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Abstract

The number of identified genetic variants associated to complex disease cannot fully explain heritability. This may be
partially due to more complicated patterns of predisposition than previously suspected. Diseases such as multiple sclerosis
(MS) may consist of multiple disease causing mechanisms, each comprised of several elements. We describe how the effect
of subgroups can be calculated using the standard association measurement odds ratio, which is then manipulated to
provide a formula for the true underlying association present within the subgroup. This is sensitive to the initial minor allele
frequencies present in both cases and the subgroup of patients. The methodology is then extended to the x2 statistic, for
two related scenarios. First, to determine the true x2 when phenocopies or disease subtypes reduce association and are

reclassified as controls when calculating statistics. Here, the x2 is given by
1zs � azbð Þ

czdð Þ
1{s

, or
1zs

1{s
for equal numbers of cases

and controls. Second, when subgroups corresponding to heterogeneity mask the true effect size, but no reclassification is
made. Here, the proportion increase in total sample size required to attain the same x2 statistic as the subgroup is given as

c~
1{ s

2

1{sð Þ 1{ sc
azc

� �
1{ sd

bzd

� �, and a python script to calculate and plot this value is provided at kirc.se. Practical examples

show how in a study of modest size (1000 cases and 1000 controls), a non-significant SNP may exceed genome-wide
significance when corresponding to a subgroup of 20% of cases, and may occur in heterozygous form in all cases. This
methodology may explain the modest association found in diseases such as MS wherein heterogeneity confounds
straightforward measurement of association.
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Introduction

Advances in genotyping technology have allowed for large scale

genome wide association studies using up to millions of SNPs in

cohorts of several thousand cases and controls. The data produced

contains a wealth of information, which often results in the

discovery of new gene associations with a given disease. However,

despite the tremendous advances in technology, meta-analyses of

large cohorts are required to identify new disease associated genes,

which often have small effect sizes.

Complex diseases are defined as those which have multiple

genetic components as well as environmental interaction [1].

Often this underlying genetic predisposition causes no disease

manifestation for many years, until either a threshold of

environmental exposure or a triggering event occurs, after which

the disease begins. Frequently, complex diseases such as rheuma-

toid arthritis (RA) are referred to as ‘‘syndromes of diseases’’ which

have similar phenotypic manifestations with at least partly

unrelated disease pathogenesis, evidenced by cases both with

and without autoantibodies present [2].

Multiple sclerosis (MS) is a complex autoimmune disorder

which may have either different disease mechanisms and/or

genetic background; that is, the genetic factors influencing an

individual’s predisposition may vary. The Rothman pie model of

sufficient causes postulates that subgroups of disease may exist

within ‘‘pies’’ of a predetermined number of genetic and

environmental factors [3]. The presence of all such factors

represents a sufficient cause, and in individuals with all pieces of

a single pie, disease develops (Figure 1). The low effect sizes of

many genes outside the major histocompatibility complex (MHC)

in these diseases, despite estimates of only a handful of genes

required to confer disease predisposition in twins studies [4], may

indicate that the pie model is correct.

The existence of genetic subgroups of disease likely confounds

identification of genes contributing to the predisposition of

complex disorders. A simulation study using reasonable values

for samples size, effect size and allele frequencies estimated the

effect of subgroups and modifier gene on detection thresholds [5].

It determined that studies 1000 cases and 1000 controls typically

have 80% power to detect allele odds ratios (OR) of 1.7 in the

presence of such confounding effects, far beyond the effect size

PLOS ONE | www.plosone.org 1 August 2013 | Volume 8 | Issue 8 | e71614



observed for all genes outside the MHC in most complex

disorders.

A common method for improving detection of genetic

association is to stratify disease samples based on clinical

characteristics. For example, in RA patients with the presence of

antibodies to citrullinated peptide antigens (ACPA+) display clear

differences in association from ACPA- [6]. In MS, disease subtype

may include disease course. However, for measures without

concrete and unchanging characteristics, such as severity, these

may be inexact and alter over time. A further complication is that

genetic subgroups may present a wide range of clinical charac-

teristics, particularly in disease with changing course over time.

