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Abstract

Large intergenic noncoding RNAs (lincRNAs) have been recognized in recent years to constitute a significant portion of the
mammalian transcriptome, yet their biological functions remain largely elusive. This is partly due to an incomplete
annotation of tissue-specific lincRNAs in essential model organisms, particularly in mice, which has hindered the genetic
annotation and functional characterization of these novel transcripts. In this report, we performed ab initio assembly of
1.9 billion tissue-specific RNA-sequencing reads across six tissue types, and identified 3,965 novel expressed lincRNAs in
mice. Combining these with 6,606 documented lincRNAs, we established a comprehensive catalog of 10,571 transcribed
lincRNAs. We then systemically analyzed all mouse lincRNAs to reveal that some of them are evolutionally conserved and
that they exhibit striking tissue-specific expression patterns. We also discovered that mouse lincRNAs carry unique genomic
signatures, and that their expression level is correlated with that of neighboring protein-coding transcripts. Finally, we
predicted that a large portion of tissue-specific lincRNAs are functionally associated with essential biological processes
including the cell cycle and cell development, and that they could play a key role in regulating tissue development and
functionality. Our analyses provide a framework for continued discovery and annotation of tissue-specific lincRNAs in model
organisms, and our transcribed mouse lincRNA catalog will serve as a roadmap for functional analyses of lincRNAs in genetic
mouse models.
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Introduction

Noncoding RNAs (ncRNAs) are transcripts that do not encode

proteins or peptides, yet which play a variety of structural or

regulatory roles in biological processes. Several major classes of

ncRNAs, including ribosomal RNAs, small nucleolus RNAs and

microRNAs (miRNA), have been extensively characterized and

their functions have been well established [1]. For example,

miRNAs have been recognized as key regulators through which

cells fine-tune their proteomes and they have been implicated in

nearly every important signaling and metabolic pathways. Altered

miRNA profiles are linked to a number of pathological conditions,

while multiple miRNAs are currently being evaluated as potential

therapeutic agents for disease [1,2].

In recent years, significant advances in sequencing technology

have expanded the RNA world even further [3]. A group of

noncoding RNAs, large intergenic noncoding RNAs (lincRNAs),

have emerged as a major uncharacterized territory of the

mammalian transcriptome [4,5]. These transcripts are larger than

200 bases and they are transcribed from intergenic regions. A few

ubiquitous features of lincRNAs have been uncovered in efforts

devoted to cataloguing and annotating lincRNAs in human

genome, and a limited number of lincRNAs have been studied in

depth in order to identify their functions [6,7,8,9]. However, since

these novel transcripts comprise over half of the transcriptional

units (TUs) in mammalian genomes [10] and their expressions are

often dynamically regulated, the current annotations of lincRNAs

are far from complete, thus limiting the extent of bioinformatics

analyses that can be performed, and hindering the establishment

of a unified model of their regulation and mechanisms of action.

For example, several computational methods have been developed

to reconstruct lincRNA transcriptome [11,12] yet most of them

have only been applied to limited number of species and often only

to humans. In light of the reported lower evolutionary conserva-

tion of lincRNAs, the efficiency of these methods must be validated

in other species to create a universal approach for lincRNA

assembly, which could significantly accelerate lincRNA discovery

while at the same time allowing in-depth comparative analyses of

noncoding transcripts between species. For example, though mice

represent the most widely utilized model organism for genetic

elucidation of genes implicated in human pathologies, a compre-

hensive catalog of tissue-specific lincRNAs in mice is still lacking,
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and an efficient lincRNA assembly pipeline has yet to be

established.

In this study, we carried out ab initio assembly of mouse lincRNA

transcriptome across multiple tissues and we identified 3,965 novel

lincRNA genes that have no overlap with currently known coding

and noncoding transcripts. In combination with all know

lincRNAs, we established an inclusive catalog of mouse lincRNAs.

