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Abstract

Understanding how seizures spread throughout the brain is an important problem in the treatment of epilepsy, especially
for implantable devices that aim to avert focal seizures before they spread to, and overwhelm, the rest of the brain. This
paper presents an analysis of the speed of propagation in a computational model of seizure-like activity in a 2-dimensional
recurrent network of integrate-and-fire neurons containing both excitatory and inhibitory populations and having a
difference of Gaussians connectivity structure, an approximation to that observed in cerebral cortex. In the same
computational model network, alternative mechanisms are explored in order to simulate the range of seizure-like activity
propagation speeds (0.1–100 mm/s) observed in two animal-slice-based models of epilepsy: (1) low extracellular ½Mg2z�,
which creates excess excitation and (2) introduction of gamma-aminobutyric acid (GABA) antagonists, which reduce
inhibition. Moreover, two alternative connection topologies are considered: excitation broader than inhibition, and
inhibition broader than excitation. It was found that the empirically observed range of propagation velocities can be
obtained for both connection topologies. For the case of the GABA antagonist model simulation, consistent with other
studies, it was found that there is an effective threshold in the degree of inhibition below which waves begin to propagate.
For the case of the low extracellular ½Mg2z� model simulation, it was found that activity-dependent reductions in inhibition
provide a potential explanation for the emergence of slowly propagating waves. This was simulated as a depression of
inhibitory synapses, but it may also be achieved by other mechanisms. This work provides a localised network
understanding of the propagation of seizures in 2-dimensional centre-surround networks that can be tested empirically.
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Introduction

Epilepsy is a debilitating disorder affecting roughly 1–3% of the

population [1]. Approximately 33% of these people suffer from

pharmaco-resistant epilepsy [2]. Current treatment for pharmaco-

resistant epilepsy involves surgical resection of the seizure-

generating tissue [3] or, more recently through clinical trials, the

implantation of a seizure control device that can avert seizures

through electrical stimulation or drug delivery [4–6]. The success

of both these forms of treatment is heavily dependent on being

able to determine the seizure-focus and the epileptic brain network

through which seizures first spread before they take over the

activity within the rest of the brain. With this in mind, this paper

investigates a computational model of the local mechanisms of

seizure propagation across a 2-dimensional (2D) centre-surround

network of integrate-and-fire (IAF) neurons which can be

considered to be a simplified model of the cerebro-cortical sheet.

The neural modelling of seizures has been investigated at

several scales (see [7,8] for reviews). Three key aspects of

modelling seizures are describing the mechanisms involved in (1)

seizure initiation, (2) seizure propagation, and (3) seizure

termination. As mentioned above, this paper is focused on seizure

propagation. Specific investigations of the neural modelling of

seizure propagation have focused on both the macro-scale [9–11]

and the scale of a local network-of-neurons [7,12,13]. Here we

choose to model the local network-of-neurons scale to better

understand the local mechanisms of seizure propagation. This

knowledge can then be applied to the holy grail problem of better

defining macro-scale models of seizure propagation that could be

used to determine the paths, and the spatio-temporal sequences,

that seizures take through an individual epileptic patient’s brain.

Specifically, we have chosen to follow on from the work of Ursino

and La Cara [12] who demonstrated different types of travelling

wave behaviour during simulated seizures in a 2D centre-surround

network of IAF neurons. Our work provides a slightly more

realistic network topology including both excitatory and inhibitory

neurons and seeks to better understand the mechanisms under-

lying seizure propagation through comparison with physiological

data.

Investigations of seizure spread in vivo have demonstrated,

typically with intra-cranial electroencephalography (EEG) in

humans, that propagation velocities, propagation patterns and
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connectivity networks can be obtained to a certain degree of

accuracy [14–18]. However, it is difficult to fully investigate local

mechanisms of seizure propagation in vivo. In vitro slice-studies on

the other hand can more easily tease apart local network

mechanisms. Two in vitro slice models of the propagation of

seizure-like activity are the (1) low extracellular ½Mg2z� [19–23]

and (2) gamma-aminobutyric acid (GABA) antagonist [24–26]

models.

The low extracellular ½Mg2z� model produces spontaneous

seizure-like activity in slices of mouse primary visual cortex with

propagation speeds of the order of 0.1–10 mm/s [22,23,27]. Low

extracellular ½Mg2z� is thought to have its greatest effect on the

excitability of NMDA receptors by increasing their probability of

remaining open. In cerebral cortex, NMDA receptors lie on both

the pre- and post-synaptic regions of an excitatory synapse and

therefore low extracellular ½Mg2z� is likely to have an effect on

excitability of both parts of the synapse [28,29]. The seizure-like

activity of this animal slice model [22] is reminiscent of the

‘Jacksonian March’ observed in tonic-clonic seizures in humans

where seizures progress from one region to another in a step-like

manner, as opposed to a smoothly propagating wavefront [30–32].

GABA antagonist slice models [24–26] predominantly act by

preventing GABA from binding to GABA receptors in the

synaptic cleft, thus reducing inhibition and allowing excitatory

activity to build up into spontaneous seizure-like activity. The lack

of inhibition in these models allows for runaway excitation leading

to seizure-like activity propagation speeds of up to 100 mm/s

[33,34].

In this paper, through simulations of a computational model of

2D IAF centre-surround networks we provide possible explana-

tions of the mechanisms giving rise to the range of propagation

speeds, 0.1 to 100 mm/s, seen in these slice models of epilepsy. In

particular, for the case of high propagation speeds seen with

GABA antagonist models, as is done in other computational

studies [12,35–38], we propose the straight forward mechanism

that inhibition is greatly reduced by the blocking of inhibitory

(GABA) synapses in the whole network allowing excitation to

spread rapidly from a focal region (see discussion for comparison

with other computational studies). With regard to the GABA

antagonist models, the novelty in this paper lies in a more detailed

analysis of the 2D network dynamics.

Alternatively we propose that slow propagation speeds obtained

with low extracellular ½Mg2z� arise as a result of a confluence of

factors: (1) pre-synaptic effects on excitatory (NMDA) receptors

[28] cause a decrease in the rate of pre-synaptic adaptation of

excitatory synapses, (2) post-synaptic effects on excitatory (NMDA)

receptors increase post-synaptic excitatory conductance [29], (3)

cells in the inhibitory surround initially have enough activity to

prevent the spread of excitatory activity but inhibitory synapses

adapt faster than excitatory synapses and excitation eventually

spreads, and (4) when excitation spreads to a new area the

inhibitory surround has to adapt before excitation can spread to

the next area, thus producing a ‘Jacksonian March’. Furthermore,

for computational simulations of the two animal slice models

considered, we explore the influence of connection topologies

(excitation broader than inhibition and inhibition broader than

excitation) on seizure propagation. We also explore what the

minimal necessary conditions on the parameters are for ‘Jackso-

nian March’-type seizure spread to occur.

The main findings of this paper are: (1) for the GABA

antagonist simulations there is an effective threshold of inhibition

(or more correctly the balance of excitatory and inhibitory

strengths) below which activity begins to spread across the

network; (2) for the low extracellular ½Mg2z� simulations the

primary way to produce slowly propagating seizures is to

incorporate activity-dependent suppression of inhibition, which

has been achieved here through the influence of inhibitory pre-

synaptic depression; and (3) by making simple adjustments to the

same computational network model for either connection topology

we are able to simulate the full range of average seizure

propagation velocities observed in the two animal slice prepara-

tions considered.

Methods

The computational model used is based on equations describing

the leaky IAF neuron and, as stated in the introduction, is an

extension of the work done by Ursino and La Cara [12]. In

contrast to Ursino and La Cara, our model includes separate

populations of inhibitory and excitatory neurons. We have also

included presynaptic depression in our neuronal model.

To begin with, a description of how a single neuron is modelled

is provided, followed by an outline of how a network of these

neurons is connected and finally an explanation of how the

parameters change from ‘normal’ values to describe approxima-

tions to the (1) the low extracellular ½Mg2z� model and (2) the

GABA antagonist model.

Single Neuron
The IAF model reduces the complexity needed to describe the

behaviour of a single neuron by replacing the exact dynamic

description of the ionic channels involved in the generation of the

action potential, with a threshold mechanism [12].

Each neuron contains excitatory and inhibitory synaptic

conductances and an after-hyperpolarization conductance in

order to describe the refractoriness of the neuron. The mathe-

matical equations that describe the time evolution of the

membrane potential of a neuron are as follows:

Cp
m

dV
p
m(t)

dt
~I{g

p
L(Vp

m(t){E
p
L)

{g
p
tr(t)(V

p
m(t){Etr){

P
s

gp
s (t)(V p

m(t){Es) if Vp
m(t)vVth

V p
m(t)~Vm,max if Vp

m(t)wVth and tkvtvtkzT

V p
m(t)~Vm0 if V p

m(t)wVth and tkzTvtvtkzTzTp
r

8>>>>><
>>>>>:

ð1Þ

Where Vp
m, Cp

m are the membrane voltage and capacitance of the

neuron respectively. I is an external current used to stimulate the

neuron. E
p
L and g

p
L are the leak reversal potential and

conductance. Etr and gtr are the after-hyperpolarization reversal

potential and conductance. gp
s and Es are the synaptic conduc-

tances and reversal potentials for the neuron and tk is the instant of

the kth spike. The parameter s represents whether a synaptic

conductance is excitatory (s~e) or inhibitory (s~i) and the

parameter p indicates whether the neuron is an excitatory neuron

(p~e) or an inhibitory neuron (p~i).

