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Abstract

Many cancers are aneuploid. However, the precise role that chromosomal instability plays in the development of cancer and
in the response of tumours to treatment is still hotly debated. Here, to explore this question from a theoretical standpoint
we have developed an agent-based model of tissue homeostasis in which to test the likely effects of whole chromosome
mis-segregation during cancer development. In stochastic simulations, chromosome mis-segregation events at cell division
lead to the generation of a diverse population of aneuploid clones that over time exhibit hyperplastic growth. Significantly,
the course of cancer evolution depends on genetic linkage, as the structure of chromosomes lost or gained through mis-
segregation events and the level of genetic instability function in tandem to determine the trajectory of cancer evolution.
As a result, simulated cancers differ in their level of genetic stability and in their growth rates. We used this system to
investigate the consequences of these differences in tumour heterogeneity for anti-cancer therapies based on surgery and
anti-mitotic drugs that selectively target proliferating cells. As expected, simulated treatments induce a transient delay in
tumour growth, and reveal a significant difference in the efficacy of different therapy regimes in treating genetically stable
and unstable tumours. These data support clinical observations in which a poor prognosis is correlated with a high level of
chromosome mis-segregation. However, stochastic simulations run in parallel also exhibit a wide range of behaviours, and
the response of individual simulations (equivalent to single tumours) to anti-cancer therapy prove extremely variable. The
model therefore highlights the difficulties of predicting the outcome of a given anti-cancer treatment, even in cases in
which it is possible to determine the genotype of the entire set of cells within the developing tumour.
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Introduction

Cells with a wide range of structural and numerical defects in

chromosomes are found in many types of cancers. Whether these

changes contribute directly to the evolution of cancer or are just a

by-product of carcinogenesis itself, however, is a question that has

puzzled cancer researchers for more than a century. Although

there is strong experimental evidence for changes in chromosomal

copy number (aneuploidy) and chromosome mis-segregation

playing a central role in the way cancer evolves [2], no organizing

principles or clear evolutionary pathways have been established.

Therefore, an alternative approach is to study the problem from a

theoretical viewpoint, using simple computational models of cell

behaviour and cell-cell interactions to study homeostasis, its

dysregulation during cancer progression and its response to

treatment [3].

Computational modelling has recently become a practical

approach for the study of such emergent behaviours and complex

phenomenon [4]. Agent-based models have been used with success

to model the complexity found in ecological [5], economical [6]

and cancer systems [7], [8]. In complex systems, global behaviour

emerges from the interactions of the individual components, and

cannot always be inferred from an analysis of the individual

components in isolation [9]. Instead, however, agent-based models

can be used to determine the effects of interactions between

individual components on the behaviour of the system as a whole

[10]. One of the main advantages offered by agent-based

modelling over equation-based modelling techniques is the ability

to study the emergent behaviour that arises from defined

interactions between elements of a complex system [11]. Because

cancers are made up a large number of cells of diverse genotypes

that interact without centralised control, agent-based modelling

may help capture the essence of the system from the behaviour of

individual cells. Inspired by this type of computationally tractable

model, we have developed a framework with which to analyse the

role of chromosomal instability in cancer progression, and to

investigate the impact of chromosome mis-segregation in cancer

treatments. In silico experiments were then carried out to simulate

the interaction between chromosome mis-segregation and cancer

treatments; including abstractions of surgery, the physical removal

of tumour mass, chemotherapy, a treatment where over-prolifer-

ating cells are targeted and killed; and a combination of these two

treatments. It is clear from simulations that cancers with an
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unstable complement of chromosomes have a worse overall

prognosis. Moreover, the two types of therapy work in distinct

ways enabling them to be combined to further delay the course of

cancer progression. Finally, the analysis makes clear the difficulties

of predicting the course of any one cancer or its response to

therapeutic intervention.

Results and Discussion

The Model
To address whether chromosome missegregation plays an

important role in the development and progression of a cancer

we developed a simple model of tissue homeostasis in which to

study cancer evolution. To focus our analysis on this poorly

understood phenomenon we chose to disregard other types of

mutations (such as substitutions, insertions, deletions, and chro-

mosome translocations). For this, individual cells were modelled,

each equipped with a genetically defined genome, as agents in a

computational simulation (see Methods). We then represent the

tissue as a linear array of individual cells, where daughter cells are

spatially introduced adjacent to the mother cell of origin. The

simulated tissue initially exhibits homeostatic behaviour, as the

result of balanced rates of cell proliferation and cell death. These

behaviours were modelled as stochastic processes that are

regulated at a genetic level, based upon the properties of known

proto-oncogenes and tumour suppressor genes [12]. While in real

biological systems many features of cell biology are polygenic, we

made the simplifying assumption that a single gene dominates in

the regulation a specific behaviour, and that the impact of each

gene is proportional to the number of copies of a given gene found

in the genome of each cell, as suggested by recent studies on the

effects of differences in chromosome number on gene expression in

biological systems [13], [14]. This simplification is a necessity

while the human genetic regulatory network remains unknown. In

addition, it is key to understanding the effect of missegregation

events that affect chromosomes containing key genes such as p53,

Ras and pRb [12]. Thus, while reality is much more complicated,

we anticipate that it will be possible in the future to apply the

insights obtained by addressing this fundamental problem in an

abstract way to human cancer. Having established this model

system, we then introduced a gene abstraction that regulates

fidelity during cell division, which enable us to test the role of

evolving chromosomal instability in cancer development and

treatment. In this way, we can isolate the effects of chromosome

instability, tumour suppressor and oncogene activity and genetic

linkage on cancer progression (see Figure 1 A).

