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Abstract

Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed
depending on the parental origin of the same alleles. Genetic imprinting is related to several human disorders, including
diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic
development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we
generalize the natural and orthogonal interactions (NOIA) framework to allow for estimation of both main allelic effects and
POEs. We develop a statistical (Stat-POE) model that has the orthogonal estimates of parameters including the POEs. We
conducted simulation studies for both quantitative and qualitative traits to evaluate the performance of the statistical and
functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures
orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is
satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to
allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-
POE and Func-POE models under HWE for quantitative traits.
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Introduction

Genetic imprinting frequently affects genes during embryogen-

esis and is the most well-known parent-of-origin effect (POE).

Imprinting causes the differential expression of genes based on the

parental origin of the chromosome [1]. The alleles transmitted

from the father have different levels of transcription and thus may

render a different effect on the phenotype compared with the same

alleles transmitted from the mother. Genetic imprinting has been

shown to be important for normal embryonic development in

mammals [2]. So far, approximately 200 imprinted genes have

been validated or predicted in humans (http://www.geneimprint.

com). Imprinted genes have been implicated in several complex

human disorders, including diabetes, breast cancer, alcoholism,

and obesity [3–6]. Kong et al. identified several variants of known

imprinted genes showing significant effects on development of

breast cancer, carcinoma and type II diabetes [7]. Recently, an

allele in an imprinted region of chromosome 14q32 was identified

to affect type I diabetes susceptibility by Wallace et al. [8].

Several statistical approaches have been developed for modeling

POEs and imprinting effects. Shete et al. implemented a variance-

components method for testing genetic linkage by incorporating

an imprinting parameter [9]. They applied their method to data

analysis of rheumatoid arthritis and gene expression data and

found significant signals for linkage [10]. Gorlova et al. developed

a method for QTL analysis to evaluate both total and parent-

specific linkage signals based on identity-by-descent (IBD) sharing

[11]. Ainsworth et al. described a methodology of family-based

multinomial modeling in which POE detection is considered using

mothers and their offspring [12]. Wang et al. developed an

approach for testing transgenerational imprinting effects based on

multiple pairs of reciprocal crosses [13]. Liu et al. proposed a

random-effect model based on IBD by implementing the

maximum likelihood method for linkage mapping of imprinting

genes [14]. However, none of above approaches considered the

advantage of orthogonality properties in the modeling of the main

genetic effects along with imprinting effects in genome wide

association studies.

Most traditional association approaches assume that the two

alleles from the parents contribute equally to the trait, thereby

ignoring the potentially important genetic phenomenon, POEs.

These approaches estimate the main allelic effect, which could also

be considered as the overall genetic effect, without considering

POEs. Thus, it is important to develop new methods applicable to

genome-wide scans that model the differential contribution of

paternal and maternal alleles. It is desired that a method that

allows for POE also maintain the power to detect the main allelic

effect after adding one or more parameters to the model.

Therefore, the proper and orthogonal decomposition of genetic

variance renders this framework meaningful and useful to estimate

main allelic effects along with the POE.

The natural and orthogonal interactions (NOIA) model was

originally developed as a framework for estimating genetic

effects for a quantitative trait and gene-gene (GxG) interactions

[15]. The statistical formulation in NOIA provides an orthog-
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onal approach for estimating genetic effects, which means the

estimates of the genetic effects are not statistically correlated. As

pointed out by Alvarez-Castro and Carlborg, there are two

main advantages for the orthogonal models [15]. First, it makes

model selection more straightforward. Second, it enables a

proper variance component analysis because of uncorrelated

estimates of the genetic effects. The NOIA model was extended

by Ma et al. [16] for modeling gene-environment (GxE)

interactions in quantitative or qualitative trait analysis. Simula-

tion study and variance decomposition analysis were both

performed to validate that the orthogonal NOIA statistical

model are suitable to model the additive effect, dominant effect,

and interaction effects.

Genome-wide association studies (GWASs) have achieved great

success in identifying genetic susceptibility loci associated with

human disorders and traits in the past decade, such as cancer,

diabetes, hypertension and heart diseases [17–20]. However,

explanation of the missing heritability of most complex or

multifactorial diseases and disorders is still a challenge in the field

of genetic epidemiology. The highly significant genetic markers

identified via GWAS have explained only a proportion of the

heritability of most human diseases [21,22]. Genetic imprinting

affects expression of genes and may explain some of the missing

heritability.

In this study, we generalize the NOIA framework to

incorporate POEs. We show that more disease-associated genes

could be detected by incorporating POEs with orthogonal

models than by using traditional models, and that the NOIA

POE model would fulfill the requirement of maintaining the

power to detect the main allelic effect for complex diseases

when multiple loci contribute to disease risk. The orthogonality

of the statistical formulation of NOIA framework is important,

especially when multiple loci are contributing to the outcome.

Using Kronecker product rule, our one-locus NOIA POE

formulation can be easily extended to the general case of

multiple loci (and environmental factors) to model general

GxG/GxE interactions in the presence of imprinting effect,

making NOIA a unified framework for detecting GxG/GxE

interactions along with imprinting effect. Here we focus on one-

locus association analysis for quantitative trait, implementing

NOIA into a POE integrated framework by re-parameteriza-

tion.

From the NOIA statistical model without POE (Stat-Usual)

and the traditional functional model without POE (Func-Usual),

we derived the formulas of several different quantitative trait

association models, including a statistical POE (Stat-POE) model

and a functional POE (Func-POE) model. Then, we evaluated

the performance of the Stat-POE and Func-POE models. We

also compared the performance of the POE models (Stat-POE

and Func-POE) with that of the models without POE

incorporated (Stat-Usual and Func-Usual). These studies were

all performed for both a simulated quantitative trait dataset and

a qualitative trait dataset. We found that the incorporation of

POE into the statistical model did not affect the estimation of

the main allelic effect. Moreover, the power of the statistical

models with POE incorporated was higher in the presence of

imprinting than that of the usual models without POE for

detecting the main allelic effect for both the quantitative trait

and qualitative trait. Although our methods were developed and

evaluated for single locus association study, we show that they

can be straightforwardly extended to gene-gene interaction or

gene-environment interaction models.

