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Abstract

Typically twin studies are used to investigate the aggregate effects of genetic and environmental influences on brain
phenotypic measures. Although some phenotypic measures are highly heritable in twin studies, SNPs (single nucleotide
polymorphisms) identified by genome-wide association studies (GWAS) account for only a small fraction of the heritability
of these measures. We mapped the genetic variation (the proportion of phenotypic variance explained by variation among
SNPs) of volumes of pre-defined regions across the whole brain, as explained by 512,905 SNPs genotyped on 747 adult
participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We found that 85% of the variance of intracranial
volume (ICV) (p = 0.04) was explained by considering all SNPs simultaneously, and after adjusting for ICV, total grey matter
(GM) and white matter (WM) volumes had genetic variation estimates near zero (p = 0.5). We found varying estimates of
genetic variation across 93 non-overlapping regions, with asymmetry in estimates between the left and right cerebral
hemispheres. Several regions reported in previous studies to be related to Alzheimer’s disease progression were estimated
to have a large proportion of volumetric variance explained by the SNPs.
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Introduction

The heritability of brain structure and function has received

extensive attention for many years, and it continues to be an area

of active research [1–4]. Many studies have used twin designs to

estimate the heritability of brain structure and function. Twin

studies typically compare the similarity of monozygotic twins

(MZ), who share the same genetic materials, to that of dizygotic

twins (DZ), who share 50% of their genes. Assuming equal

environmental exposure across zygosities, the known differences in

genetic similarity allow us to distinguish the effects of genes and

environment on a phenotype, including a phenotype characterized

using brain imaging measures.

Genome-wide association studies (GWAS) have discovered

hundreds of single-nucleotide polymorphisms (SNPs) that are

significantly associated with variation in brain structure and

function [5–11]. A study using the ADNI database found two

SNPs associated with temporal lobe volume [12] while two other
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ADNI studies found no SNPs associated with voxelwise volume

differences, after multiple comparison adjustment [13], and no

significant genes in a multivariate analysis combining the SNPs

into genes [14]; five SNPs were found to be significant in the

ADNI population for 142 various imaging phenotypes [15]. In

cases where significant SNPs are found in GWAS, however, those

SNPs typically explain only a small portion of overall phenotypic

variation. A question that has not been addressed fully for

phenotypic brain measures is where in the genome the missing

heritability resides. Explanations could include that causal variants

each may explain such a small amount of variation that their

effects do not reach stringent significance thresholds and/or that

the causal variants may not be in complete linkage disequilibrium

(LD) with the SNPs that have been genotyped. Heritability is

defined as the proportion of observed phenotypic variation that is

due to inherited genetic factors; GCTA (genome-wide complex

trait analysis) software allows us to approximate heritability with

the proportion of phenotypic variance explained by variation

among over 500,000 SNPs, after adjusting for environmental

factors. GCTA has been utilized previously to partition the genetic

variation of complex traits such as height and BMI into

contributions from each chromosome [16] and to estimate the

missing heritability of disease from GWAS [17].

Here we estimate the proportion of variance of 93 regional

volumes, as well as ICV, GM, WM, and cerebro-spinal fluid (CSF)

volumes, explained by 512,905 SNPs across the 22 autosomes

genotyped on 747 adult participants from the ADNI study.

Materials and Methods

Sample and Data
The NIH ADNI is an ongoing public-private partnership to test

whether genetic data, structural and functional neuroimaging, and

clinical data can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

The structural brain MRI data and corresponding clinical and

genetic data from baseline and follow-up were downloaded from

the ADNI publicly available database (http://adni.loni.ucla.edu/).

This initiative is a collective effort led by Principal Investigator

Michael Weiner, M.D., VA Medical Center and University of

California – San Francisco, involving many co-investigators and

recruitment of participants from over 50 sites in the United States

and Canada. More information on the study can be found at

www.adni-info.org.