The differential equation holds until the membrane potential

Vp
m reaches some threshold value Vth at which point the neuron

spikes for a period of Tms with the membrane potential having a

constant value of Vm,max. After the spiking period has ended the

membrane potential is set to the reset potential Vm0 for a period of

Tp
r ms to model the refractory period of the neuron which is the

time the neuron needs to rest before it can fire again. This is a

step-wise-continuous approximation to the shape of an action

potential.

The presence of the after-hyperpolarization conductance, g
p
tr

simulates the relative refractoriness period and the phenomenon of

spike rate adaptation. It behaves according to the following

Mechanisms of Seizure Propagation
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dynamics:

g
p
tr(t)~g

p
tr,high if tkvtvtkzTzTp

r

ttr
dg

p
tr(t)

dt
~{g

p
tr(t) otherwise

8<
: ð2Þ

The excitatory and inhibitory synaptic conductances, gp
s , model

the voltage gated ion channels in the cell membrane. These

channels can be described using a Hodgkin-Huxley-type model

where:

gp
s (t)~gs,maxPp

s (t) ð3Þ

Where gs,max is the conductance when all ionic channels are open

and Pp
s is the probability that those channels are open. This

probability can be expressed as a product of two terms

Pp
s (t)~P

p
s,post(t)P

p
s,rel(t). The factor P

p
s,post(t) is the probability a

postsynaptic channel opens given transmitter was released from a

presynaptic terminal and P
p
s,rel(t) is the probability that transmitter

was released from a presynaptic terminal following an action

potential [39].

By incorporating P
p
s,rel(t) into the dynamics of the system it is

possible for us to model presynaptic depression. This occurs when

the release probability is reduced after a presynaptic action

potential P
p
s,rel?fd,sP

p
s,rel where the parameter fd,s with

(0vfd,sƒ1) controls the amount of depression. Between presyn-

aptic action potentials P
p
s,rel is governed by the following equation:

ts,rel

dP
p
s,rel(t)

dt
~P0{P

p
s,rel(t), ð4Þ

where ts,rel controls the rate at which the release probability is

restored to the resting probability P0. Presynaptic depression was

included into the model in order to simulate low extracellular

½Mg2z� slices (Note it is also simulated in the GABA antagonist

simulations). Epileptic networks in general are also likely to show

presynaptic facilitation. Facilitation was not included in order to

better understand the influences of presynaptic depression alone.

Since there are a large number of postsynaptic channels,

P
p
s,post(t) is also a measure of the proportion of channels that are

actually open. The rate at which the proportion of open channels

changes is determined by the following differential equation:

dP
p
s,post(t)

dt
~ap

s (t)(1{P
p
s,post(t)){bsP

p
s,post(t) ð5Þ

where ap
s is the rate at which the channels open and bs is the rate

at which the channels close.

To account for excitatory and inhibitory input from other

neurons we assume our opening rate ap
s depends on the synaptic

input from other neurons. If we require our opening rate to be

zero for no synaptic input and for it to increase to some saturation

level as synaptic input increases then the opening rate is influenced

by the synaptic input as follows:

ap
s (t)~as,max(1{e

{S
p
s (t)

ks ) ð6Þ

where as,max is the maximum opening rate, ks determines the rate

of saturation of the synaptic conductance and Sp
s (t) is the synaptic

input from the other neurons and is defined below.

Network Connectivity
The network consists of a 50650 array of excitatory neurons

and a 25625 array of inhibitory neurons since the observed ratio

of excitatory to inhibitory neurons is 4:1 [40]. Both neuron

populations occupy the same spatial extent of 2 mm62 mm,

approximating a small patch of cortex. The physical dimensions

are approximately a 16:1 scaling of the physiological data of

Trevelyan et al. [22] where calcium imaging videos showed 152

active neurons occupying a 0.52 mm60.52 mm area of mouse

cortex. These cell densities are an underestimate because there are

likely to be tens to hundreds of thousands of neurons across the

cortical layers within a 2 mm by 2 mm patch of mouse cortex.

Even for just a single cortical layer within cortex these cell densities

will likely be an underestimate, however, due to computational

constraints it is difficult to simulate accurate cell densities in

reasonable amounts of time. Regardless, the important aspect here

is appropriate synaptic weighting for the cell densities we apply as

well as the appropriate spacing of the neurons and setting of the

standard deviations of the Gaussian connectivity kernels (see

below) in order to obtain reasonably accurate estimates of velocity.

The dimensions we use are also supported by the computational

models of Somers et al. and Troyer et al. [41,42].

Neurons are arranged in a regular lattice with their location in

the lattice being represented by the indices (i,j). The network was

connected with a centre-surround topology. It is well known that

surround inhibition exists within cortex on a functional level

[36,43], however, it is not completely clear how this functional

property is obtained through anatomical connectivity. In partic-

ular, it is known that long range connections can only be excitatory

and inhibitory cells can only have short range connections. This

appears true in both the hippocampus [44–47] and visual cortex

[48–51]. This leads one to ask, how can an inhibitory surround

exist if excitation appears to be anatomically broader than

inhibition? Given this uncertainty two connectivity structures

were considered, the first being a classical Mexican-Hat topology

which is consistent with certain models of cortex [12,52,53]. This

means a neuron receives excitatory and inhibitory inputs from

nearby neurons, with excitation having narrower extension than

inhibition. The second connectivity structure considered is the

case where excitation is broader than inhibition as outlined by

Traub and Miles [36].

It was assumed that the synaptic connections between neurons

in the network decreased with distance, d . Furthermore, in order

to account for the intrinsic variability of synapses, it was assumed

that the synaptic strength is weighted by a random factor drawn

from a uniform distribution. This signifies that not all neurons

receive the same excitatory and inhibitory connection weights.

The neuron at position (i,j) receives synaptic input Sp
s (t) as

follows:

Sp
s (t)~W p

s rp
ij

XN

l,m~1

e
{

d2
ij,lm

s2
s y

p
lm(t) ð7Þ

dij,lm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(i{l)2z(j{m)2

q
ð8Þ

Where W p
s is the synaptic strength, ss is the standard deviation

and represents the spatial extent to which inputs can act, r
p
ij is a
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uniformly distributed random variable between 0.5 and 1.5 (values

were kept fixed during simulations) and y
p
lm(t) is a quantity that

indicates whether the pre-synaptic neuron at position (l,m) is

spiking at time t since it is only the spiking neurons that contribute

to the synaptic input.

y
p
lm(t)~

1 if tkvtvT

0 otherwise

�
ð9Þ

Input, Initial and Boundary Conditions
The input to the network is a constant depolarizing current

inserted into a central 464 cluster of excitatory neurons. This

input emulates an epileptic focus. The neuronal membrane

potentials were initialised to Ve
m(0)~{73:6 mV and

Vi
m(0)~{81:6 mV. The probability that transmitter was released

from a presynaptic terminal was initialised to P
p
s,rel(0)~P0. The

remaining conductances and synaptic probabilities were initially

set to zero for all simulations. Zero-boundary conditions were

employed in the network so that the waves could not propagate

back around the network and interfere with velocity calculations.

Average Propagation Velocity Calculation
To determine the speeds of seizure propagation we considered 4

radial lines from the centre of the network and recorded the time

and position of spiking neurons along these radial lines. The

average velocity over the four lines is then calculated.

Approximate Local Field Potential (LFP) Estimation
To determine if the network simulations produce the temporal

frequencies observed in the EEG or local field potentials (LFPs) of

real seizures, we calculated the simulated LFP, VLFP(t), by

averaging the membrane potentials of all the neurons in the

network [12]:

VLFP(t)~
1

NezNi

XNe

k~1

Ve
m,k(t)z

XNi

l~1

Vi
m,l(t)

" #
ð10Þ

where Ne and Ni are the total number of excitatory and inhibitory

neurons in the network, respectively, and k and l index the

neurons in the excitatory and inhibitory populations, respectively.

This LFP signal is simply a linear combination of the voltages of

the neurons in the network and is intended to represent an

approximation to an LFP recording from a small scale electrode

close to the network, as opposed to a larger scale electrode that

might be used in intra-cranial or scalp EEG in humans.

Parameter Selection
Given the large number of parameters in the computational

model it was not possible to exhaustively explore the parameter

space, and instead we have adapted parameters from the Ursino

and La Cara model [12] and from the literature.

Cortical excitatory and inhibitory neurons were modelled

separately using intracellular parameters from regular spiking

and fast spiking neurons, respectively [41,42,54,55]. The param-

eters that characterise the excitatory and inhibitory neurons

cellular membrane’s: the membrane capacitances Ce
m, Ci

m, the

leakage conductances ge
l , gi

l , the reverse leakage potentials Ee
l , Ei

l ,

the reset potential Vm0, the spike generation threshold Vth, the

duration of a spike T and the absolute refractory periods Te
r , Ti

r

were given values commonly used in the literature [41,42,56]. The

effective reversal potentials for the excitatory and inhibitory

synapses Ee and Ei were also given values used extensively in the

literature [12,41,42,56].

The value for the maximal excitatory synaptic conductance,

ge,max was selected based on the work carried out by Prinz et al

[57]. Using IAF neurons Prinz observed that synaptic conduc-

tances in the range 10–100 nS have the greatest effect on the firing

patterns of a neuron with values larger than 100 nS having the

same effect. Hence, the maximal synaptic conductance was chosen

to be 80 nS. The maximal inhibitory synaptic conductance gi,max

was taken to be larger than ge,max according to the literature

[41,42,56]. This reasoning was used by Ursino and La Cara [12].