The failure of genome-wide association studies (GWAS) to

identify new variants with strong effects on disease predisposition

has led to the search for ‘‘missing heritability’’. It has been

proposed that detection of more variants and/or rare variants may

be useful, particularly by conducting large scale sequencing of

patient samples [7]. Here, we examine further issues pertaining to

the presence of genetic subgroups on the OR for association

studies in complex disorders, with application to autoimmune

genetics. In particular, we derive the true OR for a subgroup of

disease based on the proportions of the subgroup within all disease

samples. We extend this methodology to the related issue of the

presence of phenocopies or distinct disease subtypes, which

complicate the calculation of x2 statistics, and derive a function

to explain the true association present. Finally, we present a

function to determine sample sizes required to attain the

association contained within the subgroup only.

Methods and Results

Within a syndrome of diseases or one with several genetically

distinct predispositions, an effect strong enough to alter the OR of

the total sample may have a much higher effect in the genetic

subgroup in which it is a predisposing element. A basic assumption

of this relationship is that allele frequencies are altered within one

or more subgroups, and remain similar to controls in ‘‘non-

affected’’ subgroups.

Subgroup Odds Ratios
If a single nucleotide polymorphism (SNP) has a certain

genotype (e.g. AA, Aa/aa, aa) in all cases of one of n genetically

distinct subclasses of disease, the OR will reflect an overall

regression to the population’s allele frequencies at that SNP.

Assume that a SNP has allele counts in cases given by a and b,

allele counts in controls given by c and d, and that a subclass exists

within the cases with allele counts a1 and b1 such that a~a1za2

and b~b1zb2 (Figure 2).

The underestimation in OR can be measured as a ratio of the

‘‘true’’ OR of the subclass to the OR of the entire group

ORsub

ORall

where the standard 2x2 contingency table given in Table 1

becomes that in Table 2. and a~a1za2 and b~b1zb2. The

ORsub is defined by
a1|dð Þ
b1|cð Þ and ORall by

a|dð Þ
b|cð Þ this becomes

a1|bð Þ
b1|að Þ and, which is equivalent to

a1
a

b1
b

Since a~a1za2 and b~b1zb2, this can also be represented as

a1
a1za2

b1
b1zb2

ð1Þ

This illustrates that the OR has been underestimated by a factor

relying solely on the proportion of one allele present in the subclass

Figure 1. Pie model of sufficient causes for complex disease.
Complex diseases may be multiple disorders with similar phenotypic
manifestations, or a disorder with multiple genetic causes (subclasses).
Each of the subclasses may be a result of combinations of similar, or
unique, predisposing genes.
doi:10.1371/journal.pone.0071614.g001

Figure 2. Allele frequency alterations due to the presence of a
subgroup. The difference in allele frequencies for a SNP considered
classically (top) and as a complex disorder with subgroups (below). In
the example, a hypothetical subgroup denoted Subclass 1 contains
allele counts a1 and b1, while the rest of the cases contain allele counts
a2 and b2.
doi:10.1371/journal.pone.0071614.g002

Table 1. 262 contingency table of allele counts.

Allele 1 Allele 2

Cases a b

Controls c d

doi:10.1371/journal.pone.0071614.t001

Subgroup Genetic Considerations
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to the proportion of the other allele present in the subclass. This

can be termed the error factor.

This effect of error factor on OR is plotted for various minor

allele frequencies separately in Figure 3. Each curve corresponds

to a SNP with a MAF of a given value in cases. If there is an

increase in the MAF in a subgroup (x-axis), the OR error factor

increases correspondingly along the y-axis.

Phenocopies
A second and related application of this rationale is to

determine the error in association measured due to the presence

of disease subtypes or non-genetic causes of disease, usually

denominated phenocopies. These subsets of disease may be

distinguishable from other clinical groups and contain a distinct

etiology or are a different disorder.

Phenocopies have a measureable effect on the x2 statistic

calculated. To investigate the potential for omitting relevant SNPs

due to this (Type II error), we assume that some proportion of

cases are separate disease subtypes or not genetic in nature, and

call this term s. In order to estimate the true allele frequencies of a

given SNP in the relevant cases, we remove the phenocopies, and

add them to controls with the previously determined control

frequency. We recalculate the allele frequency that was present in

the remaining cases, and can determine the x2 value which

corresponds to the true frequency of the SNP in these cases. We

have original observed and expected allele counts as follows:

observed as given previously in Table 1 and expected as given in

Table 3.

