means
DIA is classified as a type of open-vocabulary approach.

2. Discriminating — it finds key linguistic features that distinguish
psychological and demographic attributes, using stringent
significance tests.

3. Simple — it uses simple, fast, and readily accepted statistical
techniques.

We depict the components of this approach in Figure 1, and
describe the three steps: 1) linguistic feature extraction, 2)
correlational analysis, and 3) visualization in the following sections.

1. Linguistic Feature Extraction. We examined two types
of linguistic features: a) words and phrases, and b) topics. Words and
phrases consisted of sequences of 1 to 3 words (often referred to as
‘n-grams’ of size 1 to 3). What constitutes a word is determined
using a tokenizer, which splits sentences into tokens (“words”). We
built an emoticon-aware tokenizer on top of Pott’s “happyfunto-
kenizer” allowing us to capture emoticons like ‘< 3’(a heart) or ‘:-)’
(a smile), which most tokenizers incorrectly divide up as separate
pieces of punctuation. When extracting phrases, we keep only
those sequences of words with high informative value according to
pointwise mutual information (PMI) [69,70], a ratio of the joint-
probability to the independent probability of observing the phrase:

p(phrase)

mi (phrase) = log——————
P (p ) g 11 wephraseD' (W)
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In practice, we kept phrases with pmi values greater than
2 x length, where length is the number of words contained in the
phrase, ensuring that phrases we do keep are informative parts of
speech and not just accidental juxtapositions. All word and phrase
counts are normalized by each subject’s total word use
(p(word | subject)), and we apply the Anscombe transformation
[71] to the normalized values for variance stabilization (pgs):

freq (phrase, subject)
freq (phrase', subject)

phrase’ evocab(subject)

p(phrase | subject) =

Pans(Dhrase | subject)=2+/p(phrase | subject)+3/8

where vocab(subject) returns a list of all words and phrases used
by that subject. These Anscombe transformed “relative frequen-
cies” of words or phrases (p 4,5) are then used as the independent
variables in all our analyses. Lastly, we restrict our analysis to those
words and phrases which are used by at least 1% of our subjects,
keeping the focus on common language.

The second type of linguistic feature, fopics, consists of word
clusters created using Latent Dirichlet Allocation (LDA) [72,73].
The LDA generative model assumes that documents (i.e. Face-
book messages) contain a combination of topics, and that topics
are a distribution of words; since the words in a document are
known, the latent variable of topics can be estimated through
Gibbs sampling [74]. We use an implementation of the LDA
algorithm provided by the Mallet package [75], adjusting one
parameter (alpha=0.30) to favor fewer topics per document, since
individual Facebook status updates tend to contain fewer topics
than the typical documents (newspaper or encyclopedia articles) to
which LDA is applied. All other parameters were kept at their
default. An example of such a model is the following sets of words
(tuesday, monday, wednesday, friday, thursday, week, sunday, saturday)
which clusters together days of the week purely by exploiting their
similar distributional properties across messages. We produced the
2000 topics shown in Table S1 as well as on our website.

To use topics as features, we find the probability of a subject’s
use of each topic:

p(topic | subject) = Z p(topic | word) x p(word | subject)

wordetopic

where p(word | subject) is the normalized word use by that subject
and p(topic | word) is the probability of the topic given the word
(a value provided from the LDA procedure). The prevalence of a
word in a topic is given by p(topic,word), and is used to order the
words within a topic when displayed.

2. Correlational Analysis. Similar to word categories,
distinguishing open-vocabulary words, phrases, and topics can
be identified using ordinary least squares regression. We again take
the coefficient of the target explanatory variable as its correlation
strength, and we include other variables (e.g. age and gender) as
covariates to get the unique effect of the target explanatory
variable. Since we explore many features at once, we consider
coefficients significant if they are less than a Bonferroni-corrected
[76] two-tailed p of 0.001. (I.e., when examining 20,000 features, a
passing p-value is less than 0.001 divided by 20,000 which is
5%107%).

Our correlational analysis produces a comprehensive list of the
most distinguishing language features for any given attribute,
words, phrases, or topics which maximally discriminate a given target
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variables. For example, when we correlate the target variables
geographic elevation with language features (N =18,383,
p<0.001, adjusted for gender and age), we find ‘beach’ the
most distinguishing feature for low elevation localities, and ‘the
mountains’ to be among the most distinguishing features for
high elevation localities, (i.e., people in low elevations talk
about the beach more, whereas people at high elevations talk
about the mountains more). Similarly, we find the most
distinguishing topics to be (beach, sand, sun, water, waves, ocean,
surf, sea, toes, sandy, surfing, beaches, sunset, Florida, Virginia) for low
elevations and (Colorado, heading, headed, leaving, Denver, Kansas,
City, Springs, Oklahoma, trip, moving, lowa, KC, Utah, bound) for
high elevations. Others have looked at geographic location
[77].