The parameters describing the dynamic behaviour of the

synapses are ae,max, ai,max, be and bi and have been selected based

on values found in the literature [12,42,56].

The parameter, ki, which determines the rate of saturation of

the inhibitory synaptic conductance has been taken to be 4 times

greater than ke as the inhibitory cells are considered to respond

faster than the excitatory cells. The size of the network was also

chosen to reflect this fact with there being 2500 excitatory neurons

and only 625 inhibitory neurons.

To select the values of the synaptic weights under ‘normal’

conditions the following ideas were considered. When a single pre-

synaptic neuron fires the maximal change in gp
e (t), the excitatory

conductance of a single post-synaptic neuron, is of the order of

3 nS [41]. In the model of Ursino and La Cara [12] this maximal

change occurs when the excitatory synaptic strength equals 0:1.

The corresponding maximal change in the inhibitory conductance

g
p
i (t) is of the order of 5 nS [41] and to achieve this change Ursino

and La Cara [12] set the inhibitory synaptic strength to 0:3.

However, if the synaptic weights were kept at these values then

nothing interesting occurs. To ensure that activity spreads beyond

the focus when inhibition fails the synaptic weights are increased

but kept in the same ratio of excitatory : inhibitory~1 : 3. With

these considerations in mind, when inhibition was broader than

excitation, the following values were selected W e
e ~W i

e~1:5 and

W e
i ~W i

i ~4:5.

Values for the standard deviations se and si that govern the

spatial extent over which inputs can act were determined by

balancing the average current flowing into a single centrally

located neuron assuming every neuron connected to it is spiking.

This means the sum of the average current due to the excitatory

synapses IE~ge(t)(Vm(t){Ee) and the average current due to the

inhibitory synapses II~gi(t)(Vm(t){Ei) must be equal to zero.

This condition results in an infinite number of choices for se and

si, so keeping in mind that we are interested in parameter spaces

where activity spreads beyond the focus when inhibition fails the

following values were selected se~2 and si~3:75.

For the case when excitation is broader than inhibition we set

se~2 and si~1. Since si has now decreased, to achieve the same

excitatory inhibitory balance as before the excitability of the

inhibitory neurons must increase, the ability for excitatory neurons

to be inhibited must increase and the ability for inhibitory neurons

to be inhibited must decrease. Thus, the synaptic weights were

adjusted as follows: W e
e ~W i

i ~1:5, W e
i ~14 and W i

e~4.

The values for the parameters governing the relative refractory

period and spike rate adaptation phenomena ge
tr,high, gi

tr,high, te
tr, ti

tr

and Etr were chosen according to the literature [12].

Heiss et al [58] found that inhibition adapts more than

excitation in rat cortex. The presynaptic depression parameters

te,rel~200ms, ti,rel~400ms, fd,e~0:9997 and fd,i~0:9995 were

selected so that the inhibitory and excitatory synaptic conduc-

tances on both the inhibitory and excitatory neurons adapted at a

rate that corresponded to the experimental results of Heiss.

Mechanisms of Seizure Propagation
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The model parameters under ‘normal’ conditions where activity

does not spread beyond the focus as outlined above are

summarised in Table 1.

Low extracellular ½Mg2z� simulations. Under low extra-

cellular ½Mg2z� conditions the number of open NMDA receptors

increases [59,60]. As a result a number of parameter modifications

need to be made with respect to the ‘normal’ case.

The first is that pre-synaptic effects on excitatory (NMDA)

receptors cause a decrease in the rate of pre-synaptic adaptation of

excitatory synapses. There are presynaptic NMDA receptors in

cerebral cortex [28] and entorhinal cortex [61,62]. In general,

MacDermott [63] claims that presynaptic terminals of excitatory

synapses have NMDA receptors, but the presynaptic terminals of

inhibitory synapses typically do not. NMDA receptors pump Ca2z

into the cell which was confirmed presynaptically by Woodhall

[61]. Residual presynaptic Ca2z modulates presynaptic facilita-

tion and depression as modeled by Dittman [64]. In this model

recovery from depression results from an increase in residual Ca2z

concentration. In the low extracellular ½Mg2z� model we propose

that there is an increase in the opening of the presynaptic NMDA

receptors causing Ca2z to go into the cell raising the Ca2z

concentration which increases the rate of recovery from depres-

sion. As a result, in our simulations of the the low extracellular

½Mg2z� model, the parameters te
e,rel and ti

e,rel which control the

rate of recovery from depression for excitatory synapses decrease

in value from 200 ms to 100 ms. This change results in an overall

increase in the rate of recovery from depression.

The second is that post-synaptic effects on excitatory (NMDA)

receptors increase post-synaptic excitatory conductance [59,60]

due to the increase in the number of open NMDA receptors. To

approximate this the parameter ge,max in the computational model

increases from 80 nS to 90 nS.

Third, we propose that the cells in the inhibitory surround

initially have enough activity to prevent the spread of excitatory

activity but the inhibitory synapses adapt faster than excitatory

synapses [58] and excitation eventually spreads. As a result we are

interested in varying the parameters ti,rel and fd,i since they

control the rate at which the inhibitory synapses are depressed in

the computational model and hence govern the speed at which a

seizure spreads.

We also considered the possibility that a change in the

inhibitory reversal potential, Ei, could lead to slow wave seizures,

as changes in the GABA/chloride reversal potential [65] appear to

play a role in the inhibitory restraint in low extracellular ½Mg2z�
slices [66]. To simulate this case, the same parameter values as

those described for the low extracellular ½Mg2z� model were used

except ti,rel and fd,i were fixed at ‘normal’ values and Ei was

varied, with fixed values in each simulation.

GABA antagonist simulations. For the GABA antagonist

model simulations we assume GABA antagonists are present.

Therefore inhibition is either weakened or removed completely.

We achieve this in simulations by reducing the inhibitory synaptic

weights, W i
i and W e

i below their normal values.

Numerical Simulation and Spatial Analysis
The numerical method used to solve the differential equations

in all of our simulations is the fourth-order Runge-Kutta method

with a 0.1 ms time step.

To quantify the spatial characteristics of the waves in the

network we determined the Mean Correlation Coefficient (MCC),

also referred to as spatial coherence [67]. To calculate the MCC

we determine the correlation coefficient for each neuron with

every other neuron in a 200 ms window. This generates a

250062500 array of correlation coefficients for the excitatory

network and a 6256625 array for the inhibitory network. The

mean of the correlation coefficients for each type of network is

then calculated excluding the autocorrelation values. To produce a

time series of MCC’s the same procedure is carried out at 5 ms

time steps, that is the windows have a 195 ms overlap. In all our

MCC results figures we only include the excitatory network since

the MCC of the inhibitory network behaves in a similar way and

therefore delivers no extra insight.

Results

The suggested model has many parameters that could be varied,

creating an impossible number of combinations to analyse. For

this reason, we focus on the parameters associated with the

synaptic weights and the synaptic connectivity for both slice model

simulations as well as the presynaptic depression parameters for

inhibitory neurons and the inhibitory reversal potential in the low

extracellular ½Mg2z� simulations. Given this approach it should be

stated that the dynamical properties observed in this paper may

correspond to only a subset of possible behaviours of this model.

Nevertheless, the results provide insight into the mechanisms of

seizure propagation and the parameters which we found

propagation velocity was most sensitive to.

GABA Antagonist Model Simulations
The simulations performed in this section use parameter values

as described for the GABA antagonist model.

Table 1. Model Parameters.

Ce
m 0:5nF Vth {55mV Ei {70mV sin 3:75(1) ti

tr
5ms

Ci
m

0:2nF Vmo {70mV be 0:667ms{1 W e
e 1:5 Etr {90mV

ge
L 20nS T 1ms bi 0:19ms{1 W e

i 4:5(14) Po 1

gi
L

25nS Ti
r

1:6ms ae,max 2:667ms{1 W i
e

1:5(4) te,rel 200ms

Ee
l {73:6mV Te

r 3ms ai,max 3:143ms{1 W i
i

4:5(1:5) ti,rel 400ms

Ei
l

{81:6mV ge,max 80nS ke 5 ge
trhigh 60nS fd,e 0:9997

I 6nA gi,max 120nS ki 20 gi
trhigh

60nS fd,i 0:9995

Vm,max 0mV Ee 0mV sex 2 te
tr 15ms

Computational model parameters under normal conditions where activity does not spread beyond focus. The values in brackets are used when excitation is broader
than inhibition.
doi:10.1371/journal.pone.0071369.t001
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Fast temporal frequency correlates with fast wave

propagation. The first set of simulations performed as shown

in Figure 1 detail the LFP of seizure-like events in both the time

and frequency domains for various values of the excitatory

synaptic weight W e
e when the inhibitory weights are set to zero.