To find the ratio of error in x2 values, we state that the x2 value

of the new allele distribution is x2
n. The ratio

x2
n

x2 provides a

measure of the relative error in strength of association as well as a

means to calculate the true association based on the allele counts

and the proportion of included cases. Since s is a proportion, the

number of a and b removed and added to c and d is given by the

number to remove, s � azbð Þ, multiplied by the frequency of

Table 2. 262 contingency table of allele counts given the
presence of a subclass.

Allele 1 Allele 2

Cases a1 b1

Controls c d

doi:10.1371/journal.pone.0071614.t002

Figure 3. Error factor in ORs. OR error factor present with various minor allele frequencies. Each curve represents the range of OR error factors due
to subgroups for a given MAF (minor allele frequency) observed in all cases. The Y-axis indicates the OR error factor corresponding to an increase in
the subgroup MAF (as compared with all cases) given by the X-axis. For example, in the second curve corresponding to a MAF of 0.10 in cases, a
subgroup with an increase of MAF of 0.20 (or 0.30 MAF) would have an OR in that subgroup approximately four times that reported for the overall
group.
doi:10.1371/journal.pone.0071614.g003
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the allele in controls:
c

czdð Þ or
d

czdð Þwhich becomes

s � c
azbð Þ
czdð Þ

and

s � d
azbð Þ
czdð Þ

The new observed values to calculate x2
n can be denoted an, bn,

cn and dn and are given in Table 4.

The function
x2

n

x2
can be calculated using the standard formula

x2~
P O{Eð Þ2

E
for each term of the original data.

x2 ~
X O{Eð Þ2

E
~
X O2 z E2{ 2OE

� �
E

which is
P O2

E
zE{2O

� �
, andsince

P
E~

P
O~n,

XO2

E
z
X

E { 2
X

O ~
XO2

E
{n

Entering each term for observed and expected:

XO2

E
{n ~

a2n

azcð Þ azbð Þ z
b2n

azbð Þ bzdð Þ z

c2n

azcð Þ czdð Þ z
d2n

bzdð Þ czdð Þ { n

which simplifies to:

x2 ~
ad{bcð Þ2n

azcð Þ azbð Þ bzdð Þ czdð Þ

For the new data, the value of the formula is modified with the

new observed values an, bn, cn and dn:

x2
n ~

ad{bcð Þ2 1z
s azbð Þ

czdð Þ

h i2

n

azbð Þ 1{sð Þ czdð Þ 1z
s azbð Þ

czdð Þ

h i
azcð Þ bzdð Þ

The ratio
x2

n

x2 therefore simplifies to the function

1zs � azbð Þ
czdð Þ

1{s
ð2Þ

which shows that the proportion increase in x2 value is determined

by the value of s and the original allele frequencies. This formula

can be altered as follows:

1 z s � azbð Þ
czdð Þ

1{s
~

czdð Þzs azbð Þ
azbð Þ{s azbð Þ �

azbð Þ
czdð Þ

The first term is equal to
czdð Þ z czdð Þ � s azbð Þ

czdð Þ

azbð Þ { czdð Þ � s azbð Þ
czdð Þ

which is

cnzdnð Þ
anzbnð Þ.

This simplifies to

cnzdnð Þ
anzbnð Þ

czdð Þ
azbð Þ

which yields the ratio of total controls to total cases in the new

data, normalized by the same quantity in the original data.

The function
1zs � azbð Þ

czdð Þ
1{s

can be simplified for equal numbers

of cases and controls, such that
azbð Þ
czdð Þ equals 1. The function then

becomes 1zs
1{s and is plotted in Figure 4.

The presence of phenocopies overstates the impact of the x2

statistic for the core disease group, which exists with other subtypes

as a proportion of overall cases. Thus, reclassification of cases not

Table 3. Expected allele counts in x2 statistic calculation.