Methods

The NOIA Model: Quantitative Trait Genetic Model
without POE

We first briefly review the NOIA model without POE detecting.

Using the usual approach for genotype-phenotype mapping of a

quantitative trait locus (QTL), if the trait is influenced by a single

diallelic locus, with alleles A1 and A2, we let minor allele be A2.

Assume we have a collected sample with n individuals. For the i-th
individual, let yi be the observed trait phenotype and G�i be the

genotypic value for a specific locus. We use yto denote the vector

of the observed trait which is assumed to be normally distributed

in large sample and y~ y1,y2, . . . ,yn½ �T . We model the phenotype

as yi~G�i ze�i . The vector G�~Z1
:G, where G denotes the vector

of genotypic values including G11, G12 and G22 as the genotypic

values of the three possible genotypes for alleles A1 and A2; the n
rows of matrix Z represent the corresponding genotype for n
individuals. Therefore, the vector G� could be expressed as

G�1
G�2

..

.

G�n

0
BBBB@

1
CCCCA~

1 0 0

..

. ..
. ..

.

0 1 0

..

. ..
. ..

.

0 0 1

..

. ..
. ..

.

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

G11

G12

G22

0
B@

1
CA: ð1Þ

Several methods have been proposed for mapping a quantita-

tive trait controlled by one locus with two alleles. The vector of

genotypic values G can be expressed as the product of genetic-

effect design matrix S and the vector of genetic effect E.

G~S:E: ð2Þ

The vector of genetic effects (E) includes three parameters: the

reference point (R), the additive effect (a) and the dominant effect

(d ).

One of the traditional regression models, which we call a

functional model, is given by:

G~

G11

G12

G22

0
B@

1
CA~SF EF ~

1 0 0

1 1 1

1 2 0

0
B@

1
CA

R

a

d

0
B@

1
CA: ð3Þ

The inverse is

EF ~

R

a

d

0
B@

1
CA~S{1

F G~

1 0 0

{
1

2
0

1

2

{
1

2
1 {

1

2

0
BBB@

1
CCCA

G11

G12

G22

0
B@

1
CA: ð4Þ

Here, the reference point R corresponds to the genotypic value

of one of the two homozygotes, G11. The additive effect, a, is half

of the difference between the two homozygotes genotypic values.

The dominance effect, d , is the difference of the heterozygote

genotypic value and the average of the homozygotes genotypic

Parent-of-Origin Effects Integrated Association
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values. This is referred to as the Func-Usual model in what follows.

Another usual functional model codes the additive effect as

(21,0,1) for the three genotypes and the reference point

corresponds to the average genotypic values of the two homozy-

gotes [23]. These two usual functional models have the same

estimators except the intercept term, and we therefore will not

discuss the second model in detail in what follows. These models

are called functional models since they use natural effects of allele

substitutions as parameters, mainly focusing on the biological

properties [15].

A second approach to modeling, the ‘‘statistical model’’ which

we call the Stat-Usual model, was proposed by Alvarez-Castro and

Carlborg for estimating genetic effects for a quantitative trait and

gene-gene (GxG) interactions [15]. It can be formulized as follows

[14]:

G~

G11

G12

G22

0
B@

1
CA~SSES~

1 {N {2p12p22=V

1 1{N 4p11p22=V

1 2{N {2p11p12=V

0
B@

1
CA

m

a

d

0
B@

1
CA, ð5Þ

which ensures the orthogonality of the estimated parameters.

Here, pij denotes the genotype frequencies of this locus in the

population, where ij~11, 12 or 22, and N~p12z2p22,

V~p12z4p22{ p12z2p22ð Þ2~p11zp22{ p11{p22ð Þ2. N is the

expected value of N and V is the variance of N, where N is the

number of variant alleles (A2) which is equal to 0, 1 or 2 when the

genotype is G11, G12 or G22, respectively. In addition, we let

p
0
ij~pij

Nij{N

V
: ð6Þ

The inverse of equation (5) is

ES~

m

a

d

0
B@

1
CA~S{1

S G~

p11 p12 p22

p
0
11 p

0
12 p

0
22

{ 1
2

1 { 1
2

0
B@

1
CA

G11

G12

G22

0
B@

1
CA: ð7Þ

The genetic effects, ES , are based on the genotype frequencies

of this locus in the population. Alvarez-Castro et al. [15] noted

that the statistical model is an orthogonal model that has

uncorrelated estimates of the parameters, which was also reflected

by variance components decomposition in Ma et al. [16]. As they

stated, these two models could be transformed to each other as

follows:

R

a

d

0
B@

1
CA~

1 N p12

0 1 p
0
12

0 0 1

0
B@

1
CA

m

a

d

0
B@

1
CA: ð8Þ

We notice the Stat-Usual and Func-Usual models have same

estimators for the dominant effect and different estimators for the

additive effect as d~d. If the dominance components are removed

from these two models, they have same estimation and also the

same test statistic for additive effect estimation (Text S5).

Quantitative Trait Genetic Models with POE
In this section, we extend the models described above by

incorporating the POE and evaluate the performance of these

extended models in detecting both the overall genetic effect and

POE. For a gene with POE, the vector of genotypic values G has

four components, G11,G12,G21 and G22, in which the first allele

represented by the first digit in the subscript is transmitted from

the mother, and the second allele represented by the second digit is

transmitted from the father. We used N1 and N2 to denote the

number of maternal and paternal variant allele A2, respectively.

N1 and N2 are independent variables with binomial distributions,

respectively. That is,

N1~
0

1

�
if

if

G~G11

G~G21

or

or

G12

G22

, ð9aÞ

N2~
0

1

�
if

if

G~G11

G~G12

or

or

G21

G22

: ð9bÞ

Similar to equation (1), the vector G� can be expressed as

G�~Z2
:G and

G�1
G�2

..

.

G�n

0
BBBB@

1
CCCCA~

1 0 0 0

..

. ..
. ..

. ..
.

0 1 0 0

..