When the excitatory synaptic weight is at its ‘normal’ value,

W e
e ~1:5, as is the case in panel A, circular waves propagating

away from the central focus can be observed. The frequency

content of these waves is concentrated in the 0–15 Hz range. As

the excitatory synaptic weight increases to W e
e ~2:5 as in panel B,

circular waves continue to propagate away from the central focus

but at a faster rate. This results in the frequency content of the

wave occupying a broader range from 0–30 Hz. When the

excitatory synaptic weight increases to an even larger value

W e
e ~4 as in panel C a very sharp frequency peak is observed at

36 Hz. These frequencies are consistent with seizure frequencies of

3–48 Hz that are typically observed physiologically in humans

[68,69]. There is limited data on the power spectra of LFPs

recorded from disinhibition slices. In an in vivo rat study of

disinhibition [70], it was observed that frequencies in the range of

5–20 Hz occurred prior to clinical seizures. Intuitively, as long as

the spatial scale of interaction remains approximately constant, it

is expected that the faster the seizure propagation velocity the

faster the LFP frequency. Therefore disinhibition slices would be

expected to be biased towards higher LFP frequencies.

No inhibition: excitatory strengths effect correlation

patterns. Next, we are interested in quantifying the spatial

characteristics of the waves and this is considered in Figure 2A

which details the MCC for various values of the excitatory

synaptic weight when the inhibitory weights are set to zero (Note

the remainder of the panels in Figure 2 are discussed as each

simulation case is considered). For W e
e ~1:5 the MCC is high.

This is due to there being a large number of inactive neurons in

the network hence the correlation between them is large.

However, as we increase W e
e to 2.5 we observe fluctuations in

the MCC. Under these conditions there are bursts of activity in the

network with there being periods of time where lots of waves are

being generated at high frequency which correspond to the low

MCC periods and periods where few or no waves are being

generated which corresponds to the high MCC periods. For the

final case where W e
e ~4:5 the MCC is constant after some initial

transient with uniform waves being generated constantly over

time. The network behaviour for each value of W e
e can be viewed

in Videos S1, S2, and S3.

Varied inhibition with inhibition broader than

excitation. To further understand the influences of inhibition

on network dynamics and propagation velocity, simulations were

carried out for the GABA antagonist model with varying degrees

of inhibition. The first case considered as shown in Figures 3 and

2B is when siwse. When the inhibitory weights are close to zero,

W e
i ~W i

i ~0:5, as is the case in Figure 3A, we see relatively

Figure 1. LFP simulations over a 3 second interval for the GABA antagonist model for various excitatory synaptic weights where
the inhibitory weights have been set to zero. In each row the simulated LFP in the time (left) and frequency (middle) domains are presented,
along with snapshots of network activity (right) at different time steps during the simulation (1) 384 ms, (2) 1308 ms and (3) 2708 ms. The snapshots
are of the excitatory network only. The parameter values used are: (A) W e

e ~1:5, (B) W e
e ~2:5, (C) W e

e ~4.
doi:10.1371/journal.pone.0071369.g001
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circular waves propagating away from the central focus in both the

inhibitory and excitatory networks. The frequency content of the

waves are in the range 0–30 Hz. As the inhibitory weights are

increased to W e
i ~W i

i ~2:5 as shown in Figure 3B the frequency

content becomes narrower and centres around the 15 Hz mark.

When the inhibitory weights are increased even further to

W e
i ~W i

i ~4:5 as shown in Figure 3C the frequency content is

more concentrated with a sharp peak observed at 12 Hz.

Figure 2B indicates that for W e
i ~0:5 relatively circular waves

propagate for the first 2200 ms but when there is a sharp drop in

the MCC more disordered waves occur. For W e
i ~2:5 when there

is a sharp dip in the MCC at 300 ms disordered waves occur, then

the MCC begins to rise again at 600 ms where the waves are

Figure 2. Mean Correlation Coefficient spatial analysis for the various simulations. (A) The GABA antagonist model for various excitatory
synaptic weights where the inhibitory weights have been set to zero. The snapshots correspond to excitatory network activity at times (1) 220 ms (2)
1200 ms and (3) 2400 ms. (B) The GABA antagonist model for various excitatory synaptic weights where the inhibitory weights are non-zero and
siwse . The snapshots correspond to excitatory network activity at times (1) 460 ms and (2) 2350 ms. (C) The GABA antagonist model for various
excitatory synaptic weights where the inhibitory weights are non-zero and sewsi. The snapshots correspond to excitatory network activity at times (1)
450 ms and (2) 1850 ms. (D) The low extracellular [Mg2z] model for fd,i~0:999 when siwse and for fd,i~0:9978 when sewsi . The snapshots
correspond to excitatory network activity at times (1) 470 ms (2) 1320 ms and (3) 2700 ms.
doi:10.1371/journal.pone.0071369.g002
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highly non-circular but are occurring regularly. After 1250 ms the

disordered waves cease and relatively circular waves begin to

propagate. However, every time there is a decrease in the MCC

the waves become more disordered. When W e
i ~4:5 similar

behaviour occurs with disordered waves occuring when the MCC

is low for the first 600 ms after which the MCC increases to a

steady value where relatively circular waves propagate. The

network behaviour for each value of W e
i can be viewed in Videos

S4, S5, and S6.

Varied inhibition with excitation broader than

inhibition. The second GABA antagonist model with non-zero

inhibition case considered is shown in Figures 4 and 2C where

sewsi. Figure 4A shows that when W e
i ~W i

e~3 the frequency

content is concentrated in the 0–20 Hz range with a peak at 8 Hz.

Figure 4B shows that when W e
i ~W i

e~4 the frequency content is

still within the 0–25 Hz range but now has a peak at 6.5 Hz.

Figure 4C shows that when W e
i ~W i

e~5 the frequency content is

again within the 0–25 Hz range but with a peak that has shifted to

5.5 Hz. Note that the sewsi case produces lower peak temporal

frequencies than the siwse case.

The network snapshots along with Figure 2C indicates that the

waves are disordered. We also notice that as we increase the

inhibitory weights there are large spikes in the MCC. This

corresponds to times when there is little or no network activity.

This is expected since as inhibition gets stronger there are more

occasions where neurons are not spiking. The network behaviour

for each value of W e
i can be viewed in Videos S7, S8, and S9.

Increased inhibition increases wave disorder. The data

from Figures 1, 2, 3, 4 also indicate that how disordered the waves

are is dependent on the inhibitory neurons. When there is zero

inhibition present circular waves occur, when a small amount of

inhibition is allowed the waves become less circular and when the

amount of inhibition increases further, completely disordered

waves ensue. One reason the inhibitory neurons play such a role in

the disorder of the waves is due to the topology of the network.

Essentially there is a 50650 layer of excitatory neurons arranged

in a regular lattice but there is only a 25625 layer of inhibitory

neurons. So that the excitatory and inhibitory neurons occupy the

same space there is only an inhibitory neuron at every second

location in the 50650 lattice. This creates an asymmetry relative

to the input seizure focus and thus more disordered waves are

observed when the inhibitory neurons become more active (see

discussion). However, we also observe that as inhibition becomes

strong there are disordered waves for an initial period of time and

then more circular waves propagate for the rest of the simulation.

This effect is caused by the presynaptic adaptation where

inhibition decreases due to the high amount of activity and so

the reduction in inhibition results in more circular waves.

Figure 3. LFP simulations over a 3 second interval for the GABA antagonist model for various non-zero inhibitory synaptic weights
and siwse. In each row the simulated LFP in the time (left) and frequency (middle) domains are presented, along with snapshots of network activity
(right) at different time steps during the simulation (A) - (1) 650 ms, (2) 1200 ms (3) 2800 ms, (B) - (1) 450 ms, (2) 980 ms, (3) 2550 ms, (C) - (1) 230 ms,
(2) 1000 ms, (3) 2550 ms. The snapshots include both the excitatory (left) and inhibitory (right) populations. The parameter values used are: (A)
W e

i ~W i
i ~0:5, (B) W e

i ~W i
i ~2:5, (C)W e

i ~W i
i ~4:5. W e

e ~W i
e~2:5.

doi:10.1371/journal.pone.0071369.g003
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An effective threshold for activity propagation. The next

set of simulations performed as shown in Figure 5 outline the speed

at which the outwardly propagating circular waves move for

different values of the excitatory synaptic strength W e
e and the

excitatory synaptic connectivity se, when there is zero inhibition.

The first observation to make is that an increase in either the

synaptic connectivity, se or the synaptic strength W e
e causes the

propagation speed to increase. However, se has a much greater

impact on the propagation speed than the synaptic strength W e
e .

As se is increased the propagation speeds continue to increase

without saturation. The maximum propagation speed achieved

was 316 mm/s for a se~20. This suggests that the upper bound

on the propagation speed is large and indeed can be large enough

for the model to be physiologically plausible. The most significant

observation to make, however, is that there are effective threshold

values of W e
e and se for seizure-like activity to occur. Consider the

se~2 curve, the minimum value of the excitatory synaptic weight

for seizure-like activity to occur is W e
e ~1:1. Anything below this

value results in no activity spreading beyond the focus. For all

cases considered in Figure 5, it can be noted that with zero-

inhibition, clean circular wavefronts are produced with fast

propagation speeds that have an effective threshold between

activity spreading and not spreading which involves a very narrow

range of parameter values over which velocities increase from 0 to

greater than 10 mm/s.

Since our computational model contains a separate inhibitory

population it is of interest to examine how the degree of inhibition

effects the seizure propagation speeds. Figure 6 looks at how

changing the synaptic weights W e
i ~W i

i , W e
e ~W i

e and the

synaptic connectivity si for a fixed se~2 effects propagation

speed. All panels contain a reference curve of the zero inhibition

case W e
i ~W i

i ~0. The first observation to make is that all panels

show that by including inhibition the propagation speed is smaller

than in the zero-inhibition case. However, again the most

significant observation to make is that there are effectively two

operating regions, there is either no spread of activity occurring or

there is activity but primarily with speeds greater than 15 mm/s.