Each cell in the system has a simulated genome composed of

three kinds of genes. Apoptosis regulatory genes are an

abstraction of tumour suppressor genes such as p53 [15] that

regulate cell death, and enable us to model the fact that tissue

crowding leads to a corresponding increase in the rate of

delamination and cell death within an epithelium to maintain

homeostasis [16] [17]. To balance cellular death, cell division
regulatory genes provide an abstraction of proto-oncogenes

such as Ras [18], Myc [19] and p110 PI3K [20] and act to

promote cell growth and cell cycle progression. Again the action of

these genes is sensitive to the ‘‘homeostatic capacity’’ of the tissue

in order to model the process know as contact inhibition that limits

cell proliferation in crowded tissues [17]. Thus, in combination

these controls ensure that if the number of cells exceeds the

homeostatic limit, proliferation is inhibited and the probability of

cell death increased, maintaining a constant population of cells

close to the homeostatic capacity of the simulated tissue.

In addition, the model contains a finite rate of chromosome mis-

segregation during cell division, which generates variation

amongst the cell population. This level of genetic variation

depends on the action of chromosome segregation regula-
tory genes, which model genes controlling the fidelity of cell

division such as BUB1 [21] and MAD2 [22] that reduce the

likelihood of chromosome mis-segregation at cell division. In the

initial population of cells, each cell has two sets of identical

chromosomes (a diploid genome) and 2 copies of the chromosome

segregation gene. When dividing, the genome of each cell is

duplicated and the two sets of chromosomes are then segregated

into two daughter cells. It is during this stage that chromosome

mis-segregation events can occur, resulting in asymmetric cell

division: one daughter cell with an extra chromosome, and one

lacking the same chromosome.

Simulating Chromosome Missegregation
Because the exact role, location and linkage of the key genes

regulating cell growth, death and chromosome segregation in real

human chromosomes remains unknown [23], here we have also

explored how differences in the distribution of genes on

chromosomes affects the evolution of the system as a whole. To

do this, we placed the abstracted genes in three different

chromosomal configurations (Figure 1 A). These are distribution

A, where apoptosis regulatory genes and cell-division regulatory

genes are ‘‘linked’’ in the same chromosome; distribution B, where

cell-division regulatory genes and chromosome segregation

regulatory genes lie on the same chromosome; and Distribution

C where genes regulating apoptosis and chromosome segregation

are genetically linked. At the start of simulations each cell was then

modelled as a diploid, containing two copies of each chromosome

(Figure 1 A).

The evolutionary dynamics in our model are then determined

by the gene expression of the individual cells and the global

Figure 1. Genotype configurations and Gene Key. A. The
different Gene Abstractions were placed into chromosomes in three
different configurations. This led to different kinds of linkages between
the Genes. B. For the notation of different genotypes, we have used the
following key: (Number of Division Genes, Number of Death Genes,
Number of Segregation Genes). The initial Genotype in every simulation
is a diploid genome: (2,2,2). To better understand the proportions of the
genes in a given phenotype, we have used the RGB model to represent
the number of division genes as red, the number of death genes as
green and the number of segregation genes as blue See Methods,
Genotype Key).
doi:10.1371/journal.pone.0072206.g001
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behaviour that emerges through cell death, proliferation and mis-

segregation over time. Focusing on the genotypes that emerge

throughout the simulation, we denote the initial state as (2, 2, 2):

corresponding to 2 functional copies of each gene (Division,

Apoptosis and Segregation, respectively as seen in Figure 1 B).

Cancer-like growth will ensue if the number of oncogenes

increases and/or if all tumour suppressors are lost. Exploring the

three different gene distributions, 100 simulations were performed

for each configuration (Figure 2 A). Because instances of cell

division, birth and cell death are expected to be stochastic in

nature, and have been modelled as such, the behaviour of the

system is highly variable. Nevertheless, consistent trends can be

observed as illustrated in Figure 2 B.

First, Gene Distribution A resulted in homeostatic behaviour, in

which the system as a whole responds to fluctuations in cell

number to maintain the total number of cells close to that of the

carrying capacity of the tissue (200 cells). As expected, the plot of

the total number of cells across the simulations of Distribution A

revealed increasing variability in the genetic make-up of individual

cells over time as the result of chromosome mis-segregation

induced genetic drift; similar to that which might be seen in an

ageing homeostatic tissue. Although this variation makes the

statistical analysis challenging, an invariant behaviour can be

observed for each configuration; best visualized by broom plots in

Figure 2 B. In this case, because the abstracted genes that model

the role of oncogenes and tumour suppressor genes were coupled

by being situated on the same chromosome, the balance between

death and division was maintained despite the generation of new

genotypes emerged through chromosome mis-segregation events.