3. Visualization. An analysis over tens of thousands of
language features and multiple dimensions results in hundreds of
thousands of statistically significant correlations. Visualization is
thus critical for their interpretation. We use word clouds [78] to
intuitively summarize our results. Unlike most word clouds, which
scale word size by their frequency, we scale word size according to
the strength of the correlation of the word with the demographic
or psychological measurement of interest, and we use color to
represent frequency over all subjects; that is, larger words indicate
stronger correlations, and darker colors indicate more frequently
used words. This provides a clear picture of which words and
phrases are most discriminating while not losing track of which
ones are the most frequent. Word clouds scaled by frequency are
often used to summarize news, a practice that has been critiqued
for inaccurately representing articles [79]. Here, we believe the
word cloud is an appropriate visualization because the individual
words and phrases we depict in it are the actual results we wish to
summarize. Further, scaling by correlation coefficient rather than
frequency gives clouds that distinguish a given outcome.

Word clouds can also used to represent distinguishing topics. In
this case, the size of the word within the topic represents its
prevalence among the cluster of words making up the topic. We
use the 6 most distinguishing topics and place them on the
perimeter of the word clouds for words and phrases. This way, a
single figure gives a comprehensive view of the most distinguishing
words, phrases, and topics for any given variables of interest. See
Figure 3 for an example.

To reduce the redundancy of results, we automatically prune
language features containing information already provided by a
feature with higher correlation. First, we sort language features in
order of their correlation with a target variable (such as a
personality trait). Then, for phrases, we use frequency as a proxy
for informative value [80], and only include additional phrases if
they contain more informative words than previously included
phrases with matching words. For example, consider the phrases
‘day’, ‘beautiful day’, and ‘the day’, listed in order of correlation
from greatest to least; ‘Beautiful day’ would be kept, because
‘beautiful’ is less frequent than ‘day’ (i.e., it is adding informative
value), while ‘the day’ would be dropped because ‘the’ is more
frequent than ‘day’ (thus it is not contributing more information
than we get from ‘day’). We do a similar pruning for topics: A
lower-ranking topic is not displayed if more than 25% of'its top 15
words are also contained in the top 15 words of a higher ranking
topic. These discarded relationships are still statistically significant,
but removing them provides more room in the visualizations for
other significant results, making the visualization as a whole more
meaningful.

Word clouds allow one to easily view the features most
correlated with polar outcomes; we use other visualizations to
display the variation of correlation of language features with
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continuous or ordinal dependent variables such as age. A standard
time-series plot works well, where the horizontal axis is the
dependent variable and the vertical axis represents the standard
score of the values produced from feature extraction. When
plotting language as a function of age, we fit first-order LOESS
regression lines [81] to the age as the x-axis data and standardized
frequency as the y-axis data over all users. We are able to adjust
for gender in the regression model by including it as a covariate
when training the LOESS model and then using a neutral gender
value when plotting.

Data Set: Facebook Status Updates

Our complete dataset consists of approximately 19 million
Facebook status updates written by 136,000 participants. Partic-
ipants volunteered to share their status updates as part of the My
Personality application, where they also took a variety of question-
naires [12]. We restrict our analysis to those Facebook users
meeting certain criteria: They must indicate English as a primary
language, have written at least 1,000 words in their status updates,
be less than 65 years (to avoid the non-representative sample
above 65), and indicate both gender and age (for use as controls).
This resulted in N=74,941 volunteers, writing a total of
309 million words (700 million feature instances of words, phrases,
and topics) across 15.4 million status updates. From this sample
each person wrote an average of 4,129 words over 206 status
updates, and thus 20 words per update. Depending on the target
variable, this number slightly varies as indicated in the caption of
each result.

The personality scores are based on the International Person-
ality Item Pool proxy for the NEO Personality Inventory Revised
(NEO-PI-R) [14,82]. Participants could take 20 to 100 item
versions of the questionnaire, with a retest reliability of o>0.80
[12]. With the addition of gender and age variables, this resulted in
seven total dependent variables studied in this work, which are
depicted in Table 1 along with summary statistics. Personality
distributions are quite typical with means near zero and standard
deviations near 1. The statuses ranged over 34 months, from
January 2009 through October 2011. Previously, profile informa-
tion (i.e. network metrics, relationship status) from users in this
dataset have been linked with personality [83], but this is the first
use of its status updates.

Results

Results of our analyses over gender, age, and personality are
presented below. As a baseline, we first replicate the commonly
used LIWC analysis on our data set. We then present our main
results, the output of our method, DLA. Lastly, we explore
empirical evidence that open-vocabulary features provide more
information than those from an a priori lexicon through use in a
predictive model.