We also systemically analyzed all lincRNAs in our collection to

map their key global features and to analyze their evolutionary

conservation. Finally, we used a ‘two-color’ co-expression network

method to assign functionalities to lincRNA groups and to

determine how their potential expression correlates with that of

neighboring coding genes. Since nearly one third of disease-

associated SNPs are located in noncoding regions, our work not

only establishes a roadmap for genetic analysis of lincRNAs in

mice but it also provides a unique tool for scientists who perform

disease modeling in this important model organism.

Results

Transcriptome reconstruction of the mouse tissues
The RNA-seq data used in this study were downloaded from the

Wellcome Trust Sanger Institute. To prepare the sequencing data,

RNAs were extracted from six biological replicates of six different

mouse tissues including heart, hippocampus, liver, lung, spleen,

and thymus and they were sequenced on an Illumina Solexa

platform [13]. These reads were paired and both lengths were 76

nt. Starting from a total of 1.9 billion reads, we performed short-

read gapped alignment using Tophat [14] and recovered

1.4 billion (75%) mapped reads (see more details in Table S1).

We then used ab initio assemble software Cufflinks [12] and

Scripture [11] to reconstruct the transcriptome for each tissue

based on the read-mapping results. Transcripts reconstructed by

these two assemblers were separately merged into combined sets of

transcripts using the Cuffcompare utility provided by Cufflinks.

After filtering for the exon number, transcript length and

coverage, we obtained nearly 2,400,000 reliably expressed multi-

exon transcripts longer than 200 nt for each sample. We compared

these transcripts to major genomic database (Table S2) and

classified the combined transcripts into several different subsets;

the majority of the transcripts (97.8%) correspond to annotated

protein-coding genes and a small portion of the transcripts are

known noncoding genes (0.6%) and pseudogenes (0.3%). We also

found that 1.3% of the transcripts had no overlap with annotated

transcripts and were designated as unannotated (Figure 1).

To assess the robustness of these ab initio assemblers, we

analyzed their performance on protein-coding and well-charac-

terized noncoding genes. The annotated transcripts we recon-

structed using Cufflinks cover 71% of RefSeq coding genes [15]

fully or partially, and Scripture could assemble 68% of all RefSeq

coding transcripts. In combination, the two assemblers fully or

partially reconstructed 72% of Refseq coding genes, which similar

to previous reported efficacies of these tools [16]. To evaluate the

assemblers’ performance on noncoding RNAs, we compared the

,14,000 know noncoding transcripts to a comprehensive

lincRNA database. Because none of currently available databases

has a collection of all known noncoding RNAs, we built an

inclusive database called NONCODE [17] by combining anno-

tated mouse noncoding transcripts from RefSeq [15], UCSC [18]

and Ensembl [19] as well as mouse lincRNAs reconstructed by

Guttman et al. [11]. In all, there were 1,197 annotated ncRNAs in

RefSeq, UCSC and Ensembl databases that could be fully or

partially reconstructed, corresponding to 9,630 of our mouse tissue

transcripts, and 1,577 transcripts in our datasets matched 251

mouse lincRNAs in Guttman’s novel lincRNAs dataset. Further-

more, we evaluated the performance of these ab initio assemblers

on Fantom noncoding genes. Considering that there is a high

percentage (,30%) of single exon transcripts in the Fantom v3

database [10], and that our combined sets of multi-exon

transcripts have been filtered by exon numbers and transcript

length, we only used the original unfiltered transcripts recon-

structed by Cufflinks and Scripture to perform the assessment.

Comparing Fantom noncoding genes with our unfiltered tran-

scripts revealed that 10,674 of Fantom transcripts could be fully or

partially reconstructed. These results strongly support that these

assembly approaches could robustly and reliably reconstruct both

coding and noncoding transcriptomes at a global level.