Significantly, some of the more successful genotypes naturally

acquired more resistance against chromosome mis-segregation,

through the acquisition of an extra copy of the chromosome

segregation regulatory gene (genotype state (2,2,3)), as seen in

Figure 2 E. This kind of stable aneuploid karyotype is found in

normal homeostatic tissues [24].

For Gene Distribution B, the gradual accumulation of

chromosome mis-segregation events leads to a breakdown in

homeostatic behaviour, giving rise to uncontrolled proliferation

(Figure 2 B). Once this occurred, total cell number increased

exponentially, reaching the values of the order of thousands in a

very short period of time. This kind of over-proliferative behaviour

was consistent across simulations. An analysis of the emergent

genotypes evolved through Gene Distribution B, as seen in Figure 3

B, revealed that aneuploid genotypes such as (3,2,3) and (2,1,2)

take over the population. From these aneuploid genotypes, initially

only slightly different to the original one, the population branches

out to generate more malignant genetically distinct variants such

as (3,1,3) and (2,0,2). Different kinds of successful (and less

successful) genotypes are gradually evolved. Successful genotypes

have the qualities of being apoptosis-resistant (low number of

apoptosis genes, as seen on Figure 2 D) and over-proliferative

(increased number of division genes, as seen on Figure 2 C). In this

distribution, however, because the genes that regulate division are

coupled to those that regulate fidelity during segregation (Figure 2

E), there is a brake applied to the subsequent generation of

aneuploid genotypes with increased division rates. As a result, this

population of aneuploid cells remained relatively homogeneous

once cells had acquired the key genetic anomalies driving

deregulated tumour growth (Figure 2 F). This kind of evolution

observed across experiments suggests a possible pathway for

oncogenesis that is associated with stable aneuploidy [24]. Diseases

such as leukaemia, lymphomas and some mesenchymal tumours

that exhibit specific abnormalities may follow a similar path [25].

Simulations of Gene Distribution C displayed over-proliferative

behaviour, similar to that of Gene Distribution B (Figure 2 B). On

a closer inspection, however, significant differences in the

dynamics of cancer evolution were observed (Figure 3 B). Because

the genes that regulate death are genetically linked to those that

regulate segregation in Gene Distribution C (Figure 2 D and

Figure 2 E), cancer evolution was accompanied by an increase in

genotypic diversity as the drive to lose apoptosis regulators leads to

a concomitant deregulation of chromosome segregation (Figure 2

F), as in genotype (3,1,1) and then genotype (3,0,0). This in turn

drives to the emergence of ever more aggressive clones (4,0,0),

(5,0,0) and (6,0,0), which corresponds to a 3-fold increase in the

rate of cell proliferation (Figure 3 B). This serves as a model for the

emergence of heterogeneous tumours, like those seen in clinical

settings, for example during the neoplastic progression character-

istic of epithelial tumours [26] [27]. These simulations for

Distribution B and C show how chromosome mis-segregation

events can drive tumour evolution by breaking the regulatory

balance that maintains normal tissue homeostasis.

To test the effects of leaving genes unlinked, a fourth genetic

distribution was investigated by modifying the model to accom-

modate a third chromosome. This system exhibited all three

behaviours obtained previously in stochastic simulations: pro-

longed homeostasis (as in Distribution A), unregulated growth

driven by loss of tumour suppressors (Distribution B) or by

oncogene activation (Distribution C), We also observed three kinds

of chromosome segregation event: up-regulated (Distribution B),

down-regulated (Distribution C) and neutral. This control

experiment shows how linkage between genes serves to limit the

common evolutionary paths exhibited by the system.

Chromosome Missegregation in Cancer Therapies
In patients, tumours composed of cells that are chromosomally

unstable have been associated with a poor prognosis [28]. We

therefore used Gene Distributions B and C (Figure 3 A) to

determine the relative efficacy of different treatment strategies in

dealing with tumour evolution under conditions of low and high

levels of genome instability. We considered tumour detection

would occur when the population reached 1000 cells. By the same

token, we considered that the tumour had relapsed when it again

reached the 1000 cell mark after treatment (marked as vertical

lines in Figure 3). Using these measures, we modelled the outcome

of different treatments on single tumours (or patients), so that we

could directly compare the outcomes in each case, despite the

expected variability in the course of tumour growth between

different simulations (tumours/patients). Data for a representative

experiment for each simulation are shown in Figure 3.

Scenario i: Surgical Treatment. The simulation of tumour

removal was implemented by retaining the first 100 connected

cells in the linked list and removing the rest of the connected

component of 900 cells in a single time-step. Since the tumour

rapidly emerged from a homeostatic population of 200 cells, the

vast majority of these represent cells related to cells in the tumour.

Scenario ii: Chemotherapy: To simulate the effects of chemother-

apy, we implemented an algorithm that killed all the cells that

attempted cell division in the nine consecutive time steps following

tumour detection. Scenario iii: Combination Therapy. As in

common in the clinic we combined therapies by implementing

surgery followed by nine rounds of chemotherapy.