Allele 1 Allele 2

Cases azbð Þ azcð Þ
n

azbð Þ bzdð Þ
n

Controls azcð Þ czdð Þ
n

bzdð Þ czdð Þ
n

n~azbzczd

doi:10.1371/journal.pone.0071614.t003

Table 4. Adjusted observed values when phenocopies are
reclassified as controls.

an bn

a{s � c
azbð Þ
czdð Þ b{s � d

azbð Þ
czdð Þ

czs � c
azbð Þ
czdð Þ dzs � d

azbð Þ
czdð Þ

cn dn

doi:10.1371/journal.pone.0071614.t004
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within a particular subtype to controls assumes a lack of disease

predisposition, which is clearly not true for correctly diagnosed

patients. Therefore, a more conservative approach for calculating

required sample sizes will be employed.

Sample Size in the Presence of Subgroups
Next we examine cohorts with only a particular subgroup, or

sum of subgroups, associated to the disease at a particular locus.

Consider a SNP which is weakly associated to the disease, but

wherein only a minority of cases are contained within the

subgroup exhibiting the association. In this situation, we preserve

the coding of the proportion in the subgroup, s, but do not add

the samples removed from a9n and b9n to c9n and d9n as illustrated

in Table 5.

A new term, x02n , represents the x2 statistic of the new table,

namely the ‘‘true’’ x2 statistic for only the subgroup in question,

and is given by:

x02n ~

ad{bcð Þ2 azbzczd{s azbð Þ½ �
azbð Þ czdð Þ azcð Þ bzdð Þ 1{sð Þ 1{

sc azbð Þ
azcð Þ czdð Þ

h i
1{

sd azbð Þ
bzdð Þ czdð Þ

h ih ið3Þ

We now turn our attention to the relationship between the new

statistic and the original one. In particular, how the original

sample with given allele frequencies relates to the statistic of the

subgroup. If allele frequencies remain fixed, how must the original

sample size increase to report the same association?

In order to determine the increase in cases and controls

required to replicate this statistic, without any reclassification of

samples, a second 2x2 matrix is constructed to represent the new

cohort size. A new variable, c, is created which is a proportion by

which the number of total samples must be increased in order to

attain the x2 statistic of the associated subgroup. Therefore, each

term in the new matrix will have allele counts multiplied by c
(Table 6).

x2
r is the term for this x2 statistic, and is given as follows:

Figure 4. x2 ratio function. The function
1zs� azbð Þ

czdð Þ
1{s describes the ratio of the x2 value with only genetic cases to that of the original data. The plot

above is for equal numbers of cases and controls, so that azb~czd , making the function 1zs
1{s. For example, with equal cases and controls, if 20% of

cases have non-genetic causes, the new x2 statistic when removing these will be 1.5 times that reported.
doi:10.1371/journal.pone.0071614.g004

Table 5. Adjusted observed values when cases not present in
a subgroup are removed.

a9n b9n

a{s � c
azbð Þ
czdð Þ b{s � d

azbð Þ
czdð Þ

c d

c9n d9n

doi:10.1371/journal.pone.0071614.t005

(3)

Subgroup Genetic Considerations

PLOS ONE | www.plosone.org 5 August 2013 | Volume 8 | Issue 8 | e71614



x2
r ~

ad{bcð Þ2 azbzczdð Þ � c

azbð Þ czdð Þ azcð Þ bzdð Þ ð4Þ

In order to determine sample sizes required, this must be equal

to x02n , and thereafter a function of c and s can be derived.

x02n ~

ad{bcð Þ2 azbzczd{s azbð Þ½ �

azbð Þ czdð Þ azcð Þ bzdð Þ 1{sð Þ 1{
sc azbð Þ

azcð Þ czdð Þ

� 	
1{

sd azbð Þ
bzdð Þ czdð Þ

� 	� 	

x2
r ~

ad{bcð Þ2 azbzczdð Þ � c

azbð Þ czdð Þ azcð Þ bzdð Þ

To decide for what increase in sample size x2
r is equal tox02n ,

equations 1.3 and 1.4 are set to be equal and gamma is solved for.