There is only a small dynamic range for W e
e over which the

velocity increases from 0 mm/s to greater than 10 mm/s.

GABA antagonist simulation summary. The typical be-

haviour for the GABA antagonist model is that it can produce

both ordered and disordered waves depending on the strength of

inhibition in the network and that there is always an effective

threshold on the balance of excitatory and inhibitory input

between activity spreading and not spreading. This balance

between excitation and inhibition is reflected in the excitatory and

inhibitory strengths as shown in Figures 5 and 6, where the

effective threshold is characterised in part by the very narrow

range of excitatory connection strength values over which

velocities change from 0 to 10–20 mm/s. Thus for the range of

Figure 4. LFP simulations over a 3 second interval for the GABA antagonist model for various non-zero inhibitory synaptic weights
and sewsi. In each row the simulated LFP in the time (left) and frequency (middle) domains are presented, along with snapshots of network activity
(right) at different time steps during the simulation (A) - (1) 550 ms, (2) 1250 ms (3) 2800 ms, (B) - (1) 400 ms, (2) 1000 ms, (3) 2600 ms, (C) - (1)
225 ms, (2) 1350 ms, (3) 2600 ms. The snapshots include both the excitatory (left) and inhibitory (right) populations. The parameter values used are:
(A) W e

i ~W i
i ~3, (B) W e

i ~W i
i ~4, (C)W e

i ~W i
i ~5.

doi:10.1371/journal.pone.0071369.g004
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parameters considered, simulated activity is either most likely not

to propagate or to propagate at velocities in the 10–100 mm/s

range. This is consistent with the literature on GABA antagonists

in brain slices [33,34].

Low Extracellular ½Mg2z� Model Simulations
The simulations performed in this section use parameter values

as described for the low extracellular ½Mg2z� model.

Temporal frequencies are higher for excitation broader

than inhibition. The first set of simulations performed for this

model as shown in Figure 7 when siwse and in Figure 8 when

sewsi, detail the LFP of a seizure-like event in both the time and

frequency domains for a particular value of the presynaptic

depression factor for the inhibitory neurons fd,i~0:999 and

fd,i~0:9978, respectively. For both figure’s snapshots 1–3, all

depict the same wavefront at different points in time and they

indicate that the wave is propagating slowly away from the central

focus with both cases being disordered. For both cases the

amplitude of the LFP in the time domain slowly increases as time

progresses due to more neurons firing as the wave propagates. The

frequency content of the wave in Figure 7 is within the 0–20 Hz

range. In Figure 8 the frequency content is more concentrated and

with a peak at 10 Hz, however, the majority of the content lies

within the 0–30 Hz range. Again, this is consistent with seizure

frequencies of 3–48 Hz that are typically observed physiologically

in humans [68,69]. There is also limited data on the LFP power

spectral content for low extracellular ½Mg2z� slices. Trevelyan

[66] looked at high frequency oscillations in the range of 80–

500 Hz in low extracellular ½Mg2z� slices, however, such

frequencies, although important and present, are not expected to

be the dominant frequencies in the LFP signal on average. In a

somewhat similar in vivo model of sleep-like slow-waves which

produces slow velocity waves [67], it was found that the spatial

average of voltage-dye imaging signals predominantly contained

temporal frequencies in the range of 0–20 Hz. Videos of the

simulations presented in Figures 7 and 8 are available as Videos

S10 and S11, respectively.

Spatial Correlation Decreases as Activity Spreads. Figure 2D

depicts the MCC for the low extracellular magnesium case for both

siwse and sewsi. The MCC starts off large indicating little or no

network activity and then decays over time highlighting the fact that

disordered activity in the network is spreading slowly over time and

this leads to greater spatial decorrelation across the network over

time.

Inhibitory Depression Controls Slow Propagation. The

next set of simulations performed as shown in Figure 9 outline the

speed at which the wavefront moves for different values of the

inhibitory presynaptic depression factor fd,i and the inhibitory

presynaptic depression recovery time ti,rel . The first observation to

make, is that in both cases, the recovery time ti,rel has little impact

Figure 5. Seizure propagation speeds for the GABA antagonist simulations with zero inhibition. The impact that the extent of excitatory
connectivity, se , and the excitatory synaptic strength of the excitatory neurons, W e

e , has on propagation speeds is considered.
doi:10.1371/journal.pone.0071369.g005
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on the propagation speed of the wavefront, even when it is

increased to a large number so as to slow the recovery of the

adapted presynaptic terminal. On the other hand, the depression

factor fd,i has a significant effect. Other parameters were also

varied and network activity was simulated (results not shown), but

the key parameter needed to create slow seizure propagation

speeds was the presynaptic inhibitory depression factor, fd,i . The

next observation to make is that there are two distinct trends in the

propagation speeds.

For small inhibitory presynaptic depression factors, inhibition is

suppressed quickly, so seizures spread as if there is no inhibition at

all, hence the speed of propagation saturates to between 15–

20 mm/s. When the presynaptic depression factor reaches a

threshold, fd,i~0:9965 for the siwse case and fd,i~0:9928 for

the sewsi case, the inhibition is suppressed at a rate slow enough

that propagation speeds can be controlled and very slow speeds

can be attained. The inhibitory presynaptic depression factor

threshold effect emerges because for a low enough inhibitory

Figure 6. Seizure propagation speeds for the GABA antagonist simulations with non-zero inhibition. The impact that the inhibitory
synaptic weights W e

i ~W i
i and the excitatory synaptic weights W e

e ~W i
e have on propagation speeds is considered for different values of inhibitory

extension (A) si~1, (B) si~1:5, (C) si~3, (D) si~3:75. The excitatory connectivity is fixed at se~2.
doi:10.1371/journal.pone.0071369.g006
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presynaptic depression factor the temporal summation of incom-

ing spikes will cause the probability of presynaptic release at

inhibitory synapses to go to zero (see equation 4) thus approxi-

mating the GABA antagonist model with zero inhibition and

giving higher velocities. Because spike arrival is noisy the velocity

estimates also end up noisy for different simulations, thus giving

rise to the fluctuations seen in the plateau of velocity values in the

range of 15–20 mm/s for different inhibitory presynaptic depres-

sion factor values below a certain threshold. When we compare

the two connectivity kernel cases we notice that the same

behaviour is observed but over a different range of the presynaptic

depression factor with slower speeds being possible over a greater

range of fd,i for the case when sewsi. To summarise, disordered

wavefronts (generally observed in all low ½Mg2z� simulations)

combined with inhibition that depresses faster than excitation

result in slow propagation speeds, and there is an effective

threshold between activity spreading slowly and it spreading at a

rate similar to that observed in the GABA antagonist simulations

when inhibition becomes fully depressed.

Simulation of the Jacksonian March
An interesting behaviour of the low extracellular ½Mg2z� animal

slice model is its ability to produce seizure-like activity that

progresses from one region to another in a step-like manner as

opposed to a smoothly propagating wavefront. This behaviour is

reminiscent of the ‘Jacksonian March’ observed in tonic-clonic

seizures in humans [32]. Figure 10 shows this behaviour for the

low extracellular ½Mg2z� simulations for the propagation velocities

of (A) 3.69 mm/s, (B) 1.0 mm/s, and (C) 0.17 mm/s with each

plot indicating how far away the wavefront is from the centre of

the network at any instant in time. In all three plots the stepwise

movement of the propagating wavefront is evident over the

different time scales.

Low extracellular ½Mg2z� simulation summary. The

typical behaviour for the low extracellular ½Mg2z� simulations is

that there is an effective threshold on the inhibitory presynaptic

depression factor between activity propagating slowly and quickly,

and the slower the wavefront propagates the more stepwise the

propagation. This slow, staggered propagation results from a

progressive weakening of inhibition across the network via

inhibitory presynaptic depression occurring faster than excitatory

presynaptic depression. The slow propagation speeds are of the

order of 0.1–10 mm/s which is within the lower range for seizure

speeds as outlined in the literature, and corresponds closely to the

range of speeds observed for low extracellular ½Mg2z� slices

[22,23,27].

The influence of the inhibitory reversal potential. As

mentioned in the methods, we considered whether or not slow

velocity seizures could be obtained for the low extracellular

½Mg2z� model if we held the inhibitory presynaptic depression

Figure 7. LFP simulations over a 3 second interval for the low extracellular [Mg2z] model with siwse. The simulated LFP in the time (top)
and frequency (middle) domains are presented, along with snapshots of network activity (bottom) at different time steps during the simulation (1)
384 ms, (2) 1308 ms and (3) 2808 ms. Each snapshot contains the excitatory (left) and inhibitory (right) networks. The presynaptic depression factor
for the inhibitory neurons is fd,i~0:999.
doi:10.1371/journal.pone.0071369.g007
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parameters at ‘normal’ values and varied the inhibitory reversal

potential, Ei, with fixed values for each simulation. It was found

that making Ei more positive had a similar effect as decreasing the

inhibitory synaptic strength in the GABA antagonist model: first

no seizures were observed and then seizures began to emerge with

velocities rapidly increasing to around 10–14 mm/s or faster

(figure not included). At the sharp velocity transition point slower

velocities could be obtained for a very narrow range of Ei values.