Closed Vocabulary

Figure 2 shows the results of applying the LIW( lexicon to our
dataset, along side-by-side with the most comprehensive previous
studies we could find for gender, age. and personality [27,30,34]. In
our case, correlation results are f§ values from an ordinary least
squares linear regression where we can adjust for gender and age
to give the unique effect of the target variable. One should keep
in mind that it is often found that effect sizes tend to be relatively
smaller as sample sizes increase and become more stable [84].

Even though the previous studies listed did not look at
Facebook, a majority of the correlations we find agree in direction.
Some of the largest correlations emerge for the LIWC articles
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LIWC Gender Age Extraversion Agreeableness Conscientious. Neuroticism Openness
Category [34]d ourB | [30]B ourB | [27]p ourB [ [27]1p ourB [[27]1p ourB | [27]p ourB | [27]p ourB
Total function words - -0.04 - 0.16 - -0.04 - 0.02 - 0.02 - 0.03 - 0.09
Total pronouns 0.36 0.07 - -0.02 ns ns 0.11 ns ns -0.03 ns 0.04 | -0.21  0.07
Personal pronouns - 0.14 - -0.08 - ns - ns - -0.04 - 0.04 - 0.05
1st pers singular 0.17 0.13 -0.14 -0.22 ns ns ns -0.03 ns -0.06 0.12 0.05 -0.16 0.05
1st pers plural ns ns -0.13 0.21 oan 0.03 0.18 0.05 ns 0.05 ns  -0.04 -0.1 ns
2nd person -0.06 0.05 - 0.04 0.16 ns ns 0.02 ns ns -0.15 ns -0.12 0.02
3rd pers singular - 0.09 - 0.15 - ns - ns - ns - 0.02 - ns
3rd pers plural - -0.05 - 0.26 - -0.06 - -0.04 - ns - 0.02 - 0.03
3rd pers overall 0.2 - - - ns - ns - ns - ns - ns -
Impersonal pronouns - -0.09 - 0.11 - -0.05 - ns - ns - 0.02 - 0.08
Articles -0.24 -0.24 - 0.28 ns -0.05 ns ns 0.09 0.02 | -0.11 -0.02 0.2 0.13
Common verbs - 0.04 - 0.02 - -0.03 - ns - ns - 0.04 - 0.03
Auxiliary verbs - 0.02 - 0.08 - -0.06 - ns - ns - 0.05 - 0.07
Past tense 0.12 -0.03 | -0.16 ns ns -0.04 0.1 0.02 ns -0.02 ns ns -0.16 ns
Present tense 0.18 0.08 0.04 ns ns ns ns ns ns ns ns 0.04 -0.16 0.03
Future tense ns -0.07 0.14 0.09 ns -0.05 ns ns ns ns ns 0.03 ns 0.05
Adverbs - 0.05 - -0.07 - -0.04 - ns - ns - 0.05 - 0.04
Prepositions -0.17 -0.13 - 0.27 ns -0.04 ns 0.03 ns 0.06 ns ns 0.17 0.06
Conjunctions - 0.03 - 0.12 - -0.02 - 0.02 - 0.02 - 0.02 - 0.06
Negations 0.11 ns - -0.12 ns -0.06 ns -0.05 | -0.17 -0.03 | 0.11 0.07 | -0.13 0.02
Quantifiers - -0.09 - 0.24 - -0.02 - 0.03 - 0.05 - ns - 0.05
Numbers -0.15 -0.13 - 0.05 -0.12 -0.06 0.11 0.02 ns 0.02 ns ns -0.08 0.06
Swear words -0.22  -0.21 - -0.17 ns ns -021 -045 | -0.14 -0.09 [ 0.11 0.06 ns ns
Social processes - 0.08 -0.13 0.21 0.15 0.04 0.13 0.02 ns ns ns ns -0.14 ns
Family 0.12 0.22 - 0.28 0.09 0.03 0.19 0.03 ns 0.03 ns ns -0.17 -0.12
Friends 0.09 0.08 - 0.26 0.15 0.05 0.11 0.04 ns 0.02 | -0.08 ns ns -0.04
Humans ns 0.04 - 0.06 0.13 0.06 ns -0.05 | -0.12 ns ns ns -0.09 ns