Surgery was modelled to mirror the clinical intervention. Thus,

it was implemented when the population of cells has broken

through the homeostatic limit of 200 cells, and grown to reach

1000 cells. At this point, the population is made up of descendants

of many of the cells present in the initial population used to seed

Chromosome Missegregation in Cancer Development
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the simulation, but is dominated by a small number of related but

genetically heterogeneous aggressive cell clones, as in human

cancers [29]. The population also includes cells poised in a pre-

cancerous state that are the product of a process analogous to field

cancerization [30] which occurs as cells compete for space during

the course of simulations. These pre-cancerous cells will be likely

be related by lineage to the aggressive sub-clones that constitute

the bulk of the tumour. At this point, 90% of the population were

removed (Scenario i). To implement this, ‘‘adjacent’’ cells were

removed from the cell list to mimic surgical removal of the tumour

bulk. It is important to note that these cells tend to be related by

lineage as the result of cell division, as do the 10% of cells that

remain.

When we then examined the recovery following therapy, results

proved highly variable and depended on the nature of the cells

that survived (Figure 3 C and Figure 4 A). Though the actual

evolutionary pathways exhibit a high degree of variation across

simulations, a representative experiment for each gene distribution

captured qualitatively the kind of evolutionary pathway that most

of the simulations followed, as shown in Figure 3 C. After surgery

an average of 105 cells were left (std. 4.50) for distribution B and

106 cells (std. 5.13) for distribution C. However, over 100

simulations the prognosis was significantly better (p = 0.0499) for

tumours with Gene Distribution B, which exhibit relatively low

levels of chromosome mis-segregation (relapse time was an average

of 35.22 time steps and a standard deviation of 8.33), compared to

those with Gene Distribution C and high levels of chromosome

mis-segregation (with an average of 32.84 and a standard deviation

of 8.70), as seen in Figure 4 A. This behaviour was due in part to

the greater likelihood of a relatively normal population of cells

remaining after surgery from a population with low genetic

heterogeneity in comparison to that from a highly heterogeneous

population. Simulation to simulation variability in the path to

relapse was determined in part by the kind of genetic aberrations

present in the population remaining following surgery. Thus,

remaining cells that had suffered a loss of tumour suppressors

would not over-proliferate until they underwent additional mis-

segregation events, delaying the period of time until relapse. In

contrast, for simulations in which over-proliferative genotypes are

the first to emerge, a subset of cells remaining after surgery quickly

re-grow to break through the homeostatic limit (inhibiting the

growth of normal neighbouring cells through competition for

space) to form a tumour. Thus, the relapse time in simulations is

determined, primarily, by the oncogenic load, which is higher in

the chromosomally unstable populations.

Next we explored the role of genetic linkage in the course of

tumour relapse following surgery. For this analysis, as a measure of

the types of lesion driving tumour formation and relapse, we

compared the ratio of the average number of Apoptosis Genes to

the average number of Division Genes in simulations (shown in

Figure 5 A). When this was analysed in the 25 time steps after

surgery, it was clear that Gene Distribution C has a reproducibly

higher rate of loss of Tumour Suppression and Oncogene

acquisition than Distribution B. This can be seen most clearly

by comparing changes in the rate of the ratio of the average

number of Apoptosis Genes to the average number of Division

Genes following treatment (Figure 5 A), which has an near linear

slope of 20.0067 (std. 0.0037) for Distribution C, which is

significantly steeper (p = 0.005E-1) than the average slope for

Distribution B (slope 20.0049, std. 0.0030). This reflects the

greater generation of more malignant novel genotypes in type C

simulations, where chromosomal instability is high, compared to

simulations for Distribution B, where aneuploidy is relatively

stable. This in turn correlates with a worse prognosis for the

genetically unstable tumours. Thus, in our simulations, surgery

acts as a hit-or-miss therapy because it leaves cells that are related

to each other.

Having carried out an analysis of the effects of surgery, we next

simulated chemotherapy in the model (Scenario ii). Chemotherapy

was implemented in consecutive rounds, as done in the clinic using

a treatment such as taxanes, to specifically target dividing cells

[31]. This therapy tends to remove cells of the tumour that have

deregulated division, but also targets cells in the pre-cancerous

population that have deregulated proliferation and normal cells

that happen to divide. After chemotherapy, an average of 226.17

cells (std. 53.12) were left for Distribution B and 231.88 (std. 50.06)

cells for Distribution C. These cell numbers reflect the mechanism

by which chemotherapy acts: killing an average of 15.76% of the

population of Configuration B (std. 0.47), and 16.3% of the

population of Configuration C (std. 0.70) at each time step. In this

way the course of treatment drives an exponential decrease in the

number of cells killed.