The Human 610-Quad BeadChip (Illumina, Inc., San Diego,

CA) was used to genotype 818 participants in the ADNI database,

which resulted in a set of 620,901 SNP and copy number variation

(CNV) markers. Since the Apolipoprotein E (APOE) SNPs,

rs429358 and rs7412, are not on the Human 610-Quad Bead-

Chip, they were genotyped separately. These two SNPs together

define a 3 allele haplotype, namely the e2, e3, and e4 variants, and

the presence of each of these variants was available in the ADNI

database for all the individuals; the APOE gene has been the most

significant risk locus in GWAS of AD [18]. The software

EIGENSTRAT in the package of EIGENSOFT 3.0 was used to

calculate the population stratification coefficients of all partici-

pants. To reduce population stratification effects, we initially used

747 Caucasians out of the total 818 participants.

The MRI data were collected across a variety of 1.5 Tesla MRI

scanners with protocols individualized for each scanner, including

volumetric 3-dimensional sagittal MPRAGE or equivalent proto-

cols with varying resolutions. The typical protocol included:

repetition time (TR) = 2400 ms, inversion time (TI) = 1000 ms, flip

angle = 8u, field of view (FOV) = 24 cm, with a 256*256*170

acquisition matrix in the x-,y-, and z-dimensions yielding a voxel

size of 1.25*1.26*1.2 mm3. All original uncorrected image files are

available to the general scientific community, as described at

http://www.loni.ucla.edu/ADNI.

Image preprocessing and analysis
The MRI data were preprocessed using standard procedures

that included realignment to the anterior commissure and

posterior commissure by using MIPAV software, skull-stripping

by using Brain Surface Extractor (BSE) and Brain Extraction Tool

(BET), cerebellum removal, intensity inhomogeneity correction,

segmentation using the FSL-FAST software, and spatial co-

registration by using HAMMER [19–21]. Particularly, to establish

the longitudinal correspondences in the individual and the inter-

subject correspondences between the template and the individual,

we combined information across time points for each subject and

registered the images to a Jacob template [22] using a fully

automatic 4-dimensional atlas warping method called 4D

HAMMER [21]. Regional volumetric measurements and analyses

are then performed via measurements and analyses of the resulting

tissue density maps. Lastly, we carried out automatic regional

labeling: first, by labeling the template image and second, by

transferring the labels following the deformable registration of

subject images. After labeling 93 regions from the Jacob atlas, we

were able to compute volumes for each of these regions for each

subject.

Statistical Methods
GCTA (genome-wide complex trait analysis) [23] software

running a linear mixed model (LMM) was used to estimate the

proportion of variance of an observed phenotype that was

explained by a set of SNPs (rather than a single SNP, as in

GWAS), which we call genetic variation for simplicity. Here the

phenotypes of interest are the 93 regional volumes as well as total

intracranial (ICV), grey matter (GM), white matter (WM), and

cerebrospinal fluid (CSF) volumes, and the SNPs numbered

512,905 from 747 participants. Genetic relationship matrices

(GRMs) captured correlations across participants and were then

used to partition the phenotypic variance (see [23] for details). Via

GCTA, we fitted LMM separately to each of the 97 volumes as

dependent variables to estimate their genetic variation, as

explained by the 512,905 SNPs through GRMs. The volumes

were standardized to better fit the normal distribution assumed for

the LMM, and baseline age, gender, and the interaction of age

with gender were included as covariates, to capture variation due

to environmental effects. To adjust for population structure, we

also included subjects’ first ten principal components of the GRM

as covariates. ICV was also included as a covariate (for regions

other than ICV itself) to remove any potential scaling effects.

Within GCTA, we corrected for imperfect LD between the SNPs

on the array and causal variants by assuming the same allelic

distribution (i.e. minor allele frequency) for those causal variants

(which were potentially not in the SNP array) as that observed in

the included SNPs. See [24] for details on how the correction is

implemented within the GCTA software. This correction allows

for better approximation to true heritability within this observa-

tional study.

An R package, called APCluster, was used to group standar-

dized volumes into groups of similar regions based on the GCTA

measures. Affinity propagation (AP) clustering [25–26] was

applied first to the 93 non-overlapping regional (scaled and

standardized) volumes separately for each diagnostic group.