For Ei~{65:5 mV the seizure velocity was 0 mm/s. This

increased exponentially to around 16 mm/s as Ei was increased to

265.1 mV, after which velocities increased at a slower than linear

rate. However, when presynaptic depression of both excitatory

and inhibitory synapses was removed from the model, it was no

longer possible to obtain propagation velocities less than 10 mm/s.

Moreover, when presynaptic depression was included the slow

waves obtained are still more disordered and propagation is less

like a ‘Jacksonian march’ than is observed for the low extracellular

½Mg2z� simulations involving changes in the inhibitory synaptic

depression factor.

Minimal Perturbation for Slow Seizure Propagation
We explored the minimal parameter perturbation of the

‘normal’ parameter values necessary to create slow velocity

‘Jacksonian March’ type seizure. This is done for two cases, the

first is when siwse and the second is when sewsi. This is of

interest because one would like to know the simplest change

needed to allow seizures to propagate. Such simple changes may

actually occur in ‘normal’ tissue when it is bombarded by activity

coming from a seizure focus. In the low extracellular ½Mg2z� and

GABA antagonist simulations the entire network in the slice is

effectively abnormal/epileptic and therefore they do not provide

the best examples of how seizures can spread through normal

tissue.

Through exploration it was found that the most sensitive

parameter that can produce slow velocity ‘Jacksonian March’ type

seizure propagation when varied relative to the ‘normal’

parameter settings, is the inhibitory presynaptic depression factor

fd,i. Figure 11 outlines the speed at which waves move for different

values of the inhibitory presynaptic depression factor fd,i and the

inhibitory presynaptic depression recovery time ti,rel . These waves

have velocities that are slower for a given presynaptic depression

factor when compared to the low extracellular ½Mg2z� case.

Moreover, as was the case with the low extracellular ½Mg2z�
simulations, when sewsi wave propagation is slower than when

siwse.

The Influence of Propagation Delays
In order to make the exploration of parameter space for both

the GABA blocking and low extracellular ½Mg2z� simulations

more time efficient, the simulations up to this point have not

Figure 8. LFP simulations over a 3 second interval for the low extracellular [Mg2z] model with sewsi. The simulated LFP in the time (top)
and frequency (middle) domains are presented, along with snapshots of network activity (bottom) at different time steps during the simulation (1)
384 ms, (2) 1308 ms and (3) 2808 ms. Each snapshot contains the excitatory (left) and inhibitory (right) networks. The presynaptic depression factor
for the inhibitory neurons is fd,i~0:9978.
doi:10.1371/journal.pone.0071369.g008
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included distance-dependent axonal propagation delays. To

evaluate the potential effect axonal propagation delays would

have on the network in the two slice simulations we consider

Figure 12 where the delay is governed by the distance between two

neurons as well as the conduction velocity of an action potential.

Physiological conduction velocities have been estimated to be

between 0.5–74 m/s [36,71,72] depending on whether the axon is

myelinated. Considering the fastest seizure propagation speed of

120 mm/s seen in our figures for our computational model, the

action potential velocity is between 4–720 times faster. By

comparing Figure 12A where W e
e ~10 and se~2 or 4 with the

corresponding points on Figure 5, it can be noted that the

inclusion of delays into the GABA antagonist model with zero

inhibition did not effect the seizure velocity for conduction

velocities greater than 4 m/s for the se~2 case and 8 m/s for the

se~4 case. When the conduction velocities were less than these

values seizure velocity reduced, however, the behaviour of the

model is still preserved, such that there is an effective threshold

velocity corresponding to whether or not activity spreads. The

seizure velocity at which this threshold occurs also remains of the

order of 10 mm/s. If we now compare Figure 12B where

fd,i~0:999 and fd,i~0:9978 for the siwse and sewsi cases

respectively, with the corresponding points on Figure 9 we again

observe that by including delays into the low extracellular ½Mg2z�
simulations, seizure velocity is unaffected if the conduction

velocities are larger than 5 m/s. For conduction velocities below

this the dynamical behaviour of the network is largely not effected,

except for very low conduction velocities. In both the GABA

antagonist and low extracellular ½Mg2z� cases very low conduc-

tion velocities lead to zero seizure velocities as a result of the local

network connectivities. When the conduction delays are longer,

local coalesced neural activity becomes more spread out across

time. This causes a reduction in the coincidence in neural activity

and the ability for local groups to sustain larger scale activity which

is needed for propagation of the wavefront to occur.

Discussion

In this study we have examined the propagation of seizure-like

activity using a computational model to simulate approximations

of two in vitro slice preparations. We have illustrated how the full

range of observed propagation velocities can be simulated with

one and the same model under two different parameter sets that

represent the two animal slice models. The first slice model

considered was the GABA antagonist model; the simulations for

which produced seizure propagation speeds of between 10–

100 mm/s. This is within the upper range as outlined in the

literature [22,23,33,34]. The second slice model considered was

the low extracellular ½Mg2z� model, the simulations for which

produced seizure propagation speeds of between 0.1–20 mm/s

which is within the lower range as outlined in the literature

[22,23,27]. In our simulations this range of velocities could be

achieved when either excitation is broader than inhibition or

inhibition is broader than excitation. For the GABA antagonist

simulations, propagation was not necessarily faster when excitation

was broader than inhibition, however, less excitation was needed

in this case for waves to propagate.

Generally, for the GABA antagonist simulations it was observed

that there is an effective threshold degree of inhibition (or balance

of excitatory and inhibitory inputs/strengths) below which seizures

Figure 9. Seizure propagation speeds for the low extracellular [Mg2z] simulations. The impact that the inhibitory presynaptic depression
factor and the inhibitory presynaptic depression recovery time has on propagation speeds is considered when (A) siwse and when (B) sewsi .
doi:10.1371/journal.pone.0071369.g009
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begin to spread, which in part could explain why the empirical

GABA antagonist slice model generally produces velocities above

10 mm/s. For the low extracellular ½Mg2z� simulations, propa-

gation was slower when excitation was broader than inhibition.

The low extracellular ½Mg2z� simulations also showed that seizure

propagation occurred as a slow, stepwise recruitment of neurons in

the computational network, akin to the ‘Jacksonian march’ seen in

tonic-clonic seizures. The slow velocities and the ‘Jacksonian

march’ primarily occur because when the inhibitory synaptic

depression factor is reduced slightly, inhibition adapts faster than

excitation allowing activity to spread. Since the synaptic depres-

sion is modelled as a dynamic process that acts slowly relative to

neuronal spiking it takes several spike wavefronts to cause enough

depression of inhibition to allow the activity to spread further out.

This produces the slow, staggered propagation of the seizure.

Finally, the computational model is able to simulate slow velocity

‘Jacksonian March’ type seizure propagation by only perturbing

the inhibitory presynaptic depression factor relative to the ‘normal’

parameter settings.

The Features of the Model
Activity-dependent suppression of inhibition generates

slow seizures. An important question to ask is why is the the

inhibitory presynaptic depression factor so important for creating

slowly propagation seizures and what modulates this parameter

endogenously? The inhibitory presynaptic depression factor

determines the rate at which inhibitory synapses adapt. If the

factor is higher then the inhibitory synapses will adapt faster

allowing the excitatory activity to dominate the inputs to a neuron

and for activity to spread across the network. The speed at which

the activity propagates across the network is therefore heavily

dependent on how much adaptation the inhibitory synapses

undergo. Since adaptation is not a fast process compared to the

time-scale of a spike the speed of activity propagation ends up

being quite low. How the inhibitory presynaptic depression factor

is influenced by endogenous network activity is an important

question that remains to be answered. In both the low extracellular

½Mg2z� simulation case and the minimal parameter perturbation

simulation case we propose that the excess excitation coming from

the focus or excitatory neurons drives the inhibitory cells quite

vigorously causing the inhibitory presynaptic depression factor to

decrease. There are a number of presynaptic and postsynaptic

mechanisms [73] that allow synaptic depression to occur. These

mechanisms include a reduction in the probability of vesicular

release induced by either presynaptic GABA activation [74] or

metabotropic glutamate receptor activation [74,75], depletion of

transmitter stores [76] or receptor desensitization [77].

A remaining question is, why doesn’t the excitatory presynaptic

depression factor decrease as a result of vigorous activity? In the

low extracellular ½Mg2z� case it may be that pre- and post-

synaptic effects of low extracellular ½Mg2z� on NMDA receptors

prevents this from happening. In the case of ‘normal’ tissue it may

be that strong activity drives an increase in extracellular ½Kz� [78]

making it easier for excitatory cells to fire even though presynaptic

Figure 10. Jacksonian March propagation patterns in the low extracellular [Mg2z] simulations for seizure velocities of (A) 3.69 mm/
s, (B) 1.0 mm/s, and (C) 0.17 mm/s. In each plot, the y-axis indicates the distance (mm) that network activity has travelled within a certain period
of time, where distance is defined radially relative to the centre of the network. The x-axis indicates time (s).
doi:10.1371/journal.pone.0071369.g010
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adaptation is more significant. Or, perhaps what happens is that

for the right set of network conditions the excitatory presynaptic

depression factor does decrease as a result of vigorous activity, but

not as much as the inhibitory presynaptic depression factor. This is

consistent with the facts that certain cortical inhibitory neurons

tend to spike faster than excitatory neurons and that adaptation

occurs faster in inhibitory synapses than excitatory synapses under

normal conditions [58].