When examining the effect of genetic linkage on the recovery

following chemotherapy we found that the relapse time was again

faster for cell populations with Gene Distribution C. Thus, Gene

Distribution B relapsed on average at 21.95 time steps (std. 4.89),

while tumours recurred in Gene Distribution C at an average of

18.30 time steps (std. 3.42), as seen in Figure 4 B. Again, this

significant difference (p = 0.003E-5) in relapse time could be

attributed to differences in genetic diversity between the two

populations at the time of treatment. Moreover, when we

measured the rate of acquisition of new variants that have

increased oncogenic load and a reduced number of tumour

suppressor genes (the ratio of the average number of Apoptosis

Genes to the average number of Division Genes) there was a

marked and significant difference (p = 0.004E-7) between simula-

tions over 25 time steps after chemotherapy - an average slope of

20.0048 (std. 0.0016) for Distribution B, and 20.0068, (std.

0.0019) for Distribution C (as seen in Figure 5 B). This reflects the

presence of higher numbers of cells poised in a pre-cancerous state

following treatment in Distribution C.

Finally, a combination of the two therapies (Scenario iii) yielded

an overall better prognosis for the two gene distributions than

surgery or chemotherapy alone. After this combined therapy there

were on average 36.09 (std. 8.56) cells left for Distribution B and

36.29 (std. 7.99) cells for Distribution C. Again, the results indicate

that Gene Distribution B still has a significantly better prognosis

(p = 0.008) than Gene Distribution C: Gene Distribution B had an

average relapse of 46.55 (std. 10.06), while Gene Distribution C

had an average relapse of 43.09 (std. 9.44). These results can be

Figure 2. Analysis of simulations. A. The three genetic arrangements, in simulated diploid chromosomes. Key measurements of each
configuration are represented in Broom Diagrams. B. Aspects of each simulation, from total number of cells to genetic diversity are represented as
line of different colour, with the median as a thick, black line (calculated until one of the simulations came to an end). The behaviour observed for
Gene Configuration A is a homeostatic one. Configurations B and C displayed an over-proliferative behaviour. This is due to the genetic up and down
regulation reflected by the change in the average number of key genes across time. C. The average number of Division Genes. D. The average
number of Apoptosis Genes. E. The average number of Segregation Genes. F. The genetic diversity, liked to the number of Segregation genes, had a
profound effect on the Genotypic Diversity, being greatest in Configuration C. Colours are purely used to distinguish runs and do not denote genetic
distribution.
doi:10.1371/journal.pone.0072206.g002
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compared across scenarios in the form of histograms in Figure 4 C.

Again, the overall impact of genetic linkage on the evolution of the

tumour after treatment can be most easily visualized by comparing

the average slope of the ratio between Apoptosis and Division

Genes (Figure 5 C). When we considered the 25 time steps after

therapy, this shifted significantly (p = 0.005E-2): 20.0036 (std.

0.0025) for Distribution B and 20.0052 (std. 0.0034) for

Distribution C.

Figure 3. Genotype diversity. A. The two over-proliferative genetic arrangements, in simulated diploid chromosomes, and the RGB key in the
middle. We have used the RGB colour model to visually describe the different genotypes that evolve in the system by normalizing the maximum
observed Genotype State (See Methods, RGB Key). We have assigned a colour to each of the abstracted genes: Red for division, green for death and
blue for segregation. By comparing via an RGB system the colours assigned to a given genotype, we are able to tell visually the proportions in which
the genes are distributed, with intensity values corresponding to the number of genes: (0,0,0) being black, the initial genotype (2, 2, 2) being dark
grey and the maximum observed genotype (5, 5, 5) being white. B. Representative Marble Diagram for a simulation with the Model. These diagrams
display the stacked percentage of Genetic Diversity across time for a representative simulation of Gene Configurations B and C across different
scenarios. The beginning of therapies (when reaching 1000 cells) are marked with a black vertical line, while relapse times (when reaching again 1000
cells) are marked using a dashed line. C. Representative Marble Diagram for a Simulation of Surgery. D. Representative Marble Diagram for a
Simulation of Chemotherapy. E. Representative Marble Diagram of a therapy combination of Surgery followed by Chemotherapy.
doi:10.1371/journal.pone.0072206.g003
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Conclusions

Tumours have been recognised as aneuploid for over a century

[32]. In addition, recent genomic sequencing studies have revealed

enormous heterogeneity within single tumours, the role and

consequences [33]. Nevertheless, the role of chromosome mis-

segregation in cancer development is still debated, and experi-

ments testing the effects of perturbing rates of chromosome

segregation on tumour formation in mice have yielded contradic-

tory results [34]. Therefore, to better understand the roles of

chromosomal instability in the evolution of tumours, we decided to

take a theoretical approach and developed an agent-based model

of whole chromosome mis-segregation during cell division, in

which to determine how chromosome mis-segregation might

contribute to cancer initiation.