c ~

1 {
s azbð Þ

azbzdzc

� 	

1{sð Þ 1 {
sc azbð Þ

azcð Þ czdð Þ

� 	
1 {

sd azbð Þ
bzdð Þ czdð Þ

� 	 ð5Þ

If a+b = c+d, i.e. for equal numbers of cases and controls, then

the general equation for c can be given as

c~
1{

s

2

1{sð Þ 1{
sc

azc

� �
1{

sd

bzd

� � ð6Þ

This represents the most generic case. It can be shown that c
increases as s increases by taking the first derivative of equation

1.6 and showing it is positive. The factor 1= 1{sð Þ increases as s
increases and will be ignored in further discussions. The general

case given in equation 1.5 involves taking the derivative with

respect to s and showing it is positive. In order to do this, let

c1~
c azbð Þ

azcð Þ czdð Þ

c2~
azb

azbzczd

c3~
d azbð Þ

bzdð Þ czdð Þ

The derivative becomes c1c2c3 s{
1

c2

� �2

z
c1{c2ð Þ c2{c3ð Þ

c2
.

It turns out that c1vc2vc3 if ad-bc.0 or c1wc2wc3 if ad-bc,0.

If ad-bc = 0 then c1~c2~c3. For this discussion it is necessary

to assume the smallest of c1,c2,c3 is ,1. Otherwise, the

denominator of c becomes 0 in (0,1). Hence, the derivative is

positive, showing c is an increasing function of s.

A python script to calculate c for given values of a, b, c, d, and

estimated s via equation 1.5 is available at kirc.se/software/

subgroups. The same script plots the function of c for the range of

s as in Figure 5. As the proportion of heterogeneity for the

subgroup increases (i.e. cases not contained within the subgroup)

along with x-axis, a relative increase in samples with the original

allele frequencies is required to achieve an identical x2 statistic.

Discussion

This paper explores the consequences to association studies of

the possibility of SNPs to confer disease predisposition in a subset

of patients only. Two scenarios have been explored, including

subgroups in which cases not included are omitted, and an OR

error is calculated based on the remaining cases and all controls.

These calculations can be extended to determine sample sizes

required to compensate for cases not in the subgroup. An

additional examination of phenocopies, moved from cases to

controls to determine allele frequencies, was conducted and a

function relating the true x2 statistic to the original calculation was

derived.

The scenarios described, namely phenocopies and subgroups,

are related and the determination of which to select for calculating

the effect on OR, x2 statistic or sample size is somewhat subjective.

However, some examples utilizing overlapping clinical and genetic

observations in both settings will be discussed, which may provide

a priori expectations of how these scenarios might affect association

studies. Practically, reclassification of phenocopies is less conser-

vative than subgroup consideration, and is most suited with high

certainty that a proportion of cases either have alternative causes

which are non-genetic, or are disease subtypes displaying

symptoms which may constitute a distinct disease or etiology.

This scenario also provides a method to estimate the correspond-

ing x2 error factor provided only the proportion of heterogeneity,

s, for given allele frequencies, i.e. stratified sample sets.

In myasthenia gravis (MG), approximately 10–15% of patients

display thymomas, which typically predates the disease and is

considered to cause the symptoms [8]. Strictly speaking, thymoma

in MG is not non-genetic as thymomas display many genetic

associations [9] which are likely to predispose individuals to the

cause of thymoma, possibly due to virus [10]. However, due to the

distinct alternative cause of antigen immunization causing

symptoms, these patients could be reclassified as controls to

determine the true x2 statistic for core, non-thymomatous MG.

Assuming 15% thymoma, Equation 1.2 with equal numbers of

samples would yield a x2 error factor of 1.35.

Table 6. 262 contingency table for samples increased by a
factor of c.

ar br

a � c b � c

c � c d � c

cr dr

doi:10.1371/journal.pone.0071614.t006
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In RA, ACPA+ disease appears to differ from ACPA-, with

independent analysis of each group yielding different ORs across

three independent cohorts [6]. Although not consistently higher in

ACPA+ RA, notable associations such as SNPs in PTPN22

(OR = 1.74 ACPA+, 1.23 ACPA-) and TRAF1-C5 (OR = 1.32 -

ACPA+, 1.08 ACPA-) have increased effects in ACPA+ RA, and

the authors consider this heterogeneity to denote a separate disease

subtype. Given this, it may be reasonable to reclassify ACPA- cases

with controls to enhance detection of variants that act only within

the ACPA+ group. It is not possible to confirm if the ratio of x2

error conforms to Equation 1.2 in the published report, since

aggregation of ACPA- and healthy controls was not conducted.