Clustering was based on the negative squared Euclidean similarity

matrix between the regional volumes, finding ‘‘exemplars’’ that
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were the centers of the clusters and iteratively determining the

number and membership of the clusters to maximize their ‘‘net

similarity,’’ an objective function that measures how represen-

tative the exemplars are of the data in each cluster. This

technique was then applied to cluster the genetic variation

estimates for the 93 non-overlapping regions. The vector of the

proportions of volumetric variance explained by all SNPs (after

adjusting for covariates) for the 93 non-overlapping regions was

clustered based on the squared distances of these genetic

variation estimates. Fisher’s exact tests were used to compare

clustering results: pair-wise between study groups and volu-

metric clustering compared to the clustering of genetic variation

estimates.

Results

Table 1 gives demographic information on the participants used

in these analyses. Age is similarly distributed for each of the

three study groups and there is a significant association between

gender and study group (p = 0.02); both age and gender were

adjusted for in each analysis. Tables 2 and 3 present genetic

variation estimates, their standard errors, the p-values from the

associated likelihood ratio tests (LRTs), and clustering results of

the estimates for all regions. Figure 1 shows genetic variation

estimates (top left) and the corresponding 2log10p-values from

the likelihood ratio tests (top right) for the standardized volumes

of each non-overlapping region as explained by the 512,905

SNPs across the entire genome, after adjusting for covariates.

Figure 2 shows genetic variation estimates in three dimensions.

Genetic variation estimates were found to be uncorrelated with

average region size (p = 0.2; from GLM with logit link function,

Normal distribution).

The AP cluster method identified 9, 10, and 10 clustering

groups within the 93 non-overlapping regional volumes for the

Control, MCI, and AD groups, respectively. Fisher’s exact tests of

independence yielded p,0.001 for each of the pairwise compar-

isons of clustering membership, indicating similarity between the

volumetric clustering results across the three groups. Subsequently

all participants were combined into a single analysis, yielding 9

clusters of regional volumes. In addition, AP clustering identified 6

groups of (non-overlapping) regions based on genetic contributions

to variation in their standardized, covariate-adjusted volumes (see

Table 2). Figure 1 shows the clustering map (bottom) for all of the

non-overlapping regions. A Fisher’s exact test yielded a p-value of

0.22 when testing for independence between the two sets of

clustering results (from the raw volumes and from the genetic

variation estimates), leading us to conclude that the groups that are

similar in volume are not necessarily similar in the proportion of

volumetric variance explained by the SNPs.

Discussion

GCTA findings showed that about 85% of intra-cranial volume

(ICV) variability and 57% of cerebrospinal fluid (CSF) volume

variability were explained by genetic variation within these

participants, with likelihood ratio tests (LRT) for the significance

of the random component yielding p-values of 0.04 and 0.12,

respectively. However, the genetic variation estimates for total

grey matter (GM) and white matter (WM) volumes (after adjusting

for ICV and other covariates) were both near zero. Previous

studies of adults reported similar estimates for ICV heritability

(73% in [27]; 81% in [28]; 79% in [29]; See [30] for a review).

Carmelli et al. [27] estimated heritability of CSF volumes to be

72% in their study of normal elderly twins, similar to our

estimates. We found markedly less genetic variation in our sample

for GM and WM volumes than did previous studies (WM: 73%

heritable in [27]; 62% in [29]; 69%–82% in WM regions and 55–

85% in GM regions in [4]), likely because of our adjusting for ICV

to remove scaling effects. Analysis of GM and WM volumes,

without adjusting for ICV, yielded genetic variation estimates of

41% (LRT p-value = 0.21) and 91% (LRT p-value = 0.02)

respectively, which are more consistent with published heritability

estimates, indicating that some of the previously published

heritability estimates for these volumes may be due to the

heritability of overall brain volume rather than genetic contribu-

tions that are specific to GM or WM.

In regional analyses, we found estimates that were asymmetric

across hemispheres, with no clear systematic difference between

left hemisphere and right hemisphere volumes. This is in

agreement with one prior report [31] and in a twin study of

schizophrenia [4] but at odds with another study that reported

symmetric heritability in only 10 monozygotic and 10 dizygotic

twin pairs, a sample that likely afforded insufficient statistical

Table 1. Participants’ gender and baseline age by study group.