For this purpose, we focused on modelling individual cells and

their genomes in a homeostatic tissue whose behaviour is

determined by a balance of cell death and cell proliferation within

the context of a constrained environment. When events of

chromosome mis-segregation are introduced, however, the

dynamics of the system change in such a way that new, interesting

complex behaviours emerge, which can be used to shed some light

on the basic principles of aneuploidy in tumourigenesis. In

simulations, chromosome mis-segregation events generate novel

genotypes that promote unregulated cellular proliferation and

impair cellular death, driving cancer development. Importantly,

this analysis also revealed that the location of these genes across

chromosomes plays a key role in determining the system’s

behaviour and in shaping the genetic structure of the tumour

population [35]. This is driven by the fact that the copy number of

genes that regulate the fidelity of chromosome segregation can

alter as the result of the mis-segregation of their host chromosome

at cell division. As a consequence, differences in the rates of mis-

segregation evolve during the course of tumour development in a

way that depends on genetic linkage. So, for example, in the

absence of direct selection for chromosomes based upon the

presence of genes promoting or inhibiting cell proliferation (Gene

Distribution A), we observed a reproducible increase in the

number of clones with a decreased rate of chromosome mis-

segregation.

In our model we observe two distinct pathways for evolution

towards oncogenesis that have a direct impact on the tumour’s

response to treatments. In the first case, dominant proliferating

clones within the tumour exhibit a relatively stable state of

aneuploidy driven by the acquisition of genes that ensure the

fidelity of chromosome segregation along with division genes that

encourage proliferation. In the second, selection for the loss of the

chromosome segregation regulatory genes together with the loss of

tumour suppressors results in tumours that continually generate

increasing levels of heterogeneity and ever-more malignant

subclones. This latter pathway exhibited a more rapid expansion,

suggesting that chromosomally unstable tumours are inherently

more aggressive.

In this analysis we also explored the effects of 3 different types of

simulated treatment in each case: surgery, chemotherapy and

combination therapy. When comparing surgery and chemother-

apy, it is important to note that the way in which the two therapies

are implemented has important implications for interpreting the

relapse data. First, when studying the effects of surgery, it was

necessary to compare the genetic make up of cells in the simulation

immediately before and after surgery. To do so, we compared the

genetic make up of the 1000 cells in the time-step prior to the

intervention, with the average of 100 cells in the time step

following the intervention. The abrupt change in cell numbers

generates a shift in make-up of the population, which leads to a

marked increase in apparent population heterogeneity immedi-

ately following treatment. By contrast, when the chemotherapy

treatment is implemented in a population reaching 1000 cells, the

intervention leads to a variable decrease in population size with

each time step that depends on the proliferation rate. On average

this yielded a 16% decrease in the population size (840, 706, 593,

498, 418, 351, 295, 247 and 208 in the last time step of the

intervention). This caused a smoother transition that depends on

the precise impact of the treatment on the population.

These differences are reflected in the larger variation across

simulations in the response to surgery compared to chemotherapy

(Figure 5), which translates into chemotherapy being a consistent

therapy, while surgery is a ‘‘hit or miss’’ therapy that can on

occasion cure the tumour. Thus, although surgery appeared to

have a better overall prognosis than chemotherapy in the

simulations, there is a lag time required before the population

Figure 4. Distribution of the response to treatments under
different scenarios. The histograms correspond to a measure of the
distribution of the relapse times (the time it took each simulation to
grow back to 1000 cells after treatment) for 100 simulations of each
gene configuration under three different therapy scenarios: A. Surgery
Scenario, B. Chemotherapy Scenario and C. Combination of both
treatments (Surgery followed by Chemotherapy).
doi:10.1371/journal.pone.0072206.g004
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following surgery recovers reaches levels seen following chemo-

therapy. Thus, it took 9 time steps for Configuration B to recover

to yield an average of 210 cells (std. 33.08) and 8 time steps for

Configuration C to reach on average of 205 cells (std. 42.64).

When this difference is taking into account, both therapies are seen

to yield a similar overall prognosis, which enables the differences

in the patterns of recovery in the two cases to be usefully compared

using this implementation (Figure 5 A and Figure 5 B).

Nevertheless, clear differences in the trajectory of relapse were

seen following surgery and chemotherapy. A comparison between

the ratio of the average number of Apoptosis Genes to the average

number of Division Genes following surgery (Figure 5 A) and

following chemotherapy (Figure 5 B) helps to reveal the key

differences. In the first case, the mean number of apoptosis

regulatory genes is, averaged over many simulations, increased

towards diploidy following surgery. At the same time as the

average number of division regulatory genes is decreased towards

Figure 5. The average ratio of apoptosis to division genes. These graphs show the tendency of reducing the number of apoptosis genes and
increasing the number of division genes with respect to time across different scenarios: A. Surgery Scenario, B. Chemotherapy Scenario and C.
Combination of both treatments (Surgery followed by Chemotherapy). The dark line is the median of the samples and the shadowed area represents
the variance. Interventions were carried out at time step zero. The reported slopes were measured taking into account 25 time steps after each
therapy.
doi:10.1371/journal.pone.0072206.g005
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diploidy across simulations. This sharp increase in the average

number of apoptosis genes and decrease in the average number of

division genes gives rise to a sudden change in the slope of their

ratio as depicted in Figure 5 A. It is important to note that while in

some cases the recovery to diploidy was almost total, in many

others the recovery was less pronounced or even counter-

productive. Although on average a dramatic shift towards diploidy

of a given chromosome can be observed, the spread of the results

point to a large number of cases where surgery leads to the total

loss of tumour suppression (with intact diploid division genes), an

accelerated gain in oncogenes (with normal levels of tumour

suppression) or a lethal combination of both. This leads to

variability in the outcomes of surgery that depend on the limits of

the cell population removed [29], and the extent of field

cancerization in the tissue [30]. These subtle but complex

dynamics in surgery are best observed on a case-by-case

examination of the evolved genotypes, as those shown in Figure 3

B and Figure 3 C.