However, doing so given reported rates of 60% ACPA+ patients

[11] would result in a x2 error factor of 2.33. Simply put, failing to

stratify on ACPA status could reduce the x2 statistic in the ACPA+
group to less than half of that which might be obtained otherwise.

Figure 5. Sample size calculation due to heterogeneity. The increase in samples (c) required as heterogeneity, defined by s, increases for
given values of a, b, c, d, when these values approach being equal. For example, if a = 1000, b = 2000, c = 1200 and d = 1800, and c is estimated as 40%
of cases not in the subgroup on which a given SNP acts, a relative increase in samples of 2.1 is needed to attain similar association statistics in the
entire cohort as that of the underlying subgroup.
doi:10.1371/journal.pone.0071614.g005

Table 7. A hypothetical example illustrating that in data with 1000 cases and 1000 controls, if a SNP had altered frequency only in
a subgroup of 200 cases, the OR would be skewed.

Original Data Adjusted Data

Allele 1 (%) Allele 2 (%) Allele 1 (%) Allele 2 (%)

Cases (n = 1000) 700 (35) 1300 (65) Cases (n = 200) 200 (50) 200 (50)

Controls (n = 1000) 650 (32.5) 1350 (67.5) Controls (n = 1000) 650 (32.5) 1350 (67.5)

OR 1.12 OR 2.08

In the example, the allele frequency in the subclass (50%) masks the full effect of association, and moving the remaining cases to controls gives an OR of 2.08 for the
SNP in the subclass. This corresponds to an OR error factor of 1.86, which can also be determined by inspecting the second lowermost curve in Figure 3 (case MAF 0.35)
with a MAF increase in the subgroup of 0.15.
doi:10.1371/journal.pone.0071614.t007

Subgroup Genetic Considerations
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When a disease subtype is not suspected, or a common disease

etiology cannot be ruled out, the subgrouping scenario without

reclassification may be more appropriate. The effects of subgroups

are difficult to quantify, since no such genetic subgroups have been

indisputably identified for MS and related disorders, and examples

of subgroup frequencies are purely speculative even within HLA

associations. Some evidence comes from differing clinical charac-

teristics and sub-phenotypes, which have been shown to have

varying genetic associations in systemic lupus erythematosus (SLE)

[12]. The gradient of phenotypes within the disease may be

composed of genetic subgroups, or more likely be enriched with

some particular subgroup(s), thereby resulting in different associ-

ations.

For example, in MS the HLA-DR15 allele is strongly associated

to disease (60% carriage rate cases, 30% carriage rate controls)

[13], [14]. Recent gene network studies have also indicated that

different gene networks may show association in DR15+ and

DR152 cohorts (data not shown). If a subgroup of MS based on

HLA-DR15 exits, it may be reasonable to consider stratification

via HLA alleles. Given this assumption, Equation 1.6 can be used

to calculate that an increase in sample size of approximately 2.1 is

needed to obtain similar association statistics to that of the DR15+
subgroup alone. While all genetic associations are not likely to be

perfectly correlated with DR15 status due to the presence of

modifier genes [5], division on HLA status may increase power to

detect genes which interact with HLA or which act together in

DR152 afflicted individuals. The utility of this insight is

particularly useful when less obvious alleles than HLA are present

within cases and stratification parameters are unknown.

Table 7 shows an empirical example of the impact of a

subgroup on the OR, in a hypothetical case/control cohort of

1000 patients and 1000 controls. This demonstrates that an OR of

1.12 (case MAF 0.35, control MAF 0.325) could be skewed by a

factor of 1.86 if the data was a result of 20% of the cases

representing a subclass (MAF 0.5), with an ORsub of 2.08. This

calculation can also be approximated by Figure 3, by taking the

second lowest curve (MAF 0.35 in cases). An increase in the

subgroup MAF of 0.15 gives a relative increase of 1.86 as observed

on the y-axis.