Affective processes 001 (o)l - -0.05 0.09 0.07 ns 0.02 ns ns ns ns -0.12 -0.04
Positive emotion ns 0.21 0.12 0.14 0.1 0.13 0.18 0.13 ns 0.1 ns -0.08 | -0.15 -0.07
Negative emotion 0.1 -0.12 | -0.05 | -0.31 ns -0.07 | -0.15 -0.17 | -0.18 -0.13 | 0.16 0.15 ns 0.03
Anxiety 0.16 0.08 - -0.13 ns -0.04 ns -0.02 ns -0.02 | 0.17 0.06 ns 0.07
Anger ns -0.22 - -0.25 ns -0.05 | -0.23 -0.19 | -0.19 -0.12 | 0.3 0.11 ns 0.02
Sadness 0.1 0.08 - -0.15 ns -0.04 ns -0.02 | -0.11  -0.04 0.1 0.09 ns ns
Cognitive processes 0.07 -0.03 0.07 0.1 ns -0.05 ns 0.02 -0.11 ns 0.13 0.04 -0.09 0.1
Insight 0.09 -0.05 0.11 0.04 ns -0.09 ns ns ns -0.02 ns 0.05 ns 0.13
Causation ns -0.05 ns -0.01 | -0.09 -0.06 | -0.12 -0.02 | -0.12 ns 0.11 0.02 ns 0.08
Discrepancy 0.07 ns - 0.02 ns -0.05 ns -0.02 | -0.13 -0.03 | 0.13 0.07 | -0.12 0.02
Tentative ns -0.12 - 0.07 | -0.11 -0.08 ns ns -0.1 -0.03 | 0.12 0.06 ns 0.07
Certainty 0.14 ns - 0.09 0.1 ns ns 0.03 -0.1 0.04 0.13 ns ns 0.06
Inhibition - 0.03 - 0.09 -0.13 ns ns ns ns 0.04 0.09 ns ns ns
Inclusive ns 0.04 - 0.23 0.09 0.04 0.18 0.05 ns  0.05 ns -0.02 0.11 0.06
Exclusive ns -0.05 ns ns ns -0.07 ns ns_ | 016  -0.03 0.1 0.05 ns 0.05
Perceptual Processes 0.12 ns - -0.06 | 0.09 -0.04 ns ns -0.1 -0.07 ns 0.03 | -0.11 0.1
See ns ns - ns ns -0.02 0.09 ns ns -0.04 ns ns ns 0.04
Hear 0.1 -0.07 - -0.1 0.12 -0.04 ns ns -0.12 -0.06 ns 0.02 | -0.08 0.08
Feel 0.17 0.04 - -0.07 ns -0.02 0.1 ns ns -0.04 0.1 0.03 ns 0.05
Biological processes ns 0.05 - -0.06 | 0.14 0.04 0.09 -0.06 ns -0.06 ns 0.05 | -0.09 0.02
Body E -0.02 - -0.14 0.1 ns 0.09 -0.09 ns -0.09 ns 0.06 -0.04 0.04
Health - 0.05 - 0.07 - ns - ns - ns - 0.06 - ns
Sexual ns 0.05 - -0.14 0.17 0.1 0.08 -0.04 ns -0.04 ns ns ns ns
Ingestion - 0.02 - 0.12 - ns - -0.03 - -0.03 - ns - 0.03
Relativity - -0.06 - 0.16 - ns - 0.05 - 0.08 - -0.03 - -0.03
Motion 0.07 ns - 0.12 - 0.02 - 0.05 - 0.07 - -0.04 - -0.04
Space ns -0.18 - 0.21 ns ns 0.16 ns ns 0.02 | -0.09 ns -0.11 0.07
Time ns 0.02 | -0.19 0.08 ns ns 0.12 0.06 0.09 0.09 ns -0.03 | -0.22 -0.07
Work -0.12 -0.08 - -0.02 | -0.08 -0.05 ns 0.03 ns 0.1 ns -0.03 ns -0.02
Achievement - -0.17 - 0.16 -0.09 ns ns 0.05 0.14 0.11 ns -0.06 ns -0.02
Leisure ns -0.08 - 0.03 0.08 0.06 0.15 0.04 ns 0.03 ns -0.07 | -0.17 ns
Home 0.15 0.19 - 0.18 ns ns 0.19 0.03 ns 0.04 ns -0.02 -0.2 -0.06
Money -0:1 -0.12 - 0.24 ns ns -0.11 -0.04 ns 0.03 ns ns ns 0.03
Religion - -0.03 - 0.21 0.11 ns ns 0.06 ns 0.04 ns -0.04 ns ns
Death - -0.18 - -0.1 ns -0.08 | -0.13 -0.09 | -0.12 -0.08 ns 0.08 0.15 0.09
Assent - 0.07 - -0.22 ns 0.05 ns 0.04 | -0.09 ns ns -0.04 | -0.11 -0.05
Nonfluencies - -0.03 - 0.02 - ns - ns - ns - 0.03 - ns
Fillers - -0.02 - -0.24 - ns - -0.04 - -0.08 - 0.03 - 0.04
participants (N) 9,130 74859 | 3,087 74859 576 72,709 576 72,772 576 72,781 576 71,968 576 72,809