. ..
. ..

. ..
.

0 0 1 0

..

. ..
. ..

. ..
.

0 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

G11

G12

G21

G22

0
BBB@

1
CCCA,

where the new n rows of matrix Z2 represent the corresponding

genotypes for each individual.

We have two different ways to construct a functional and a

statistical model with POE. First, we can do so by decomposing

the additive effects into two paternal and maternal additive effects,

resulting in Model 1 for the functional model and Model 2 for the

statistical model (see Text S1). In this way, we are able to

incorporate POE detection to the Stat-Usual model while still

maintaining its orthogonality. An alternative extension of the

models yields an equivalent but more comprehensive framework,

which can be readily used for detecting the main allelic additive

effect and POE simultaneously. The main allelic effects denote

the overall additive effect on the trait conferred by this allele, and

the POE is defined as the imprinting effect of the allele with

paternal origin over the same allele with maternal origin. We

depict these models in the following subsections and leave the

details to Text S1.

The POE Functional (Func-POE) Model
Let r1 and r2 be the main allelic additive effect and POE of the

locus, respectively. The functional model can be expressed as

follows,

G~Rz
N1zN2

2
r1z

N2{N1

2
r2zed, ð10Þ

or
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G11

G12

G21

G22

0
BBB@

1
CCCA~SF2

EF2
~

1 0 0 0

1 1
2

1
2

1

1 1
2

{ 1
2

1

1 1 0 0

0
BBB@

1
CCCA

R

r1

r2

d

0
BBB@

1
CCCA: ð11Þ

The inverse of this expression is

EF2
~

R

r1

r2

d

0
BBB@

1
CCCA~S{1

F2
G~

1 0 0 0

{1 0 0 1

0 1 {1 0

{ 1
2

1
2

1
2

{ 1
2

0
BBB@

1
CCCA

G11

G12

G21

G22

0
BBB@

1
CCCA: ð12Þ

The POE Statistical (Stat-POE) Model
Let c1 and c2 denote the main allelic additive effect and POE of

the locus, respectively. Similarly, the orthogonal statistical model

similar to equation (5) can be expressed as

G~mz
N1zN2{ N1zN2

� �
2

c1

z
N2{N1{ N2{N1

� �
2

c2zed,

ð13Þ

where N1 and N2 denote the means of N1 and N2, respectively,

V1 and V2 denote the variance of N1 and N2, respectively. In the

original models without POE (Func-Usual and Stat-Usual), p12 is

the probability of an allele that has an allele A1 from either parent.

In our new models, the meaning of p12 is different: it is the

probability of an allele that has allele A1 from the mother and

allele A2 from the father. Similarly, p21 is the probability of an

allele that has allele A2 from the mother and allele A1 from the

father. From equations (9a) and (9b), we have

N1~p21zp22,

N2~p12zp22,

V1~ p21zp22ð Þ p11zp12ð Þ~N1 1{N1

� �
,

V2~ p12zp22ð Þ p11zp21ð Þ~N2 1{N2

� �
:

Therefore, according to equation (13), the vector of genotypic

values can be expressed as

G11

G12

G21

G22

0
BBBBB@

1
CCCCCA

~SS2
ES2

~

1 {
N1zN2

2
{

N2{N1
2

e11

1
1{ N1zN2ð Þ

2

1{ N2{N1ð Þ
2

e12

1
1{ N1zN2ð Þ

2

{1{ N2{N1ð Þ
2

e21

1 1{
N1zN2

2

{ N2{N1ð Þ
2

e22

0
BBBBBBBB@

1
CCCCCCCCA

m

c1

c2

d

0
BBBBB@

1
CCCCCA

,

ð14Þ

where

e~

e11

e12

e21

e22

0
BBB@

1
CCCA~

{2p12p21p22=D

2p11p21p22=D

2p11p12p22=D

{2p11p12p21=D

0
BBB@

1
CCCA, ð15Þ

and

D~p12p21p22zp11p21p22zp11p12p22zp11p12p21: ð16Þ

The inverse is then ES2
~S{1

S2
G, which can be expressed as

m

c1

c2

d

0
BBBBB@

1
CCCCCA

~SS1
{1G~

p11 p12 p21 p22

p
0
11zp

00
11 p

0
12zp

00
12 p

0
21zp

00
21 p

0
22zp

00
22

p
00
11{p

0
11 p

00
12{p

0
12 p

00
21{p

0
21 p

00
22{p

0
22

{ 1
2

1
2

1
2

{ 1
2

0
BBBBB@

1
CCCCCA

G11

G12

G21

G22

0
BBBBB@

1
CCCCCA

,

ð17Þ

where

p
0
ij~ {1ð ÞN1 ijð Þ{1

pij 1{N2

� �1{N2 ijð ÞN2
N2 ijð Þ{pij

� �
N2

1{N2 ijð Þ 1{N2

� �N2 ijð Þ=D

p
00
ij~ {1ð ÞN2 ijð Þ{1

pij 1{N
1

� �1{N1 ijð Þ
N1

N1 ijð Þ{pij

� �
N1

1{N1 ijð Þ 1{N2

� �N1 ijð Þ=D

8><
>: :

ð18Þ

N1 ijð Þ and N2 ijð Þ denoted the N1 and N2 values of the genotype ij,

respectively. From equations (17) and (18), each column of S{1
S2

is

independent of the others therefore the parameters are orthogonal.