Identification of novel mouse lincRNAs
Based on the robust transcript reconstruction and broad

availability of deep sequencing datasets, we have developed a

novel lincRNAs detection pipeline system to identify novel

lincRNAs that exhibit tissue-specific expression in mice (Materials

and Methods, Figure 2A). We first analyzed the coding potential of

unannotated transcripts using CPC [20] and CNCI in-house

software filtering out 30% of all transcripts. Next, we focused only

on intergenic transcripts that yielded 3,965 novel mouse lincRNA

loci (6,764 transcripts) (Table S3). These transcripts had an

average mature spliced size of 1.5 kb. Each transcript on average

contained 2.5 exons of 620 nt long. In the novel lincRNAs dataset,

about 48% were reconstructed by Cufflinks, 31% by Scripture,

and 21% by both. These ratios are clearly lower than those of

protein-coding genes for both programs, with which about 61% of

genes can be reconstructed. This discrepancy might be caused by

the different algorithms implemented by each assembler to

reconstruct low-abundance transcripts, and similar observations

have been reported in previous attempts to assemble low-

expression transcripts using these programs [16,21].

Since there were six biological replicates for each mouse tissue,

we checked the recurrence of each individual novel lincRNA in

our reconstruction to enhance our analyses. If a lincRNA

transcript could be fully or partially reconstructed by Cufflinks

or Scripture in one biological replicate of any tissue, we counted

this as a recurrence. This recurrence test showed that about 40%

of the 6,764 mouse novel transcripts could be reconstructed in all

six biological replicates from at least one tissue, 20% of them in

five biological replicates and only ,7% transcripts recurred just

Figure 1. Statistics of mouse tissues transcriptome. The pie chart
displays transcript distribution among protein coding, known non-
coding, pseudogene, and unannotated genes.
doi:10.1371/journal.pone.0070835.g001
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once (Figure 2B). These results demonstrated that data generated

by the two ab initio assemblers are highly reproducible, thus

reducing the number of replicates has little effective to obtain

reliable results.

Characterization of tissue specific lincRNAs
In combination with all know lincRNAs, we established a

comprehensive catalog of 10,571 transcribed lincRNA genes

(15,061 transcripts shown in Dataset S1). Based on the FPKM

(Fragments Per Kilobase of transcript per Million mapped reads)

of each transcript calculated by Cufflinks’ ‘‘abundance estimation

mode’’ across the six tissues, we compared the expression

differences between lincRNAs and RefSeq protein-coding genes.

The average expression level of lincRNAs was lower than protein-

coding genes but lincRNAs also showed a wider range of

abundance, with a subset of them equally abundant to mRNAs

(Figure 3A). This pattern is consistent with previous studies

[11,22]. We then calculated a tissue specificity score for each

transcript using an entropy-based metric that relies on Jensen-

Shannon (JS) divergence [16]. To assess the tissue specificity of

mouse lincRNA expression, we calculated the Jensen-Shannon

tissue specificity score (JS score) [16] for each transcript using the

established procedure. Our analysis showed that distributions of JS

scores for lincRNA and protein-coding genes are significantly

different (P value of Kolmogorov-Smirnov test ,10210, Figure S1).

Using JS score = 0.5 as a cutoff, we demonstrated that the

majority of lincRNAs (49%) are tissue-specific, relative to only

23% of protein-coding genes (Figure 3B-D and Datasets S2 and

S3). Thus, mouse lincRNA expressions are clearly subject to tissue-

dependent regulation either at the level of transcription or

degradation.

Genes actively transcribed by RNA polymerase II often display

trimethylation of lysine 4 (H3K4me3) or methylation of lysine 4

(H3K4me1) on histone H3 surrounding their promoter regions,

and these active histone marks have been utilized to uncover

lincRNAs from genomic regions that harbor no protein-coding

genes. We investigated the chromatin states of lincRNAs in heart,

liver, thymus and spleen to reveal that tissue-specific lincRNAs

have highly enriched active histone marks surrounding their

transcriptional start sites (TSS) compared to the rest of lincRNA

pool (Figure 4). Therefore at least some of the tissue specificities of

lincRNAs can be explained by enhanced transcription, and tissue-

dependent histone modifications in the promoter may be used to

predict the expression profiles of lincRNAs across different tissues.