Figure 2. Correlation values of L/WC categories with gender, age, and the five factor model of personality. [34] d: Effect size as Cohen's
d values from Newman et al. 's recent study of gender (positive is female, ns= not significant at p <.001) [30]. 5: Standardized linear regression
coefficients adjusted for sex, writing/talking, and experimental condition from Pennebaker and Stone’s study of age (ns= not significant at p <.05)
[27]. p: Spearman correlations values from Yarkoni's recent study of personality (ns= not significant at p <.05). our f: Standardized multivariate
regression coefficients adjusted for gender and age for this current study over Facebook (ns= not significant at Bonferroni-corrected p <.001).
doi:10.1371/journal.pone.0073791.g002
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Figure 3. Words, phrases, and topics most highly distinguishing females and males. Female language features are shown on top while
males below. Size of the word indicates the strength of the correlation; color indicates relative frequency of usage. Underscores (_) connect words of
multiword phrases. Words and phrases are in the center; topics, represented as the 15 most prevalent words, surround. (N =74,859: 46,412 females
and 28,247 males; correlations adjusted for age; Bonferroni-corrected p <0.001).

doi:10.1371/journal.pone.0073791.9g003

category, which consists of determiners like ‘the’, ’a’, ‘an’ and were in the opposite direction from the prior work. This is not too
serves as a proxy for the use of more nouns. Articles are highly surprising since openness exhibits the most variation across
predictive of males, being older, and openness. As a content-related conditions of other studies (for examples, see [25,27,65]), and its
language variable, the anger category also proved highly predictive component traits are most loosely related [85].

for males as well as younger individuals, those low in agreeableness
and conscientiousness, and high in neuroticism. Openness had the least
agreement with the comparison study; roughly half of our results
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Table 1. Summary statistics for gender, age, and the five
factor model of personality.

N mean standard skewness
deviation

Gender 74859 0.62 0.49 —0.50
Age 74859 2343 8.96 177

Extraversion 72709 —0.07 1.01 —0.34
Agreeableness 72772 0.03 1.00 —0.40
Conscientiousness 72781 —0.04 1.01 —0.09
Neuroticism 71968 0.14 1.04 —0.21
Openness 72809 0.12 0.97 —0.48

These represent the seven dependent variables studied in this work. Gender
ranged from 0 (male) to 1(female). Age ranged from 13 to 65. Personality
questionnaires produce values along a standardized continuum.
doi:10.1371/journal.pone.0073791.t001

Open Vocabulary

Our DILA method identifies the most distinguishing language
features (words, phrases: a sequence of 1 to 3 words, or topics: a
cluster of semantically related words) for any given attribute.
Results progress from a one variable proof of concept (gender), to
the multiple variables representing age groups, and finally to all 5
dimensions of personality.

Language of Gender. Gender provides a familiar and easy to
understand proof of concept for open-vocabulary analysis. Figure 3
presents word clouds from age-adjusted gender correlations. We
scale word size according to the strength of the relation and we use
color to represent overall frequency; that is, larger words indicate
stronger correlations, and darker colors indicate frequently used
words. For the tpics, groups of semantically-related words, the size
indicate the relative prevalence of the word within the cluster as
defined in the methods section. All results are significant at
Bonferroni-corrected [76] p<0.001.

Many strong results emerging from our analysis align with our
LIWC results and past studies of gender. For example, females
used more emotion words [86,87] (e.g., ‘excited’), and first-person
singulars [88], and they mention more psychological and social
processes [34] (e.g., ‘love you’ and ‘<3’ —a heart). Males used
more swear words, object references (e.g., xbox’ and swear words)
[34,89].

Other results of ours contradicted past studies, which were
based upon significantly smaller sample sizes than ours. For
example, in 100 bloggers Huffaker et al. [39] found males use
more emoticons than females. We calculated power analyses to
determine the sample size needed to confidently find such
significant results. Since the Bonferonni-correction we use
elsewhere in this work is overly stringent (i.e. makes it harder
than necessary to pass significance tests), for this result we applied
the Benjamini-Hochberg false discovery rate procedure for
multiple hypothesis testing [90]. Rerunning our language of
gender analysis on reduced random samples of our subjects
resulted in the following number of significant correlations
(Benjamini-Hochberg tested p <0.001): 50 subjects: 0 significant
correlations, 500 subjects: 7 correlations; 5,000 subjects: 1,489
correlations; 50,000 subjects: 13,152 correlations (more detailed
results of power analyses across gender, age, and personality can
be found in Figure S1). Thus, traditional study sample sizes, which
are closer to 50 or 500, are not powerful enough to do data-driven
DLA over individual words.
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One might also draw insights based on the gender results. For
example, we noticed ‘my wife’ and ‘my girlfriend’ emerged as
strongly correlated in the male results, while simply ‘husband’ and
‘boyfriend” were most predictive for females. Investigating the
frequency data revealed that males did in fact precede such
references to their opposite-sex partner with ‘my’ significantly
more often than females. On the other hand, females were more
likely to precede ‘husband’ or ‘boyfriend’ with ‘her’ or ‘amazing’
and a greater variety of words, which is why ‘my husband’ was not
more predictive than ‘husband’ alone. Furthermore, this suggests
the male preference for the possessive ‘my’ is at least partially due
to a lack of talking about others’ partners.