Gender Age

Male Female Total Min 1st quartile Median Mean 3rd quartile Max

Normal 111 95 206 60 73 76 76 79 90

MCI 233 129 362 55 71 75 75 80 90

Alzheimer’s 98 81 179 55 71 77 75.5 81 91

Total 442 305 747 55 71 76 75.4 80 91

Gender and baseline age distribution by study group. Chi-squared test of independence between gender and study group yields a p-value of 0.02. ANOVA F-test for
differences in mean age between study groups yields a p-value of 0.18.
doi:10.1371/journal.pone.0071723.t001

Table 2. Genetic Variation estimates for major regional brain
volumes.

Region
Estimated genetic
variation Standard error LRT p-value

ICV 0.845 0.457 0.04

GM Volume ,0.001 0.476 0.5

WM Volume ,0.001 0.483 0.5

CSF Volume 0.574 0.468 0.12

Genetic variation estimates, standard errors, and associated likelihood ratio
tests for four aggregated volumes.
doi:10.1371/journal.pone.0071723.t002
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Table 3. Genetic variation estimates and associated clustering results for ROI volumes.

REGION Genetic Variation SE LRT p-value Cluster

LATERAL VENTRICLE RIGHT 0.999 0.468 0.017 1

GLOBUS PALLADUS RIGHT 0.907 0.440 0.024 1

CAUDATE NUCLEUS RIGHT 0.999 0.459 0.006 1

CUNEUS LEFT 0.999 0.462 0.010 1

NUCLEUS ACCUMBENS LEFT 0.894 0.494 0.053 1

LATERAL VENTRICLE LEFT 0.729 0.476 0.080 2

CAUDATE NUCLEUS LEFT 0.679 0.458 0.073 2

TEMPORAL LOBE WM RIGHT 0.743 0.473 0.068 2

OCCIPITAL LOBE WM LEFT 0.754 0.450 0.055 2

SUPERIOR PARIETAL LOBULE RIGHT 0.822 0.442 0.038 2

LATERAL OCCIPITOTEMPORAL GYRUS RIGHT 0.833 0.472 0.046 2

ENTORHINAL CORTEX RIGHT 0.785 0.442 0.040 2

CUNEUS RIGHT 0.766 0.455 0.050 2

INSULA RIGHT 0.595 0.449 0.094 3

PRECENTRAL GYRUS RIGHT 0.589 0.478 0.117 3

MEDIAL FRONTAL GYRUS LEFT 0.563 0.468 0.120 3

GLOBUS PALLADUS LEFT 0.581 0.483 0.127 3

PUTAMEN RIGHT 0.590 0.470 0.108 3

SUBTHALAMIC NUCLEUS RIGHT 0.586 0.465 0.105 3

OCCIPITAL LOBE WM RIGHT 0.628 0.473 0.102 3

PRECUNEUS LEFT 0.477 0.498 0.191 3

SUPERIOR FRONTAL GYRUS LEFT 0.626 0.462 0.094 3

POSTCENTRAL GYRUS LEFT 0.467 0.476 0.169 3