Parent-of-Origin Effects Integrated Association
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S{1
S2

can also be expressed as

p11 p12 p21 p22

{
p11 p12N1zp21N2ð Þ

D

p12 p11N1{p22 1{N2ð Þð Þ
D

{
p21 p22 1{N1ð Þ{p11N2ð Þ

D

p22 p21 1{N1ð Þzp12 1{N2ð Þð Þ
D

{
p11 p12N1{p21N2ð Þ

D

p12 p11N1zp22 1{N2ð Þð Þ
D

{
p21 p22 1{N1ð Þzp11N2ð Þ

D

p22 p21 1{N1ð Þ{p12 1{N2ð Þð Þ
D

{ 1
2

1
2

1
2

{ 1
2

0
BBBBB@

1
CCCCCA
:

ð19Þ

The POE functional model (Func-POE) and statistical model

(Stat-POE) are related by

m

c1

c2

d

0
BBBBB@

1
CCCCCA

~

1
N1zN2

2

N2{N1
2

p12zp21

0 1 0 p
00
12zp

00
21zp

0
12zp

0
21

0 0 1 p
00
12zp

00
21{ p

0
12zp

0
21

� �

0 0 0 1

0
BBBBBBB@

1
CCCCCCCA

R

r1

r2

d

0
BBBBB@

1
CCCCCA

,

ð20Þ

where

p
00
12zp

00
21{ p

0
12zp

0
21

� �
~

2p11p22 p12{p21ð Þ
D

,

which means c2~r2 in the case of equal frequency of the two types

of heterozygote (p12~p21).

Orthogonality of the Stat-POE Model
We have previously showed that the Stat-Usual model was

orthogonal in the sense that the estimates of the four parameters

were uncorrelated [16]. As stated in the previous section, from

equations (17) and (18), the lack of correlation of the column

values of S{1
S2

implies that the Stat-POE model is also orthogonal.

The fact that the variance of G can be decomposed into two

independent additive components and one dominant component

also reflect the orthogonality of the statistical imprinting model. To

prove the orthogonality, we start with equation (13) to decompose

the total genetic variance as follows

VG~Var
N1zN2{ N1zN2

� �
2

c1

	 


zVar
N2{N1{ N2{N1

� �
2

c2

	 

zVar edð Þ

z2Cov
N1zN2{ N1zN2

� �
2

c1,
N2{N1{ N2{N1

� �
2

c2

	 

:

ð21Þ

Note that

Cov
N1zN2{ N1zN2

� �
2

c1,ed

	 

~c1dCov

N1zN2

2
,e

� �
~0,

and similarly,

Cov
N2{N1{ N2{N1

� �
2

c2,ed

	 

~0:

Also, Var edð Þ~d2Var eð Þ~4p11p12p21p22d2=D. Therefore, we

could express the additive and dominant variance components as

Vc~c2
1Var

N1zN2

2

� �
zc2

2Var
N2{N1

2

� �

z2c1c2Cov
N1zN2

2
,
N2{N1

2

� �
,

ð22Þ

Vd~4p11p12p21p22d2=D: ð23Þ

To show that the additive variance, Vc , could be decomposed

to be two parts that are dependent on only two additive effects (c1

and c2) respectively, Cov N1zN2

2
, N2{N1

2

� �
~0 needs to be satisfied.

And, as we know

Cov
N1zN2

2
,
N2{N1

2

� �
~

1

4
E N1zN2ð Þ N2{N1ð Þ½ �

{
1

4
E N1zN2ð ÞE N2{N1ð Þ

~
1

4
V2{

1

4
V1~

1

4
p12zp22ð Þ p11zp21ð Þ

{
1

4
p21zp22ð Þ p11zp12ð Þ

~
1

4
p11{p22ð Þ p12{p21ð Þ,

ð24Þ

which is indeed equal to 0 under the condition that p12~p21 or

p11~p22. In this way, we divided the additive variance component

into two independent parts as follows:

Vc1
~

c1
2

4
Var N1zN2ð Þ~

c1
2

4
p21zp22ð Þ p11zp12ð Þz p12zp22ð Þ p11zp21ð Þ½ �,

ð25Þ

Vc2
~

c2
2

4
Var N2{N1ð Þ~ c2

2

4
p11{p22ð Þ p12{p21ð Þ: ð26Þ

And VG~Vc1
zVc2

zVd:

The two additive variance components Vc1
and Vc2

are related

only to the additive effects parameters c1 and c2, representing the

overall genetic effect and the POEs, respectively. The dominance

variance component Vd is only related to the dominance effect

parameterd. The property that the variance components can

be divided into two independent additive components and one

dominant component demonstrates that the transformed POE

statistical model is orthogonal. We also proved that the Stat-POE

model is orthogonal before transformation (Text S2). On the other
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hand, by checking whether X T :X is a diagonal matrix, we showed

that the transformed Stat-POE model is orthogonal (Text S3).

However, for the transformed Func-POE model, the variance

components could not be decomposed into three independent

parts, indicating that the Func-POE model is not orthogonal

(Text S4).

Simulation Methods
We performed simulation studies for both a quantitative trait

and a qualitative trait (case-control) using an approach similar to

that used in [16], and the simulated data were analyzed using the

four aforementioned models: Stat-POE, Func-POE, Stat-Usual

and Func-Usual. The Wald test was used to test the hypothesis

that the corresponding coefficient of the genetic effects and

imprinting effect was equal to 0. The test statistic was

z~
E
_

se E
_
� �~

X
0
X

� �{1
X
0
y

se E
_
� � : The R coding for the Stat-POE

and Func-POE models is available in Text S6.

Simulation of data with a quantitative trait. To simulate

samples of independent individuals with a quantitative trait

controlled by a diallelic locus, we assumed that the gene is under

HWE. The case that a gene is not under HWE was not considered

in our study, and will be investigated in our future work. For a

given value of the minor allelic frequency (p) in the population,

genotype 11, 12, 21, 22 were assigned to an individual with

probabilities 1{pð Þ2, p 1{pð Þ, p 1{pð Þ and p2 respectively. We

assumed the genotype frequencies of the two types of heterozy-

gotes were the same in the population. We assumed the phenotype

was influenced by a main allelic additive effect, a POE, and a

dominant effect. From a prespecified vector of parameters

(ET
F ~ R,a1,a2,d½ �), we assigned each individual a genotypic value

according to his/her assigned genotypes. Then, by randomly

generating a value from a normal distribution with prespecified

mean and variance (0 and s2
e ), we generated an observed

phenotype/trait by adding this residual to the previously assigned

genotypic value. We used data from 2000 individuals as a replicate

and simulated 1000 replicates for each genetic model.