Under the chemotherapy scenario, the treatment also leads to

an average reduction in the oncogenic load, as the result of the

selective killing of dividing cells. This therapy, does not however

offer relief from the steady loss of genes regulating apoptosis. As a

result, the ratio of apoptosis genes and division genes remained, on

average, nearly constant under these conditions, as can be seen by

a slight change in the slope of their ratios after chemotherapy

(Figure 5 B). It seems intuitively likely that chemotherapy, by

selectively targeting actively proliferating cells, would prove a

more effective treatment than surgery. However, our model shows

that the result of treatment is complicated by the fact that there are

two kinds of cells that underlie relapse. There are cells that have

lost tumour suppression and cells that have acquired oncogenes.

While surgery acts against both types of cell, chemotherapy cannot

target cells that are no longer subject to apoptosis-mediated

tumour suppression but which divide slowly. As a result of this

bias, the recovery following treatment is characterised by different

trajectories in the ratio of Apoptosis to Division Genes in the two

cases. This unexpected result highlights the importance of these

kinds of abstract models as aids to understanding the likely path of

tumour evolution.

It is also possible to use these simulations to examine the

chances of remission. Following both surgery and chemotherapy,

the most successful individual cases were accompanied by the

recovery of genotypes with active tumour suppression. If tumour

suppression is not recovered, the treatment fails. Thus, if a large

proportion of cells retain functional tumour suppressors at the time

of therapeutic intervention, it is possible to recover less aggressive

genotypes through treatment, leading to a better prognosis.

Conversely, if tumour suppressor function is compromised prior

to treatment in the bulk of the population, e.g. through field

cancerization, the intervention can lead to an evolutionary

bottleneck that selects for the rapid expansion of the most

malignant cells in the population. Thus, while the speed of relapse

in aggressive cases is dominated by the action of oncogenes that

drive proliferation, a sustained recovery following treatment

depends largely on tumour suppression.

These results suggest that targeting chromosomally unstable

cells may be an important part of future cancer therapies. It has

been suggested that chromosomal instability may also play a role

later in generating the genetic diversity required for cancer cells to

survive the trials of invasion and metastasis, something that we

have not explored here. Only through the tracing of clear

evolutionary pathways in real cancers will it be possible to

understand the different roles that these complex mutations have

throughout the process of carcinogenesis and thus help us to

develop better treatments. Future work will be needed to assess

how scrambling of the genome may combine with mis-segregation

events to drive the evolution of chromosomes that have specific

complements of genes.

In sum, in exploring the evolutionary pathway of cancer clones

in tumour development our model shows the interplay between

aneuploidy and tumour therapies. Future research will need to

build on such models to being them closer to reality; to study the

role of aneuploidy on more advanced kinds of tumours, and to

simulate other kinds of cancer treatments.

Methods

Agent-based Model Algorithm
All cells are ordered in a linked list, and each cell has a

simulated genome composed of three kinds of genes. Each of the

three genes code for corresponding actions at a cellular level,

inspired by biological systems and known cancer genes [12]. The

genes present and their functions, described below, are:

N Tumour Suppressors- Apoptosis Regulatory Genes

N Proto-oncogenes- Cell Division Regulatory Genes

N Genetic stability- Chromosome Segregation Regulatory Genes

The homeostatic constraints in the model were abstracted from

real biological systems, where the overall goal of homeostasis is to

maintain the tissue’s relative constant size and shape [36]. The

homeostatic size of the tissue is established for each experiment

through an allocated space parameter, where measurements for

homeostasis are based on global cell count. Although this model is

not spatially explicit, there is a degree of spatial structure in the

model since new daughter cells are introduced in the linked list of

cells spatially replacing the cell of origin after division.

Inspired by the processes in biological cellular behaviour

through which homeostasis is maintained in organisms, the

algorithm is as follows:

1. An initial population of 100 cells is created, each with diploid

chromosomes. Each initial genome was equipped with 2 copies

of each type of gene, grouped into chromosomes according to

the gene distribution type A, B or C. The normal carrying

capacity of the tissue is fixed at 200 cells.

2. For each time step, the total number of cells is measured and is

not updated until the next time step.

3. If a measurement of the total number of cells is greater than the

tissue’s carrying capacity, then the probability of cell death is

calculated. The probability of death depends on the number of

available copies of the apoptosis regulatory genes, Nap, within

each cell’s genome. The probability of apoptosis, pap, is

determined by:

pap~rapNap

Where rap is a parameter for the rate of apoptosis. The cell is then

killed with a probability of pap.