PERIRHINAL CORTEX RIGHT 0.544 0.464 0.122 3

POSTCENTRAL GYRUS RIGHT 0.569 0.459 0.110 3

LINGUAL GYRUS RIGHT 0.542 0.446 0.108 3

SUPERIOR TEMPORAL GYRUS RIGHT 0.499 0.486 0.165 3

FORNIX RIGHT 0.472 0.451 0.142 3

MIDDLE FRONTAL GYRUS RIGHT 0.263 0.491 0.306 4

INFERIOR FRONTAL GYRUS LEFT 0.266 0.456 0.276 4

ANGULAR GYRUS RIGHT 0.269 0.483 0.296 4

FRONTAL LOBE WM LEFT 0.274 0.475 0.286 4

POSTERIOR LIMB OF INTERNAL CAPSULE INC. CEREBRAL PEDUNCLE LEFT 0.334 0.492 0.261 4

POSTERIOR LIMB OF INTERNAL CAPSULE INC. CEREBRAL PEDUNCLE RIGHT 0.411 0.486 0.212 4

SUPERIOR PARIETAL LOBULE LEFT 0.320 0.478 0.260 4

PARIETAL LOBE WM LEFT 0.276 0.499 0.303 4

PRECENTRAL GYRUS LEFT 0.327 0.490 0.263 4

MEDIAL FRONT-ORBITAL GYRUS LEFT 0.392 0.456 0.195 4

PARIETAL LOBE WM RIGHT 0.291 0.474 0.273 4

PARAHIPPOCAMPAL GYRUS RIGHT 0.230 0.466 0.310 4

OCCIPITAL POLE RIGHT 0.288 0.472 0.275 4

INFERIOR TEMPORAL GYRUS RIGHT 0.293 0.474 0.270 4

MEDIAL FRONT-ORBITAL GYRUS RIGHT 0.176 0.468 0.353 5

SUPERIOR FRONTAL GYRUS RIGHT 0.153 0.497 0.386 5

PUTAMEN LEFT 0.182 0.465 0.346 5

PARAHIPPOCAMPAL GYRUS LEFT 0.112 0.483 0.411 5

FORNIX LEFT 0.205 0.482 0.341 5

PRECUNEUS RIGHT 0.148 0.489 0.386 5

SUPERIOR OCCIPITAL GYRUS RIGHT 0.135 0.453 0.379 5

SUPRAMARGINAL GYRUS LEFT 0.157 0.482 0.376 5

Mapping the Genetic Variation of Brain Volumes
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power to detect differences in heritability across hemispheres [32].

Chen et al. [1] found bilateral symmetry across hemispheres in

their mapping of the brain’s cortical surface, but their study

involved 406 healthy twins and did not consider regional volumes.

We found the left and right cuneus to have significant genetic

variation (estimates of 99%, p = 0.01 and 77%, p = 0.05,

respectively); Niskanen et al. [33] found the cuneus to be involved

in the progression of AD, which could explain the genetic

variation in our study population. We also found the right caudate

nucleus to have significant genetic variation (estimate of 99%,

Table 3. Cont.