In the simulation study of a quantitative trait, three scenarios

were simulated with different levels of POE (Table 1). The minor

allele frequency (MAF) p was set to 0.28, and the residual variance

s2
e was 144.0. The true values of the four parameters in these three

scenarios are shown in Table 1. For the sample size with 2000

individuals, the computation speeds of the four models running by

R programming in Unix system are: 22 seconds for the Stat-POE

model, the Stat-Usual model and Func-Usual model, respectively;

24 seconds for the Func-POE model.

Simulation of data with a qualitative trait. Ma et al. [16]

derived the formulation of the statistical model without POE

incorporated in quantitative traits and proposed that a similar

statistical model could also be defined for a qualitative trait by

treating the genetic effects as the logit function of the disease.

Unfortunately, the orthogonality of that model is not valid for the

qualitative trait under the alternate hypothesis that there is a

genetic effect, but is valid under the null hypothesis of no effect.

This same conclusion is true for our POE statistical model. Here

we performed simulations to evaluate the performance of the

POE-related models in a case-control study design.

Briefly, we used the logistic model and Bayes’ theorem to set the

genotype of each individual according to the prespecified genetic

effect terms, ET
F ~ R,a1,a2,d½ �. The disease penetrance for each

genotype was determined by

Pr d~1jijð Þ~ 1

1z exp {Gij

� � , ð27Þ

where d denotes the disease status with value 1 for cases and 0 for

non-affected controls.Gij was the genotypic value when the

genotype was ij with ij~11, 12, 21 or 22. Then the distribution

of the four genotypes in the cases was determined by

Pr ijjd~1ð Þ~
Pij= 1z exp {Gij

� �� �
P

kl Pkl= 1z exp {Gklð Þð Þ : ð28Þ

As in the simulation study for a quantitative trait, Pij is the

genotype frequency of 11, 12, 21 and 22 in the population,

determined by 1{pð Þ2, p 1{pð Þ, p 1{pð Þ and p2, respectively. For

simulating controls in the population, we used a similar

distribution as follows

Pr ijjd~0ð Þ~
Pij= 1z exp Gij

� �� �
P

kl Pkl= 1z exp Gklð Þð Þ : ð29Þ

For each replicate, 1000 cases and 1000 controls were

generated, and a total of 1000 replicates were simulated. The

MAF p was set to 0.28. Two scenarios were simulated with

different levels of POE (Table 1).The simulating values of the

parameters in the two different scenarios are shown in Table 1.

To determine whether the setting of the MAF value influence

the performance of the models, we also simulated two additional

scenarios with different MAF values (0.03 and 0.48) for both

quantitative traits and qualitative traits.

Results

First we performed a simulation study for a quantitative trait in

three scenarios with strong, moderate, or weak imprinting effect

while the main allelic additive effect remained the same (Table 1).

The true values of the four parameters in these three scenarios are

shown in Table 1. The density distribution of all four effects after

analyzing 1000 replicates in scenario 1 with strong imprinting

effect is shown in Figure 1. The estimates of all four parameters

Table 1. Simulation true values of genetic effects for
quantitative and qualitative traits data sets.

R r1 r2 d

Quantitative trait

Scenario 1 90.0 3.0 23.0 1.2

Scenario 2 90.0 3.0 22.0 1.2

Scenario 3 90.0 3.0 21.0 1.2

Qualitative trait

Scenario 1 100.0 2.0 22.0 0.5

Scenario 2 100.0 2.0 20.6 0.5

R denotes intercept; r1 and r2 denote overall additive genetic effect and POE,
respectively; and d denotes dominant effect. Three scenarios with strong,
medium and weak POE were simulated for quantitative traits; two scenarios
with strong and weak POE were simulated for qualitative traits. The MAF was
set to 0.28 for both traits.
doi:10.1371/journal.pone.0072208.t001
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were accurate for both the Stat-POE and Func-POE models.

Compared with the Func-POE model, the Stat-POE model had

smaller variance in most cases for detecting the intercept and main

allelic additive effect terms. The estimates for the POE term and

dominant effect term were the same between the Func-POE and

Stat-POE models. Similar patterns could be detected for the other

two scenarios (data not shown).

To evaluate the performance of these models in detecting

main allelic additive effect and POE, we calculated the statistical

power of four models under different critical values of P values

obtained using a Wald test (Fig. 2). Figure 2a shows the power for

detecting the main allelic additive effect for scenario 1 with strong

POE. The power of both statistical models (Stat-POE and Stat-

Usual) for detecting additive effects was greater than that of both

functional models (Func-POE and Func-Usual). The power of

detecting additive effect was the same for the Stat-POE and Stat-

Usual models. It was also the same for the Func-POE and Func-

Usual models. In the other two scenarios in which medium or

weak POE was simulated, identical results were obtained for the

main genetic effect term as shown in Figure 2a, since the main

allelic additive effect was set to the same value, 3.0 (Table 1).

These results indicated that the power for detecting the main

allelic effect did not change even if a POE parameter was

integrated into the analysis model. The performance of these four

models for detecting dominant effects was the same in three

scenarios (data not shown), which was consistent with the

formulations (Equation (8) and Text S5).

Figure 2b–d shows the power of the Stat-POE and Func-

POE models for detecting the POE in three scenarios. The

performance of the two POE models remained the same in

scenarios 1, 2 and 3. This is because in our simulation, the

genotype frequency values for the two types of heterozygotes were

set at the same value which is valid under HWE. We therefore

have: p
00

12zp
00

21{ p
0

12zp
0

21

� �
~

2p11p22 p12{p21ð Þ
D

~0. According

to equation (20), the POE repressor in the Stat-POE model was

equivalent to that in the Func-POE model. When the assumption

that the genotype frequencies for the two heterozygotes are the

same is violated, we would see different performance for the Stat-

POE and Func-POE models in detecting POE (data not shown).

We also found that the overall power decreases when the POE

decreases (Fig. 2b–d).