Language of Age. Figure 4 shows the word cloud (center) and
most discriminating topics (surrounding) for four age buckets
chosen with regard to the distribution of ages in our sample
(Facebook has many more young people). We see clear
distinctions, such as use of slang, emoticons, and Internet speak
in the youngest group (e.g. ™), ‘idk’, and a couple Internet speak
topics) or work appearing in the 23 to 29 age group (e.g. ‘at work’,
‘new job’, as a job position topic). We also find subtle changes of
topics progressing from one age group to the next. For example,
we see a school related topic for 13 to 18 year olds (e.g. ‘school’,
‘homework’, ‘ugh’), while we see a college related topic for 19 to
22 year olds (e.g. ‘semester’, ‘college’, ‘register’). Additionally,
consider the drunk topic (e.g. ‘drunk’, ‘hangover’, ‘wasted’) that
appears for 19 to 22 year olds and a more reserved beer topic (e.g.
‘beer’, ‘drinking’, ‘ale’) for 23 to 29 year olds.

In general, we find a progression of school, college, work, and
family when looking at the predominant topics across all age
groups. DLA may be valuable for the generation of hypotheses
about life span developmental age differences. Figure 5A shows the
relative frequency of the most discriminating topic for each age
group as a function of age. Typical concerns peak at different ages,
with the topic concerning relationships (e.g. ‘son’, ‘daughter’,
‘father’, ‘mother’) continuously increasing across life span. On a
similar note, Figure 5C shows ‘we’ increases approximately
linearly after the age of 22, whereas ‘I" monotonically decreases.
We take this as a proxy for social integration [19], suggesting the
increasing importance of friendships and relationships as people
age. Figure 5B reinforces this hypothesis by presenting a similar
pattern based on other social topics. One limitation of our dataset
is the rarity of older individuals using social media; we look
forward to a time in which we can track fine-grained language
differences across the entire lifespan.

Language of Personality. We created age and gender-
adjusted word clouds for each personality factor based on around
72 thousand participants with at least 1,000 words across their
Facebook status updates, who took a Big Five questionnaire [91].

Figure 6 shows word clouds for extraversion and neuroticism.
(See Figure S2 for openness, conscientiousness, and agreeable-
ness.) The dominant words in each cluster were consistent with
prior lexical and questionnaire work [14]. For example, extraverts
were more likely to mention social words such as ‘party’, ‘love
you’, ‘boys’, and ‘ladies’, whereas introverts were more likely to
mention words related to solitary activities such as ‘computer’,
‘Internet’, and ‘reading’. In the openness cloud, words such as
‘music’, ‘art’, and ‘writing’ (i.e., creativity), and ‘dream’, ‘universe’,
and ‘soul’ (i.e., imagination) were discriminating [85].

Topics were also found reflecting similar concepts as the words,
some of which would not have been captured with LIWC. For
example, although LIW( has socially related categories, it does not
contain a party topic, which emerges as a key distinguishing feature
for extraverts. Topics related to other types of social events are
listed elsewhere, such as a sports topic for low neuroticism
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Figure 4. Words, phrases, and topics most distinguishing subjects aged 73 to 78, 719 to 22, 23 to 29, and 30 to 65. Ordered from top to
bottom: 13 to 18 19 to 22 23 to 29, and 30 to 65. Words and phrases are in the center; topics, represented as the 15 most prevalent words, surround.

(N =74,859; correlations adjusted for gender; Bonferroni-corrected p <0.001).
doi:10.1371/journal.pone.0073791.g004
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Figure 5. Standardized frequency of topics and words across age. A. Standardized frequency for the best topic for each of the 4 age groups.
Grey vertical lines divide groups: 13 to 18 (black: n=25,467 out of N =74,859), 19 to 22 (green: n=21,687), 23 to 29 (blue: n=14,656), and 30+ (red:
n=13,049). Lines are fit from first-order LOESS regression [81] controlled for gender. B. Standardized frequency of social topic use across age. C.

Standardized ‘I', ‘we’ frequencies across age.
doi:10.1371/journal.pone.0073791.g005

(emotional stability). Additionally, Figure 6 shows the advantage of
having phrases in the analysis to get clearer signal: e.g. people high
in neuroticism mentioned ‘sick of’, and not just ‘sick’.

While many of our results confirm previous research,
demonstrating the instrument’s face validity, our word clouds
also suggest new hypotheses. For example, Figure 6 (bottom-
right) shows language related to emotional stability (low
neuroticism). Emotionally stable individuals wrote about enjoy-
able social activities that may foster greater emotional stability,
such as ‘sports’, ‘vacation’, ‘beach’, ‘church’, ‘team’, and a famuly
time topic. Additionally, results suggest that introverts are
interested in Japanese media (e.g. ‘anime’, ‘manga’, ‘japanese’,
Japanese style emoticons:”_", and an anime topic) and that those
low in openness drive the use of shorthands in social media (e.g.
2day’, ‘ur’, ‘every 1’). Although these are only language
correlations, they show how open-vocabulary analyses can illumi-
nate areas to explore further.