A possible alternative to decreasing the inhibitory presynaptic

depression factor to simulate low extracellular ½Mg2z� seizures, is

to increase the inhibitory reversal potential [66]. Through our

simulations it was found that changing the inhibitory reversal

potential (i.e. a different fixed value for each simulation) had effects

on seizure velocity that were more akin to the GABA antagonist

simulations. Rather than exploring the effects of varying a fixed

inhibitory reversal potential, it may be possible to more reliably

produce slow velocity seizures by simulating activity dependent

changes in the inhibitory reversal potential [66,79].

For the generation of slowly propagating seizures the main point

would appear to be the inclusion of slow (relative to spiking)

activity-dependent reduction in the efficacy of inhibition [32,79].

Here we have shown this is the case by modifying inhibitory

presynaptic depression, but we believe this would also work using

activity dependent changes in the inhibitory reversal potential.

This is because the time constants of these dynamics are also

slower than those related to spiking, and significant increases in the

inhibitory reversal potential and thus a significant weakening of

inhibition occur only after multiple spiking wavefronts have passed

[66]. Implying that slow, staggered seizure propagation could also

be simulated for this case.

Network connectivity. A key aspect we explored in this

paper is the anatomical connectivity that produces a functional

surround suppression. In particular we looked at excitation

broader than inhibition and inhibition broader than excitation.

In the disinhibition model, we observed that when excitation is

broader than inhibition the threshold excitatory-to-excitatory

synaptic strength for seizures to spread is much lower than when

inhibition is broader than excitation. In the case of the low

extracellular ½Mg2z� simulations, a slightly greater degree of

inhibitory presynaptic depression is required in order to obtain

faster seizure spread when excitation is broader than inhibition.

This seems contrary to the disinhibition result, however, this may

depend on the operating point of the model when excitation is

broader than inhibition, as the excitatory-to-inhibitory and

Figure 11. Minimal perturbation from ‘normal’ required for slow seizure propagation. The impact that the inhibitory presynaptic
depression factor and the inhibitory presynaptic depression recovery time has on propagation speeds is considered when (A) siwse and when (B)
sewsi .
doi:10.1371/journal.pone.0071369.g011
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inhibitory-to-excitatory weights need to be higher in order to

create functional surround suppression. Generally, it was found

that either form of anatomical connectivity could be used to

produce the full range of empirically observed propagation

velocities. Although some anatomical evidence points towards

excitation being broader than inhibition, we believe that this still

critically depends on the laminar layer(s) of cortex to be modelled,

and that there may be some scenarios where inhibition could be

broader than excitation depending on the spatial scale of interest.

Spatial correlations and disordered waves. The analysis

of spatial coherence via tracking the MCC revealed that decreases

in MCC corresponded to increases in the rate of wavefront

occurrence in the GABA antagonist simulations with zero

inhibition. In the case of the GABA antagonist simulations with

non-zero inhibition, decreases in the MCC also coincided with

increases in disorder. For the low extracellular ½Mg2z� simulations

the waves were usually disordered and there where no obvious

changes in the MCC apart from the change observed as the

seizure front expands. This MCC analysis was inspired by a study

of spiral waves (velocity of up to 60 mm/s) in an anaesthetised

in vivo animal model of sleep-like states [67]. They observed that

MCC decreased when spiral waves occurred. Although we have

not focused on spiral waves here, spiral waves do correspond to a

more disordered state than regular periodic waves and therefore

our findings are consistent with theirs.

Given that all membrane potentials were initially set to the

resting potential for each simulation, there are two ways we

expected disordered activity patterns to occur in our simulations.

The first is through fixed (i.e. time independent) perturbation of

both the Gaussian excitatory and inhibitory connection strength

kernels in Equation 7. The second is that the inhibitory neurons

are positioned at the position of every second excitatory neuron

along both the x and y axes. Given that the focal input in our

simulations is positioned at the central 464 position in the 50650

excitatory neuron grid, this means that the inhibitory neurons are

positioned asymmetrically with respect to the group of excitatory

neurons that receive this input. If a 363 or 565 input grid was

used there would be no asymmetry, but then the input would not

be positioned directly at the centre of the 50650 excitatory neuron

network. It might have been better to position each inhibitory

neuron at the centre of a 262 array of excitatory cells. This would

have given symmetry for a 464 central input. If this was done

disorder could have been controlled for more, through the degree

of perturbation of the connection strengths, however, the main

purpose of this paper is to look at how velocity changes in networks

where disordered wave patterns can occur, rather than to better

understand the causes of order and disorder in the wave patterns

and their resultant effects on seizure propagation velocity.

The presence of disordered waves in our network appears to

depend on the degree of inhibition. For the GABA antagonist case,

the stronger the inhibition, the greater the disorder and the slower

the wave propagation. For the low extracellular ½Mg2z� results,

inhibition is always present but gets modulated by the depression

and as such disordered waves generally occurred for all low

extracellular ½Mg2z� results. Thus in our model, disordered waves

were linked to slower seizure propagation velocities, but our

simulation analysis does not try to disentangle the effects of

disorder (due to the network connection strength perturbations

Figure 12. The effect axonal conduction velocity has on seizure propagation speeds in both the (A) GABA antagonist with zero
inhibition and (B) low extracellular [Mg2z] simulations. For the GABA antagonist case W e

e ~10 with the remaining parameters having ‘normal’
values. For the low extracellular [Mg2z] case fd,i~0:999 when siwse and fd,i~0:9978 when sewsi.
doi:10.1371/journal.pone.0071369.g012
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and inhibitory/excitatory cell alignment) and the effects of changes

in inhibition on propagation velocities. In order to disentangle

these two effects one could avoid disorder in the network activity

by shifting the positioning of our inhibitory neurons relative to

excitatory neurons to create symmetry and by not perturbing the

Gaussian connectivity strengths. However, we decided not to

analyse this as we expect the main effects on seizure propagation

velocity to come from changes in inhibition and synaptic

depression, in part because the degree of disorder was dependent

on the degree of inhibition. Moreover, the more interesting and

biologically realistic scenario involves disordered patterns and

perturbed connection strengths, without which patterns such as

spiral waves would not occur [12].

Simulation caveats and degrees of realism. The next

point to make is that the computational model presented has a

large number of parameters, with a change in any having an

impact on seizure propagation speeds. It is indeed restrictive to

produce data for such a large multi-dimensional parameter space

which is why the dimensionality of the parameter space was

reduced with a focus being placed on synaptic connectivity,

synaptic strength and presynaptic depression. These parameters

were focused on because through simulation they showed the

greatest influence on seizure propagation speeds and many of the

other parameters have been determined empirically, extensively

throughout the literature and were taken as constants.

In our model, we simulated seizure activity in a simplistic

manner by applying an external current, inserted into a central

464 cluster of excitatory neurons for network activity to be

sustained. This method is utilised in several neural network

simulation studies [12,80,81]. Moreover, we considered ‘normal’

tissue to be that which does not allow waves to propagate beyond

the central 464 cluster of neurons. Thus the model does not

generate spontaneous waves of activity seen in the ‘normal’ brain,

or at least for the purposes of this study we do not consider such

waves to be ‘normal’. Examples of spontaneous activity include

persistent ongoing complex behaviour [82,83] with neural activity

being self-sustaining when the brain enters a mode where it is

‘disconnected’ from external stimuli [84]. Moreover, travelling

waves have been observed in normal cortical tissue [85–87].

Rubino suggests that these waves mediate information transfer in

the motor cortex [88] and Ermentrout claims that they may have a

computational role [89].

Our simplistic approach is a reasonable first step for two

reasons. First it simplifies the model and allows us to focus directly

on controlling the spread of activity. Second, this approach is

reasonable if we consider layer 4 of primary visual cortex where

spatial resolution of the input image needs to be preserved and

activity should not spread beyond where the inputs are present.

Only through subsequent hierarchical processing can integration

of information across space take place in a context dependent

manner. A potential extension of our model is to enable it to

generate spontaneous seizure-like activity. We have avoided this

here because spontaneous seizures could emerge anywhere in the

network, instead of from the central region, making it harder to

study the speed of seizure propagation in the model. The model

produced by Stratton was successful in generating complex, non-

periodic network activity with the the removal of external input

where the power spectrum of the simulated EEG/LFP is similar to

that observed in recordings from human cortex [90]. The models

of Rothkegel and Lehnertz [13,91] were also capable of producing

spontaneous seizure activity. Physiologically, the combination of

bursting and excitatory recurrence [92–94] appear important for

the spontaneous initiation of seizure-like events and will need to be

taken into consideration when simulating spontaneous emergence

of seizures.

An additional simplification in our models is the use of integrate

and fire neurons as opposed to compartmental neurons. While

compartmental models are good at telling us which parts of cells

could be involved in starting or propagating seizures, it is difficult

to delineate with networks of compartmental neurons whether it is

the cell properties or network properties that are the most critical.

By simplifying cells to the IAF case, one can familiarize oneself

more with critical network properties before adding in greater

cellular detail.