To evaluate whether the MAF influences the estimation of the

genetic effects by these models, we also performed analyses for

quantitative traits when the MAF was 0.03 and 0.48, respectively

(Fig. S1–S2). Figure S1 shows that when strong POE existed, the

Stat-POE model still had much greater power than the Func-POE

model in detecting the main additive effect for uncommon variants

(MAF = 0.03). Figure S2 shows that when strong POE existed, the

Stat-POE model had slightly greater power than the Func-POE

model in detecting the main additive effect for variants with MAF

as 0.48.

Similarly, we also performed analyses for simulated case-control

data. The simulating values for each of the two scenarios are

shown in Table 1. Figure 3 shows the histograms for all four effects

after analyzing 1000 replicates in scenario 1. The patterns for the

distribution of the four parameters were similar to those observed

in the simulation of a quantitative trait, and the estimates were

Figure 1. Density distribution of the estimates of the parameters from a simulated data analysis with a quantitative trait influenced
by a genetic factor and by strong POE (Scenario 1). The pre-specified minor allele frequency was 0.28. The values of the four parameters were
ET

F ~ 90:0,3:0,{3:0,1:2½ � and ET
S ~ 91:3,4:1,{3:0,1:2½ � for the functional POE (Func-POE) model and the statistical POE (Stat-POE) model, respectively.

The solid arrows denote the true simulated values of the parameters for Stat-POE model and the dashed arrows denote those for the Func-POE
model.
doi:10.1371/journal.pone.0072208.g001
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very close to the corresponding simulating values for both the Stat-

POE and Func-POE models, except for the intercept term. The

differential estimation of the intercept term arose from the non-

random sampling in our simulation: the proportion of cases in the

sample was much larger than that in the general population. The

variance of the main allelic additive effect for the Stat-POE model

was still smaller than that in the Func-POE model. The estimate

distributions are very close to each other or the same for these two

models in detecting POE and dominant effect.

Figure 4 shows the power of the four models in detecting the

main allelic additive effect, POE and dominant effect when the

trait was affected by relatively strong POE for case-control data.

The performance of the Stat-POE model was slightly better than

that of the Stat-Usual model, but the performance of both was

better than that of the functional models, Func-POE and Func-

Usual (Fig. 4a). The Stat-POE and Func-POE models had the

same power in detecting POE (Fig. 4b, 4c). Interestingly, the POE

models (Stat-POE and Func-POE) both had higher power for

detecting dominance effect than the usual models, Stat-Usual and

Func-Usual (Fig. 4c).

Another simulation was performed with a moderate POE for

case-control data (Table 1, scenario 2; Fig. 5). Interestingly, the

performance of the Stat-POE model was not much better than

that of the Stat-Usual model (Fig. 5a) for detecting the main allelic

additive effect (Fig. 4a). For detecting the main allelic additive

effects, the statistical models (Stat-POE and Stat-Usual) had much

higher power than the functional models, Func-POE and Func-

Usual. The statistical models and functional models had the same

or very close power with and without the incorporation of POE.

The Stat-POE and Func-POE models had the same or very close

power for detecting POE and dominant effect (Fig. 5b, 5c).

Simulations were also performed when MAF was set as 0.03

and 0.48 for case-control design, respectively (Fig. S3–S4). For

rare variants, the Stat-POE model had much greater power than

the Func-POE model in detecting main additive effect, although

slightly greater power was observed for Func-POE model in

detecting the POE (Fig. S3). For variants with MAF = 0.48, the

Stat-POE model had much greater power than the Func-

POE model in detecting main additive effect and dominant effect

(Fig. S4). The power of the Stat-POE model was even higher than

that of the Stat-Usual model in detecting the main additive effect

(Fig. S4a).

We summarized the detailed power comparison of the Stat-

POE and Func-POE models in Table 2. In all scenarios we

simulated, the Stat-POE model had much greater (or equal) power

than the Func-POE model in detecting the main additive effect.

For testing imprinting effect, the Stat-POE model had the same

power as the Func-POE model for quantitative traits whereas the

Stat-POE model sometimes presented slightly worse power than

the latter for qualitative traits. They have save performance for

detecting dominant effect for both quantitative traits and

qualitative traits (Table 2).

Type I error was evaluated for both the quantitative trait and

the qualitative trait by simulating a null scenario where there was

no main genetic effect or POE. We estimated the type I error for

the main additive effect, POE and dominant effect for both

quantitative traits and case-control traits when the MAF was set as

0.03, 0.28 or 0.48 (Table 3). The false positive rate for detecting

the additive effect was almost the same for the statistical and

functional POE models in most scenarios we simulated (around

0.05 or less for the 1000 replicates). The false positive rate for

detecting the additive effect was smaller estimated from the Func-

Figure 2. Power under different critical values of the P values obtained using the Wald test for the quantitative simulation data
shown in Table 1. (a) Power for detecting the main allelic additive effect in scenario 1 when strong POE exists. Power for detecting POE of the Stat-
POE and Func-POE models was compared for scenario 1 (b), scenario 2 (c), and scenario 3 (d).
doi:10.1371/journal.pone.0072208.g002
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POE model than that from the Stat-POE model, when MAF was

set as 0.03 for case-control traits. For detecting POE, these two

models usually had very close false positive rates for both

quantitative and case-control traits.

Discussion

In this study, we extended the NOIA framework, which was

initially developed for epistatic analysis of quantitative traits, by

incorporating POE for genetic association analysis. Herein, we

propose a unified framework for one-locus association study that

allows for main allelic additive effect, the dominant effect and

POE estimation via linear regression or logistic regression. Using

simulation, we illustrated the statistical properties of this extended

framework on one-locus association study. Although the Func-

POE model sometimes presented slightly greater power than the

Stat-POE model for estimation of POE for qualitative trait. The

Stat-POE model are always preferred than the Func-POE model

in detecting overall additive effect for quantitative traits and

qualitative traits, because of its much greater power.

We conducted genetic variance decomposition to show that the

Stat-POE model was orthogonal when either HWE or equal

minor and major allele frequencies is satisfied for quantitative

traits (equations 21–25). Thus, even when the POE was absent,

estimates of the overall genetic effects were not affected after a new

parameter representing POE was added in the analytic model.