Predictive Evaluation

Here we present a quantitative evaluation of open-vocabulary
and closed vocabulary language features. Although we have thus
far presented subjective evidence that open-vocabulary features
contribute more information, we hypothesize empirically that the
inclusion of open-vocabulary features leads to prediction accura-
cies above and beyond that of closed-vocabulary. We randomly
sampled 25% of our participants as test data, and used the
remaining 75% as training data to build our predictive models.

We use a linear support vector machine (SVM) [92] for
classifying the binary variable of gender, and ridge regression
[93] for predicting age and each factor of personality. Features
were first run through principal component analysis to reduce the
feature dimension to half of the number of users. Both SVM
classification and ridge regression utilize a regularization param-
eter, which we set by validation over the training set (we defined a
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small validation set of 10% of the training set which we tested
various regularization parameters over while fitting the model to
the other 90% of the training set in order to select the best
parameter). Thus, the predictive model is created without any
outcome information outside of the training data, making the test
data an out-of-sample evaluation.

As open-vocabulary features, we use the same units of
language as DILA: words and phrases (n-grams of size 1 to 3,
passing a collocation filter) and fopics. These features are outlined
precisely under the “Linguistic Feature Extraction” section
presented earlier. As explained in that section, we use Anscombe
transformed relative frequencies of words and phrases and the
conditional probability of a fpic given a subject. For closed
vocabulary features, we use the LIW(' categories of language
calculated as the relative frequency of a user mentioning a word
in the category given their total word usage. We do not provide
our models with anything other than these language usage
features (independent variables) for prediction, and we use usage
of all features (not just those passing significance tests from DLA).

As shown in Table 2, we see that models created with open
vocabulary features significantly (p<0.01) outperformed those
created based on LIWC features. The topics results are of particular
interest, because these automatically clustered word-category
lexica were not created with any human or psychological data
only knowing what words occurred in messages together.
Furthermore, we see that a model which includes LIWC features
on top of the open-vocabulary words, phrases, and topics does not result
in any improvement suggesting that the open-vocabulary features
are able to capture predictive information which fully supersedes
LIWC.

For personality we saw the largest relative improvement
between open-vocabulary approaches and LIWC. Our best person-
ality R score of 0.42 fell just above the standard “correlational
upper-limit” for behavior to predict personality (a Pearson
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Figure 6. Words, phrases, and topics most distinguishing extraversion from introversion and neuroticism from emotional stability. A
Language of extraversion (left, e.g., ‘party’) and introversion (right, e.g., ‘computer’); N =72,709. B. Language distinguishing neuroticism (left, e.g.
‘hate’) from emotional stability (right, e.g., ‘blessed’); N =71,968 (adjusted for age and gender, Bonferroni-corrected p <0.001). Figure S8 contains

results for openness, conscientiousness, and agreeableness.
doi:10.1371/journal.pone.0073791.g006
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Table 2. Comparison of LIWC and open-vocabulary features within predictive models of gender, age, and personality.

+ LIWC

Gender Age Extraversion Agreeableness Conscientious. Neuroticism Openness

features accuracy R R R R R R

LIwC 78.4% .65 27 25 29 21 .29
Topics 87.5% .80 .32 .29 .33 .28 .38
WordPhrases 91.4% .83 .37 .29 .34 .29 41
WordPhrases + Topics  91.9% .84 .38 .31 .35 .31 42
Topics + LIWC 89.2% .80 33 .29 .33 .28 .38
WordPhrases + LIWC 91.6% .83 .38 .30 .34 .30 41
WordPhrases + Topics  91.9% .84 .38 .31 .35 .31 42

doi:10.1371/journal.pone.0073791.t002

correlation of 0.3 to 0.4) [94,95]. Some researchers have
discretized the personality scores for prediction, and classified
people as being high or low (one standard deviation above or
below the mean or top and bottom quartiles, throwing out the
middle) in each trait [61,64,67]. When we do such an approach,
our scores are in similar ranges to such literature: 65% to 79%
classification accuracy. Of course, such a high/low model cannot
directly be used for classifying unlabeled people as one would also
need to know who fits in the middle. Regression is a more
appropriate predictive task for continuous outcomes like age and
personality, even though R scores are naturally smaller than
binary classification accuracies.

We ran an additional tests to evaluate only those words and
phrases, topics, or LITW( categories that are selected via differential
language analysis rather than all features. Thus, we used only
those language features that significantly correlated (Bonferonni-
corrected p <0.001) with the outcome being predicting. To keep
consistent with the main evaluation, we used no controls, and so
one could view this as a univariate feature selection over each type
of feature independently. We again found significant improvement
from using the open-vocabulary features over LIW( and no
significant changes in accuracy overall. These results are presented
in Table S2.