4. If the cell has not died, it has a chance to divide. The

probability of division depends on the number of available

copies of the division regulatory genes, Ndiv, and a parameter

that determines the rate of division, rdiv. The probability that a

cell divides, pdiv, is:
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pdiv~rdivNdiv

5. If dividing, a new cell is introduced in the linked list, spatially

adjacent to the mother cell (Figure S1 A), and the probability of

chromosome missegregation is calculated. If there is a

chromosome missegregation event, one chromosome chosen

at random is asymmetrically distributed during cell division

leading to the creation of two aneuploid cells. Otherwise, the

genome is duplicated and copied with fidelity, thus generating

two identical daughter cells. The probability of chromosome

missegregation, pmsg, in the model is:

pmsg~rmsg(4{Nmsg)

Where Nmsg is the number copies of the chromosome segregation

regulatory genes within the cell’s genome, and rmsg is a parameter

for the rate of chromosome missegregation.

The update rules are applied synchronously to all the cells in

each time step. Also, it is important to note that the probabilities

are conditional (i.e one probability depends on the previous one, as

described in the algorithm). For instance, the probability of

chromosome missegregation seems to be the largest, but because it

can only happen conditional to the probability of division, it is in

reality low.

Experiments
To investigate the properties and the dynamics of the system,

and specifically the role that chromosome segregation regulatory

genes have, four genome distributions were considered: Three

reported here and a fourth distribution that considers every gene

to be uncoupled as a control experiment. The parameter settings

were determined through a series of preliminary experiments, in

order to ensure that the behaviour of the system was both

biologically plausible and computationally feasible. Simulations

were carried out with the following initial parameters:

N Initial population: 100 cells

N Homeostatic size of the tissue: 200 cells

N Simulation end time: when reaching 7000 cells or reaching

300 time steps

N rap = 0.045, rdiv = 0.045, rmsg = 0.02

Treatments
Scenario i: Surgery: Once the size of the population had

reached 1000 cells, a segment of the linked list that contains 900

cells is selected and deleted, leaving a residual segment of 100

(Figure S1 B). Scenario ii: Chemotherapy: An algorithm kills all

the cells that attempt cell division in the nine consecutive time

steps after the list has reached 1000 cells (Figure S1 C). Scenario

iii: Combination Therapy. Surgery is implemented, followed by

nine rounds of chemotherapy.

There is an important difference between the two treatments.

When carrying out a surgical procedure, the cancer is removed

along with some surrounding tissue at the tumour margin whose

extent depends on the location and the extent of tumour invasion

[29]. To capture these aspects of the treatment, surgery in the

model was implemented as the removal of 90% of the cells in the

‘‘cell list’’. The proliferation algorithm is implemented so that cell

division generates related neighbouring cells.

Genotype Key
For the analysis of the simulations, the emergent genotypes were

assessed. By quantifying the number of chromosomes that a cell

has at a given time, a genotype state GT is defined as:

GT~(Ndiv,Nap,Nmsg)

Where Ndiv, Nap and Nmsg are the number of copies of Cell

Division Regulatory Genes, Apoptosis Regulatory Genes and Chromosome

Segregation Regulatory Genes respectively. The initial genotype consists

of two functional copies of each chromosome: genotype state (2, 2,

2).

RGB Key
Colours in the RGB model are defined by three components

(Figure 3 A). Because of this, a three-dimensional volume is

described by treating the component values as ordinary Cartesian

coordinates in a Euclidean space. For the RGB model, this is

represented by a cube using non-negative values within a 0–1

range, assigning black to the origin at the vertex (0, 0, 0), and with

increasing intensity values running along the three axes up to

white at the vertex (1, 1, 1), diagonally opposite black. An RGB

triplet (red, green, blue) represents the three-dimensional coordi-

nate of the point of the given colour within an RGB colour cube,

or its faces or along its edges in a simplified version. This approach

allows computations of the colour similarity of two given RGB

colours by simply calculating the distance between them: the shorter

the distance, the higher the similarity. We have taken advantage of

this to describe the different genotypes that evolve in our system by

normalizing the maximum observed Genotype State. We have

assigned a colour to each of the abstracted genes: Red for division,

green for death and blue for segregation. By comparing the

similarity of the colours assigned to a given genotype, we are able to

tell visually the proportions in which the genes are distributed, with

intensity values corresponding to the number of genes: (0,0,0) being

black, the initial genotype (2, 2, 2) being dark grey and the

maximum observed genotype (5, 5, 5) being white.

Statistical Test
For the statistical tests we used an unpaired t-test to determine if

the means of the results in our two sets of experiments

(Configuration B and C) are significantly different in key aspects

of simulated treatments.

Our null hypothesis is that the observed response of the two

configurations to treatments is due to chance. The alternative

hypothesis is that the observed response to treatments depends on

the configuration. For these tests, we have assumed a two-tailed

distribution and equal variance.

Supporting Information

Figure S1 Actions within the linked lists of cells. A.
When dividing, a new cell is introduced in the linked list of cells,

spatially adjacent to the mother cell. B. During surgery, a segment

of the linked list that contains 900 cells is selected and deleted,

leaving a residual segment of 100 cells. C. During chemotherapy,

all the cells that attempt cell division in the nine consecutive time

steps after the list has reached 1000 cells are deleted.

(TIFF)
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