Figure 3. Density distribution of the estimates of all four parameters from a simulated data analysis with a qualitative trait
influenced by a genetic factor and by strong POE. The pre-specified minor allele frequency was 0.28; the true values of the four parameters
were ET

F ~ 100:0,2:0,{2:0,0:5½ � and ET
S ~ 100:0,2:4,{2,0:5½ � for the Func-POE and the Stat-POE models, respectively. The solid arrows denote the

true simulated values of the parameters for Stat-POE model and the dashed arrows denote those for the Func-POE model.
doi:10.1371/journal.pone.0072208.g003

Figure 4. Power under different critical values of the P values obtained using the Wald test for the case-control simulation data
influenced by a genetic factor with strong POE (scenario 1). The minor allele frequency was 0.28.
doi:10.1371/journal.pone.0072208.g004
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This was not true for the Func-POE model, as shown in our

simulation for quantitative traits (Fig. 2a). Although the Func-POE

model was not orthogonal (Text S4), we have the same

performance of the Func-POE and Func-Usual models for

detecting the main allelic additive effect, as shown in Figure 2a.

This is probably because the term
r1d

2
Cov N1zN2,eð Þ in equation

(D3) (Text S4) is rather small in our simulation. The Stat-POE and

Func-POE models we proposed could also be applied to

qualitative traits via logistic regression although the property of

orthogonality would no longer exist under the alternative model

[16]. When orthogonality exists under the null, the subsequent

tests have appropriate type I error rates, but the failure of

orthogonality under the alternate model can lead to improper

estimates of heritability, although the estimators may be less biased

than those that are obtained from the functional models.

Using simulation, we demonstrated that the statistical models,

including the Stat-POE and Stat-Usual models, had better

performance for detecting the main allelic additive effect than

the functional models, Func-POE model and Func-Usual for both

quantitative traits and qualitative traits. These two POE models on

detecting the POE had the same power when p12~p21. Stat-POE

model had better performance on detecting the main allelic

additive effect than the Stat-Usual model for qualitative traits

when strong POE exists. The power was the same for detecting the

main allelic effect even if a POE parameter was integrated into the

analysis model because of the orthogonality of the Stat-POE

model (Fig. 2a; Fig. S1–2). The performance of our framework was

not exactly the same in quantitative and qualitative trait simulation

studies. The simulation study for both quantitative and qualitative

traits showed that the estimates of all four parameters were

accurate for both the Func-POE and Stat-POE models.

However, the performance of these two models for detecting the

main allelic effect and dominance effect had a different pattern in

qualitative traits (Fig. 4 and 5). In qualitative traits, for detecting

the main allelic effect, the statistical (Stat-POE and Stat-Usual)

Figure 5. Power under different critical values of the P values obtained using the Wald test for the case-control simulation data
influence by a genetic factor with moderate POE (scenario 2). The minor allele frequency was 0.28.
doi:10.1371/journal.pone.0072208.g005

Table 2. Summary of the power of the Stat-POE and Func-POE models in different simulation scenarios for both quantitative traits
and case-control traits.

MAF = 0.03 MAF = 0.28 MAF = 0.48

Strong POE Weak POE Strong POE Weak POE Strong POE Weak POE

Quantitative traits

Add Stat-POE 0.98 0.98 0.93 0.94 0.79 0.78

Func-POE 0.01 0.01 0.36 0.35 0.75 0.75

POE Stat-POE 0.4 0.1 0.61 0.1 0.77 0.03

Func-POE 0.4 0.1 0.61 0.1 0.77 0.02

Dom Stat-POE 0.005 0.007 0.07 0.06 0.12 0.15

Func-POE 0.005 0.007 0.07 0.06 0.12 0.15

Case-Control traits

Add Stat-POE 0.73 0.73 1 1 1 1

Func-POE 0.001 0.001 1 1 1 1

POE Stat-POE 0.8 0.33 1 0.33 1 0.61

Func-POE 1 0.41 1 0.38 1 0.73

Dom Stat-POE 0.04 0.05 0.29 0.35 0.8 0.9

Func-POE 0.04 0.05 0.29 0.35 0.8 0.9

Add: overall genetic additive effect; Dom = dominant effect. Threshold of the P value was 0.001.
doi:10.1371/journal.pone.0072208.t002
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models, still had greater power than did the functional (Stat-Usual

and Func-Usual) models in most cases, regardless of the size of the

POE, which is consistent with the findings of the quantitative traits

simulation study (Fig. 2). However, the power of the Stat-POE and

Stat-Usual models was not usually the same for the qualitative trait

simulation in different scenarios (Fig. 4a, 5a), which varied, as

shown in the simulation study of a quantitative trait (Fig. 2). The

performance of the four models on detecting the dominance effect

was also different in the simulation of a qualitative trait (Fig. 4c;

Fig. S3–4), that the POE models (including the Stat-POE and

Func-POE) usually had greater power than the usual models. This

difference in performance arises because the test statistics used for

logistic and linear regression differ.

We also illustrate why the proposed model can detect

more disease-associated genes than the traditional models in

model setting as follows. First, the orthogonal (Stat-Usual) model

proposed by Alvarez-Castro et al. orthogonalizes the estimation of

the additive and dominant effects but the usual model (Func-

Usual) does not. We constructed the test statistics of the Stat-Usual

and Func-Usual models for quantitative traits with and without

dominance components effects (Text S5). The test statistic for the

additive effect did not change if the dominance component was

removed from the Stat-Usual model. However, the test statistic

was not consistent if the dominance component was removed from

the Func-Usual model. Thus, we suggest that the Stat-Usual

model is preferred to the Func-Usual model in association studies

when a dominance component is incorporated. Second, we also

compared the test statistic of the Stat-Usual and our newly

developed Stat-POE models. We found that the test statistic of the

main additive effect was the same for the two models, which was

consistent with the simulation studies. Even in simulation studies of

a case-control design, we observed that the Stat-POE had greater

power for detecting the main additive effect than the usual

orthogonal model (Stat-Usual). Comparing the test statistic of the

Func-POE and Fun-Usual models, the estimation of the main

genetic effect was not consistent, and the power decreased when

POE testing was included. Therefore, Stat-POE model can detect

more significant additive effect signals than the Func-POE model.