This corresponds to a p-value change from 0.095 (not

significance even in a single SNP study) to 2.4x10211 (genome

wide significance), even with a drastic reduction in case sample

size. This association would assuredly be bypassed due to Type II

error. Furthermore, the MAF for cases in the subclass is 0.50,

indicating that the SNP could occur in every single case in the

subclass as a heterozygote. While an ideal example, many SNPs

could act in this fashion while being masked by occurring together

in subclasses composed of a low proportion of total cases.

In this example, the increase in samples needed corresponds to

the value of c in equation 1.5. Substituting for a,b,c,d and s= 0.8

gives c= 8.24. Therefore, to obtain a similar x2 value without

subgrouping, the cohort must be expanded to over 8 times the

number of cases and controls (i.e. 8240 cases and 8240 controls).

Examining from the reverse perspective illustrates the impact of

underlying subgroups on the p-value and OR, in a hypothetical

case/control cohort of 1000 patients and 1000 controls, based on

heterogeneity percentage (Table 8). When all cases conform to the

subgroup, a MAF of 38% in cases compared with 30% in controls

reaches the border of genome-wide significance (9.3x1028,

OR = 1.43). With increasing heterogeneity, that is, proportion

with similar allele frequencies to controls, the p-value and OR both

decrease accordingly.

In order to determine if increased heritability of complex

disorders might exist within subgroups, we conducted a simulation

of two subgroups of MS by utilizing data from the 123 reported

markers from the published meta-analysis, plus HLA [15]. First,

we determined the genotypes in our Swedish cohort of 632 cases

and 527 controls at the given loci, plus associated HLA alleles.

Using the model of So based on multifactorial liability threshold

[16], the variability explained by these markers in our cohort was

32%, very close to the reported value of 30.7% in GWAS data

[17]. Next, we assumed that the half of data not in each subgroup

would have allele frequencies similar to controls, with case allele

frequencies adjusted accordingly. Using these conservative sub-

grouping assumptions, the variability explained within each

subgroup averaged 51.2%, even while using half the markers

and disease frequency. This indicates that the low variance

estimates due to known genetic factors could be, at least in part,

explained by inconsistent effects due to subgroups present in

complex disease.

Based on our results, at least a portion of the ‘‘missing

heritability’’ may be explained by incomplete penetrance of

associated markers across disease cohorts due to subgroups or

phenocopies. While fine mapping and sequencing may detect low

Table 8. A hypothetical example demonstrating the effect of heterogeneity (cases without the minor allele affecting disease) in
data with 1000 cases (MAF 30.0%) and 1000 controls (MAF 38.0%).

Controls Cases

Heterogeneity percentage MAF% Allele 1 Allele 2 MAF% Allele 1 Allele 2 OR p-value

0% 38% 760 1240 30.0% 600 1400 1.43 9.27E-08

10% 38% 760 1240 30.8% 616 1384 1.38 1.64E-06

20% 38% 760 1240 31.6% 623 1368 1.33 2.15E-05

30% 38% 760 1240 32.4% 648 1352 1.28 0.000209

40% 38% 760 1240 33.2% 664 1336 1.23 0.001524

50% 38% 760 1240 34.0% 680 1320 1.19 0.008408

60% 38% 760 1240 34.8% 696 1304 1.15 0.035452

70% 38% 760 1240 35.6% 712 1288 1.11 0.115551

80% 38% 760 1240 36.4% 728 1272 1.07 0.295186

90% 38% 760 1240 37.2% 744 1256 1.03 0.601475

The p-value, at the border of genome-wide significance, lowers as the percentage of heterogeneity (with MAF as given by cases) increases.
doi:10.1371/journal.pone.0071614.t008
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frequency and rare variants contributing to disease, better

methods to detect variants present within GWAS, but below

detection thresholds, are required. Identification of subgroups of

disease through promising approaches such as network and

pathway analysis may determine interactions otherwise obscured

by noise. New methods to combine low effect markers are required

to build up subgroup classification across similar phenotypes.
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