REGION Genetic Variation SE LRT p-value Cluster

MIDDLE FRONTAL GYRUS LEFT 0.160 0.481 0.373 5

SUPRAMARGINAL GYRUS RIGHT 0.085 0.489 0.434 5

INFERIOR FRONTAL GYRUS RIGHT 0.179 0.476 0.356 5

TEMPORAL LOBE WM LEFT 0.183 0.475 0.352 5

LATERAL FRONT-ORBITAL GYRUS LEFT 0.188 0.474 0.348 5

INSULA LEFT 0.156 0.458 0.365 5

MEDIAL FRONTAL GYRUS RIGHT 0.190 0.467 0.343 5

ANGULAR GYRUS LEFT 0.122 0.462 0.395 5

MEDIAL OCCIPITOTEMPORAL GYRUS RIGHT 0.131 0.473 0.392 5

LATERAL OCCIPITOTEMPORAL GYRUS LEFT 0.217 0.470 0.323 5

OCCIPITAL POLE LEFT 0.104 0.486 0.419 5

LATERAL FRONT-ORBITAL GYRUS RIGHT ,0.001 0.458 0.500 6

CINGULATE REGION RIGHT ,0.001 0.478 0.500 6

FRONTAL LOBE WM RIGHT ,0.001 0.471 0.500 6

TEMPORAL POLE RIGHT ,0.001 0.484 0.500 6

NUCLEUS ACCUMBENS RIGHT 0.059 0.488 0.454 6

UNCUS RIGHT ,0.001 0.490 0.500 6

CINGULATE REGION LEFT ,0.001 0.472 0.500 6

SUBTHALAMIC NUCLEUS LEFT ,0.001 0.466 0.500 6

HIPPOCAMPAL FORMATION RIGHT ,0.001 0.498 0.500 6

INFERIOR OCCIPITAL GYRUS LEFT ,0.001 0.457 0.500 6

ANTERIOR LIMB OF INTERNAL CAPSULE LEFT ,0.001 0.486 0.500 6

SUPERIOR TEMPORAL GYRUS LEFT ,0.001 0.472 0.500 6

UNCUS LEFT ,0.001 0.473 0.500 6

MIDDLE OCCIPITAL GYRUS RIGHT ,0.001 0.471 0.500 6

MIDDLE TEMPORAL GYRUS LEFT ,0.001 0.476 0.500 6

LINGUAL GYRUS LEFT ,0.001 0.425 0.500 6

PERIRHINAL CORTEX LEFT ,0.001 0.478 0.500 6

INFERIOR TEMPORAL GYRUS LEFT ,0.001 0.495 0.500 6

TEMPORAL POLE LEFT ,0.001 0.479 0.500 6

ENTORHINAL CORTEX LEFT ,0.001 0.491 0.500 6

INFERIOR OCCIPITAL GYRUS RIGHT ,0.001 0.463 0.500 6

SUPERIOR OCCIPITAL GYRUS LEFT 0.060 0.473 0.450 6

HIPPOCAMPAL FORMATION LEFT ,0.001 0.479 0.500 6

THALAMUS LEFT ,0.001 0.474 0.500 6

AMYGDALA LEFT ,0.001 0.484 0.500 6

MEDIAL OCCIPITOTEMPORAL GYRUS LEFT ,0.001 0.478 0.500 6

ANTERIOR LIMB OF INTERNAL CAPSULE RIGHT ,0.001 0.486 0.500 6

MIDDLE TEMPORAL GYRUS RIGHT ,0.001 0.480 0.500 6

CORPUS CALLOSUM ,0.001 0.488 0.500 6

AMYGDALA RIGHT ,0.001 0.505 0.500 6

MIDDLE OCCIPITAL GYRUS LEFT ,0.001 0.460 0.500 6

THALAMUS RIGHT ,0.001 0.473 0.500 6

Genetic variation estimates, standard errors, associated LRT p-values, and clustering results for 93 non-overlapping ROIs.
doi:10.1371/journal.pone.0071723.t003
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p = 0.02; left caudate nucleus: estimate of 68%, p = 0.07); this is a

region found previously to be significantly smaller in AD patients

than in normal controls [34], including in the ADNI population

[35], suggesting that size differences in the right hemisphere in AD

may be heritable.

The AP cluster analyses indicated the presence of 6 groups of

brain regions within the genetic variation estimates; the largest

group was comprised of those regions with little to no volumetric

variability explained by the SNPs. The clusters of regional volumes

differed significantly from the clusters of the corresponding genetic

variation estimates, but average regional volumes were not

associated significantly with genetic variation estimates. Thus,

the regions that were similar in size were not necessarily similar in

genetic variation, and there was no apparent relationship between

a region’s size and the genetic variation of the region.

In the current study, we systematically estimated the

variability of 93 non-overlapping regional volumes, ICV, and

GM, WM, and CSF volumes explained by 512,905 SNPs across

the 22 autosomes genotyped on 747 adult participants from

ADNI. These results give some evidence for a genetic

component of the variation between individuals in several

functional brain systems.

Figure 1. Genetic variation estimates and additional results for non-overlapping brain regions. Genetic variation estimates (top left; A)
and the associated 2log10p-values from LRT (top right; B). Hotter colors (black,red,white) indicate larger values. Clusters of genetic variation
estimates (below center; C) using AP cluster method.
doi:10.1371/journal.pone.0071723.g001
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First, there were several medial/mid-line brain structures with

high genetic variation estimates, including the bilateral medial

frontal-orbital gyrus, left medial frontal gyrus, bilateral precuneus,

right perirhinal cortex and right entorhinal cortex. These

structures, along with other medial neural regions, have been

characterized as being part of the default mode network (DMN) -

defined as a set of functionally connected brain regions that exhibit

task-induced deactivation and increase activity at rest [36–37].