Several recent studies have incorporated POEs in association

analyses for quantitative traits. Genome-wide rapid association

using mixed model and regression (GRAMMAR) and its extension

are a recently developed approach that is based on a measured

genotype approach and has been shown to have greater power

than the transmission disequilibrium test (TDT)-based tests [24].

A maximum likelihood test was also developed for detecting

POEs using haplotypes [25]. Ainsworth et al. also described an

implementation of a family-based multinomial modeling approach

that allows for imprinting detection [12]. This method used family

data, case-mother duos or case-parents trios, to look for departures

in observed genotypes distribution from expected distribution

among affected offspring, given the genotypes of their parents. The

mechanism of analysis is still closely related to the TDT test. To

our knowledge, our approach is the only one that has the

advantage of orthogonality on the effects estimation for association

studies of detecting POE. NOIA was previously proposed and

formularized for gene-gene interaction analysis models of quan-

titative traits and was further implemented and extended by Ma

et al. [16] to reduced genetic models and estimating effects from

both genetic and binary environmental exposure. However, none

of these models had the potential to detect POE. Ma et al. showed

that when POE was not incorporated, the power of the statistical

model (Stat-Usual) was greater than that of the functional model

(Func-Usual) in most cases. This is the case in our study for

detecting main effects even when POE was integrated. Our study

exemplifies another significant implementation of NOIA that

adopts the orthogonal property of the statistical model if the family

data are available or if phasing is plausible for obtaining the

parental transmitting status of the candidate disease associated

loci. Because alleles of different parental origins can exert different

effects, the effect contributing to the disease outcome may be

masked in usual models that can detect only the main allelic

additive effect. The methodology proposed here yielded a

plausible means of detecting more genes that contribute to

complex diseases or quantitative traits that were not detected in

routine GWASs.

Although our extension of the NOIA is expected to provide new

insights into disease gene mapping, pedigree data are needed for

our framework to be used to estimate transmitting information of

each heterozygotes or homozygotes locus. Obtaining the trans-

mitting status of one locus is possible for non-informative pedigrees

determined by nearby linked loci or haplotype phasing. Or we

could use weighted analysis in which the probabilities of each

genotype are used. A future direction of our next step will be to

extend our formulations to incorporate non-deterministic geno-

Table 3. Type I error for simulation of quantitative and case-control traits data sets.

MAF = 0.03 MAF = 0.28 MAF = 0.48

Models/MAF Add POE Dom Add POE Dom Add POE Dom

Quantitative trait

Stat-POE 0.047 0.037 0.059 0.055 0.038 0.048 0.053 0.043 0.043

Func-POE 0.055 0.036 0.059 0.056 0.037 0.048 0.052 0.042 0.043

Stat-Usual 0.048 0.06 0.056 0.048 0.053 0.044

Func-Usual 0.048 0.06 0.056 0.048 0.053 0.044

Case-control trait

Stat-POE 0.044 0.062 0.017 0.05 0.045 0.046 0.047 0.049 0.039

Func-POE 0.01 0.063 0.017 0.049 0.047 0.046 0.049 0.048 0.039

Stat-Usual 0.045 0.017 0.047 0.047 0.047 0.038

Func-Usual 0.045 0.017 0.047 0.047 0.047 0.038

False positive rates for the genetic effects estimated from the Stat-POE, Func-POE, Stat-Usual and Func-Usual models under different minor allele frequency settings.
Add = overall genetic additive effect; Dom = dominant effect; MAF = minor allele frequency.
doi:10.1371/journal.pone.0072208.t003
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types due to insufficient parental information or missing data.

Alvarez-Castro and Carlborg handled internal mapping by

implementing the Haley-Knott Regression with NOIA [26].

Unknown genotypes and genotype frequencies can be estimated

by the weighted computation based on the genotype at the

flanking markers. The same strategy could be applied to the non-

deterministic parental information and missing data.

The motivation of our implemented framework was based on

the orthogonality property of NOIA which allows for easy model

selection and variance component analysis. A next step is to extend

the formulation proposed here to multi-locus and/or environ-

mental factor cases, including gene-gene interaction and gene-

environment interaction analyses when POE is incorporated.

Conceptually, this generalization should be fairly straightforward

using the Kronecker product rule as in [15], if we assume linkage

equilibrium between loci and no association between a genetic

locus and an environment factor. For the functional model we

anticipate nonorthogonality of the estimators will result in further

loss in power of hypothesis tests compared to the orthogonal tests

we are proposing. However, it would probably be challenging to

deal with and to properly interpret a large number of interaction

terms, especially if more than two loci are involved. The extension,

nevertheless, would be attractive as imprinting effects of one locus

may indeed have complex interaction with main effects of other

loci. We are currently working along this direction.

Supporting Information

Figure S1 Power under different critical values of the P
values obtained using the Wald test for the quantitative
simulation data influence by a genetic factor with strong
POE (scenario 1). The minor allele frequency was 0.03. Power

for detecting (a) the main allelic additive effect, (b) the POE and (c)

the dominant effect.
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Figure S2 Power under different critical values of the P
values obtained using the Wald test for the quantitative
simulation data influence by a genetic factor with strong
POE (scenario 1). The minor allele frequency was 0.48. Power

for detecting (a) the main allelic additive effect, (b) the POE and (c)

the dominant effect.
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Figure S3 Power under different critical values of the P
values obtained using the Wald test for the case-control
simulation data influence by a genetic factor with POE
(scenario 2). The minor allele frequency was 0.03. Power for

detecting (a) the main allelic additive effect, (b) the POE and (c) the

dominant effect.

(TIF)

Figure S4 Power under different critical values of the P
values obtained using the Wald test for the case-control
simulation data influence by a genetic factor with POE
(scenario 2). The minor allele frequency was 0.48. Power for

detecting (a) the main allelic additive effect, (b) the POE and (c) the

dominant effect.

(TIF)
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Models.
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Text S6 R coding of Stat-POE and Func-POE models.
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