In addition to demonstrating the greater informative value of
open-vocabulary features, we found our results to be state-of-the-art.
The highest previous out-of-sample accuracies for gender prediction
based entirely on language were 88.0% over twitter data [68] while
our classifiers reach an accuracy of 97.9%. Our increased
performance could be attributed to our set of language features,
a strong predictive algorithm (the support vector machine), and
the large sample of Facebook data.

Discussion

Online social media such as Facebook are a particularly
promising resource for the study of people, as “status” updates
are self-descriptive, personal, and have emotional content [7].
Language use is objective and quantifiable behavioral data [96],
and unlike surveys and questionnaires, Facebook language allows
researchers to observe individuals they freely present
themselves in their own words. Differential language analysis (DLA)
in social media is an unobtrusive and non-reactive window into

as
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accuracy: percent predicted correctly (for discrete binary outcomes). R: Square-root of the coefficient of determination (for sequential/continuous outcomes). LIWC: A
priori word-categories from Linguistic Inquiry and Word Count. Topics: Automatically created LDA topic clusters. WordPhrases: words and phrases (n-grams of size 1 to 3
passing a collocation filter). Bold indicates significant (p<<.01) improvement over the baseline set of features (use of LIWC alone).

the social and psychological characteristics of people’s everyday
concerns.

Most studies linking language with psychological variables rely
on «a priort fixed sets of words, such as the LIWC categories carefully
constructed over 20 years of human research [11]. Here, we show
the benefits of an open-vocabulary approach in which the words
analyzed are based on the data itself. We extracted words, phrases,
and fopics (automatically clustered sets of words) from millions of
Facebook messages and found the language that correlates most
with gender, age, and five factors of personality. We discovered
insights not found previously and achieved higher accuracies than
LIWC when using our open-vocabulary features in a predictive
model, achieving state-of-the-art accuracy in the case of gender
prediction.

Exploratory analyses like DLA change the process from that of
testing theories with observations to that of data-driven identifi-
cation of new connections [97,98]. Our intention here is not a
complete replacement for closed-vocabulary analyses like LIWC.
When one has a specific theory in mind or a small sample size, an
a priori list of words can be ideal; in an open-vocabulary approach,
the concept one cares about can be drowned out by more
predictive concepts. Further, it may be easier to compare static a
priort categories of words across studies. However, automatically
clustering words into coherent topics allows one to potentially
discover categories that might not have been anticipated (e.g.
sports teams, kinds of outdoor exercise, or Japanese cartoons).
Open-vocabulary approaches also save labor in creating catego-
ries. They consider all words encountered and thus are able to
adapt well to the evolving language in social media or other
genres. They are also transparent in that the exact words driving
correlations are not hidden behind a level of abstraction. Given
lots of text and dependent variables, an open-vocabulary approach
like DLA can be immediately useful for many areas of study; for
example, an economist contrasting sport utility with hybrid vehicle
drivers, a political scientist comparing democrats and republicans,
or a cardiologist differentiating people with positive versus
negative outcomes of heart disease.

Like most studies in the social sciences, this work is still subject
to sampling and social desirability biases. Language connections
with psychosocial variables are often dependent on context [40].
Here, we examined language in a large sample of the broad
context of Facebook. Under different contexts, it is likely some
results would differ. Still, the sample sizes and availability of
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demographic information afforded by social media bring us closer
to a more ideal representative sample [99]. Owur current
results have face validity (subjects in high elevations talk about
‘the mountains’), tie in with other research (neurotic people
disproportionately use the phrase ‘depressed’), suggest new
hypotheses (an active life implies emotional stability), and give
detailed insights (males prefer to precede ‘wife’ with the possessive
‘my’ more so than females precede ‘husband’ with ‘my’).

Opver the past one-hundred years, surveys and questionnaires
have illuminated our understanding of people. We suggest that
new multipurpose instruments such as DLA emerging from the
field of computational social science shed new light on psychoso-
cial phenomena.

Supporting Information

Figure S1 Power analyses for all outcomes examined in
this work. Number of features passing a Benjamini-Hochberg
false-discovery rate of p<0.001 as a function of the number of
users sampled, out of the maximum 24,530 words and phrases
used by at least 1% of users.

(TIF)

Figure $2 Words, phrases, and topics most distinguish-
ing agreeableness, conscientiousness, and openness. A.
Language of high agreeableness (left) and low agreeableness (right);
N =72,772. B. Language of high conscientiousness (left) and low
conscientiousness (right); N =72,781. C. Language of openness
(left) and closed to experience (right); N =72,809 (adjusted for
gender and age, Bonferroni-corrected p <0.001).

(TIF)

Table S1 The 15 most prevalent words for the 2000
automatically generated topics used in our study. All
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