Comparison to other Models
We explored the speed of propagation of seizure-like activity in

a 2-D network containing both excitatory and inhibitory

populations, considering both the low extracellular [Mg2z] and

disinhibition models of seizure spread in the same computational

model. With respect to our results, Compte et al. [38] provided

the closest study to ours in that they explore the velocities of slow

waves linked to ‘up’ and ‘down’ states and fast waves linked to the

disinhibition model in a 1-dimensional spatial model of a layer 5

prefrontal ferret cortex which includes excitatory and inhibitory

populations. In their model ‘up’ states emerged by recurrent

excitation and the ‘down’ states resulted from slow activity-

dependent Kz currents. This was done to model the results seen

in in vitro slice models of slow oscillations [95]. With regard to

seizures, however, Trevelyan et al. [22,23] have shown that the

failure of inhibition appears to produce both slow (0.1 mm/s) and

fast (10–15 mm/s) waves of epileptic activity in low extracellular

[Mg2z] slices, depending on the degree of inhibitory failure. Our

simulations are consistent with Trevelyan et al. ’s findings, in our

computational model slow seizures (0.1 mm/s) are linked to small

increases in depression of synaptic inhibition and faster seizures

(10–20 mm/s) are linked to further removal of inhibition via

significant increase in the degree of synaptic depression. Many

other computational modeling papers on either disinhibition or

slow waves [37,96–101] explore the propagation of seizure-like

waves in networks with primarily 1-dimensional spatial structure

(or no spatial structure at all) and often focus less on how

parameter changes effect velocity of propagation. In our results

section and above we have discussed the influence inhibition has

on the degree of disorder in 2D wave patterns. We have also

explored the influences of a functional Mexican hat centre-

surround with surround suppression that can emerge from two

forms of anatomical connectivity depending on the relevant

synaptic weight values: inhibition broader than excitation, and

excitation broader than inhibition.
A novel low extracellular [Mg2z] simulation. With

respect to the low extracellular [Mg2z] model [22,23,93] we

explored parameter changes that produce the observed slow

velocity seizure-like activity. Trevelyan et al. [22] showed that low

extracellular [Mg2z] seizures involve slow modular step-wise

propagation. Pairwise recordings show recruitment and failure of

inhibition are coincident. Cells experience both excitation and

feedforward inhibition until inhibition fails. They did not address

why inhibition fails, however, recently it has been demonstrated

that specific fast spiking inhibitory neurons are involved in

containing the spread of excitation in a seizure [102]. In another

paper, Trevelyan et al. [23] showed that strength of feedforward

inhibition (number of preictal inhibitory barrages) correlates with

velocity of propagation. In both of the Trevelyan et al. papers they

only speculate on the mechanisms which cause inhibition to fail. In

our paper we explore through a computational model the

mechanisms through which inhibition can fail, especially to

Mechanisms of Seizure Propagation

PLOS ONE | www.plosone.org 18 August 2013 | Volume 8 | Issue 8 | e71369



produce slowly propagating seizure-like waves. We found that

parameters linked to synaptic depression of inhibition were critical

in producing slow waves. To the best of our knowledge, our model

is the first to simulate Jacksonian-March type propagation

observed in 2-dimensional low extracellular [Mg2z] slices.

Compte et al. [38] provided similar simulations in 1D but in the

different context of ‘slow wave’ slices as mentioned above. It is

expected that in the Compte et al. model the slow wave

propagation velocity is more to do with transitions between ‘up’

and ‘down’ states. Whereas in our model of low extracellular

[Mg2z] slices, excitatory wavefronts would travel faster but keep

coming up against a wall of inhibition until that wall fails via

increased inhibitory synaptic depression and activity can propa-

gate further out. This leads to slow measured average propagation

velocities across the full extent of the network.

GABA antagonist simulations extend knowledge in 2D

space. With respect to the disinhibition model we explored the

parameter changes that produce the observed fast velocity seizure-

like activity. Various studies have explored disinhibition in vitro

[26,35,37,94,103,104]. Pinto et al. [26] showed that propagation

velocity increased with increase in injected input current used to

initiate discharges. In our simulations we found that for currents

above 3000 pA the velocity was independent of current. For the

range 800–3000 pA the velocity decreased as current increased.

Anything below 800 pA resulted in no propagation. Chagnac-

Amitai and Connors [103] found that for low amounts of GABA

blockers complex waves form, whereas for high concentrations the

waves are regular without decrement or reflection. As mentioned

above, in our simulations we also found that order of the waves

increased as the inhibitory weight was slowly decreased.

There have also been several computational models of

disinhibition [12,35–38]. Miles et al. [35] and Traub and Miles

[36] showed for very similar 2D models of a slice of area CA3 of

hippocampus, that decreasing inhibition or increasing the spatial

extent of excitation during disinhibition lead to increases in

propagation velocity. They also demonstrated that the velocity of

propagation and the extent of surround inhibition seen in vitro

could be accounted for by the model. They did not give much

consideration of spatial properties of the wave such as the analysis

of the relationship between inhibition and pattern order that we

have discussed in the results. We have also explored the influence

of the strength of excitatory and inhibitory synapses and the spatial

extent of excitation in more detail, and illustrated for a large range

of parameters that there is an effective threshold velocity linked to

the balance of excitation and inhibition beyond which seizures can

spread. Moreover, this effective threshold exists even when no

inhibition is present indicating that other features such as the

integration of input spikes are also important. Traub and Miles

[36] also focused on excitation broader than inhibition, whereas

we have compared two connectivity scenarios: excitation broader

than inhibition and inhibition broader than excitation.

As mentioned above, Compte et al. [38] also explored 1D

spatial simulations of the disinhibition model. They found that

either an increase of the inhibitory conductance onto excitatory

cells or of the excitatory conductances onto inhibitory cells

gradually decreases the wave propagation speed. They also

reported that increasing the leak conductance increases the

velocity of propagation. We have explored these parameters to

some extent, in particular our changes in synaptic strength are

similar to their changes in conductance and our 2D results are

consistent with their 1D results.

Ursino and La Cara [12] looked at seizure propagation patterns

in a 2D network of neurons but each neuron projected both

excitatory and inhibitory synapses thus violating Dale’s law. We

extended their results by including both excitatory and inhibitory

neurons and synaptic depression mechanisms, and putting more

focus into analyzing the velocity of propagation. Also Ursino and

La Cara only focused on the disinhibtion model and did not

explicitly explore the low extracellular [Mg2z] model. Neverthe-

less, their work provides an interesting exploration of the

spatiotemporal characteristics of seizure-like dynamics produced

by their model. In particular, they demonstrated that increases in

the strength and spatial extent of excitatory versus inhibitory

synapses lead to propagation of seizure-like activity that produced

different forms of LFP (i.e. irregular large amplitude rhythms,

quasi-sinusoidal rhythms, low amplitude high-frequency discharg-

es) and wave patterns (i.e. periodic/ordered, disordered and spiral)

for different parameter sets. In our study we have focused more on

propagation velocity, but many features of our simulations were

consistent with Ursino and La Cara. Such as the existence of

periodic/ordered, disordered and spiral wave patterns depending

on the parameters used.

Other network models mainly focus on mechanisms of seizure

initiation or seizure spread through networks, layers or regions

[13,78,105–112], but not 2D sheets of neurons topologically

organised with a functional Mexican-hat connectivity structure.

Models that have considered 2D sheets of neurons in more detail are

of the mesoscale/mean-field nature [9,10]. These mesoscale studies

by Kramer and colleagues focus on accounting for the frequency of

maximum power and the speed of spatial propagation of voltage

peaks estimated from human intracranial EEG. At the meso/

macro-scale the speed of spatial propagation of voltage peaks was

2 m/s. Kramer and colleagues propose that this rapid propagation

arises from white matter connections between regions, whereas the

slower propagation speeds seen in animal slices (0.1–100 mm/s)

results from local connections within the cortical grey-matter. In

their model, seizures emerge through affecting the balance of

excitation and inhibition, somewhat akin to our simulations of the

GABA antagonist slice model. Our simulations in 2D centre-

surround recurrent networks are consistent with the framework of

Kramer et al. and the modifications of synaptic depression shown

here, also provide a way for exploring slow velocity seizure

propagation in mesoscopic models of human data.

Supporting Information

Video S1 GABA antagonist case with zero inhibition and
W e

e ~1:5 and corresponding to Figures 1A and 2A.

(MP4)

Video S2 GABA antagonist case with zero inhibition and
W e

e ~2:5 and corresponding to Figures 1B and 2A.

(MP4)

Video S3 GABA antagonist case with zero inhibition and
W e

e ~4:5 and corresponding to Figures 1C and 2A.

(MP4)

Video S4 GABA antagonist case with non-zero inhibi-
tion, siwse and W e

i ~0:5 and corresponding to Figures 3A

and 2B.
(MP4)

Video S5 GABA antagonist case with non-zero inhibi-
tion, siwse and W e

i ~2:5 and corresponding to Figures 3B

and 2B.
(MP4)

Video S6 GABA antagonist case with non-zero inhibition,
siwse and W e

i ~4:5 and corresponding to Figures 3C and 2B.

(MP4)

Mechanisms of Seizure Propagation

PLOS ONE | www.plosone.org 19 August 2013 | Volume 8 | Issue 8 | e71369



Video S7 GABA antagonist case with non-zero inhibi-
tion, sewsi and W e

i ~3 and corresponding to Figures 4A

and 2C.

(MP4)

Video S8 GABA antagonist case with non-zero inhibition,
sewsi and W e

i ~4 and corresponding to Figures 4B and 2C.

(MP4)

Video S9 GABA antagonist case with non-zero inhibition,
sewsi and W e

i ~5 and corresponding to Figures 4C and 2C.

(MP4)

Video S10 Low extracellular [Mg2z] case with siwse

and corresponding to Figures 7 and 2D.
(MP4)

Video S11 Low extracellular [Mg2z] case with sewsi

and corresponding to Figures 8 and 2D.
(MP4)
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