DMN changes have been observed in MCI and AD, particularly

in the posterior region of medial parietal cortex referred to as the

precuneus [38]. Additionally, studies of resting glucose metabolism

have demonstrated hypometabolism in the inferior parietal lobule

that progresses with AD and correlates with mental status [39–40]

and is present in individuals at genetic risk for AD [41].

Second, many subcortical nuclei, as well as white matter tracts,

had large genetic variation estimates, including the right insula,

bilateral globus pallidus, bilateral putamen, bilateral caudate and

left nucleus accumbens. Many of these structures make up the

basal ganglia (i.e., globus pallidus, putamen, caudate nucleus,

nucleus accumbens), a group of nuclei that act as a cohesive

functional unit. The basal ganglia are associated with a variety of

functions, including motor control, procedural learning relating to

routine behaviors or ‘‘habits’’, eye movements, and emotional

functions [42]. Additionally, several theories implicate the basal

ganglia in action selection (i.e., deciding which of several possible

behaviors to execute at a given time [43–44]). Beyond the basal

ganglia, another subcortical region with high estimated genetic

variation was the insula, a structure believed to play a role in

functions usually linked to emotion (i.e., disgust) or the regulation

of the body’s homeostasis. Although changes in subcortical regions

are not the hallmark of MCI or AD, as AD is considered a cortical

dementia, the large estimates observed in the current study

indicate that future research in this area is warranted.

Finally, large genetic variation estimates were observed for two

prominent perceptual cortical pathways, namely the dorsal

‘‘where’’ pathway and the ventral ‘‘what’’ pathway. First described

by Ungerlieder and Mishkin [45], the dorsal pathway leads from

striate cortex to the parietal lobe and is responsible for determining

an object’s location in space, whereas the ventral pathway leads

from striate cortex to the temporal lobe and is responsible for

determining an object’s identity. Via an interaction between

bottom-up (visual perceptual information) and top-down (knowl-

edge information) processing these pathways are utilized to rapidly

to perceive ‘‘what’’ objects are in an environment and ‘‘where’’

those objects are spatially located relative to the observer. Given

the clear adaptive nature of such visual processing streams, it is

perhaps unsurprising that large genetic variation estimates were

observed for several key regions that comprise these pathways,

including bilateral occipital white matter tracts, bilateral occipital

pole, bilateral temporal lobe white matter tracts, bilateral parietal

lobe white matter tracts, bilateral superior parietal lobule and

bilateral occipito-temporal gyrus.

Due to a lack of power in the likelihood-ratio testing procedure

and a sample size that was not sufficiently large to make standard

Figure 2. 3-dimensional map of genetic variation estimates. Views (clockwise from top left): right lateral (A), anterior (B), superior (C), inferior
(F), posterior (E), and left lateral (D). Hotter colors (black,red,white) indicate larger values.
doi:10.1371/journal.pone.0071723.g002
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errors small, we did not find estimates to be highly statistically

significant. We did not perform multiple comparisons adjust-

ments on the p-values from these analyses, in order to preserve

the ability to compare results across different brain regions.

Here our goal is to map genetic variation across the entire brain,

where the results of particular interest are the comparisons of

genetic variation among different regional volumes. The mixed

model approach utilized by GCTA allows for an approximation

to total heritability based on a large number of SNPs; this

methodology is validated by the comparison of our results to

published twin studies that estimate ‘‘true’’ heritability and have

similar findings. Estimates of 0.999 for three regions do not

imply that over 99% of variation in those volumes is explained

by genetic variability, but they likely indicate large true

parameter values (i.e. volumetric variance explained by the

SNPs) and some additional variation due to the (case-control)

sampling scheme, as well as noise in the volumetric data.

Although our findings agree with those from a number of

published twin studies, some of our findings could derive from our

study population, in that some of the genetic contribution to the

progression of AD could have contributed to the genetic variation

we detected. We found significant but asymmetric genetic

variation estimates in regions previously reported to be related

to AD, and we found that much of the heritability of overall GM

and WM volumes may be due to the heritability of total ICV

rather than from specific genetic contributions to GM or WM

volumes. In the future, large twin studies in elderly patients could

compare these regions in their heritability and assess their

relationship with the progression of Alzheimer’s disease.
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