Conservation analyses of mouse lincRNAs
The evolutionary origin of a transcript often provides critical

insight into its function. To assess the evolutionary conservation of

lincRNA transcripts, we surveyed a catalog of mammalian and

non-mammalian vertebrate transcripts that were syntenically

mapped to the mouse genome. We found that 76% (11,479) of

mouse lincRNAs have orthologous regions in the human genome

(Dataset S4). Subsequently, using the TransMap tool to perform

syntenic BLAST-Z alignments, we mapped all mouse lincRNAs to

known transcripts across the vertebrate lineage. This analysis

identified 1,477 lincRNAs syntenically paired with an orthologous

transcript from TransMap (Dataset S4, Figure S2), accounting for

10% of all mouse lincRNAs. Trans-mapped lincRNAs also exhibit

stronger tissue specificity and lower expression level relative to

other lincRNAs. This moderate homology suggests that lincRNAs

might be less conserved than their protein-coding counterparts

although a quantitative assessment will require thorough analyses

of datasets with higher sequencing depth across multiple species.

Functional predication and neighborhood correlation of
mouse lincRNAs based on the co-expression network

The comprehensive lincRNA catalog we constructed allows us

to perform in-depth bioinformatics characterization of these novel

transcripts. Here, we built a ‘two-color’ co-expression network to

infer the putative lincRNA functions, using a method based on one

we previously reported [23,24]. In brief, FPKMs of lincRNAs and

protein-coding genes were calculated across six tissues by the

Cufflinks quantification module at individual gene level. To

determine functional characteristics of lincRNAs, all FPKMs were

further analyzed by a co-expressed module sub-networks method

(Markov cluster algorithm, MCL) [23]. MCL is an efficient and

powerful algorithm which identifies modules based on the

simulation of random walks in a network. With default parameters

(inflation value = 1.8), the MCL algorithm found 51 functional

enrichment modules with six or more genes, 32 of which consisted

of both coding and lincRNA genes. Since each of these modules

was significantly enriched for at least one GO BP term or KEGG

pathway, we were able to functionally annotate 878 mouse

lincRNAs based on the enriched GO associated with their

modules (Datasets S5, S6). Our results indicated that a large

portion of tissue-specific lincRNAs are potentially associated with

critical developmental and metabolic processes including the cell

cycle and cell development, and that they might be essential in

maintaining each tissue’s identity and functionality.

Furthermore, recent studies suggest that some lincRNAs may

act in cis and regulate gene expressions within their chromosomal

neighborhood [6,25], although trans actions of lincRNAs in

embryonic stem cells have also been clearly documented [26].

Our comprehensive catalog of mouse lincRNAs presents a unique

opportunity to further explore this possibility. One expectation of

the cis hypothesis is that the expression of lincRNAs and their

neighboring genes would be correlated across our samples.

Consistent with previous studies [6,27,28], lincRNA with pro-

tein-coding gene neighbors exhibits stronger positive correlations

than neighboring coding genes with coding gene neighbors

(Figure S3). To further determine whether lincRNA and pro-

tein-coding gene neighbors are co-regulated in the same functional

context as strictly coding gene neighbors, we focused on the 878

functional annotated lincRNAs and their coding neighbors as

Figure 2. Identification of novel mouse lincRNAs. (A) Schematic
overview of the novel lincRNA identification pipeline employed in this
study. (B) Recurrence of lincRNAs in mouse tissues.
doi:10.1371/journal.pone.0070835.g002
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described above, calculating their expression correlation coeffi-

cients and comparing GO terms associated with each. These

results showed that 44% (388/878) of neighboring lincRNA-

coding gene pairs have a correlation coefficient of 0.8, and 42%

(164/388) of these are involved in the same biological process

significantly (P value,10210) more than expected by chance

(among 10,000 randomly chosen gene pairs only 21% gene pairs

shared the same GO annotations) (Figure S4, Dataset S7). These

results suggest that a portion of lincRNAs might act locally to

regulate their neighboring genes in cis. Vigorous bioinformatics

analyses of large datasets as well as experimental testing will be

required before this mechanism can be generalized to the majority

of lincRNAs.

Figure 3. Tissue specificity of lincRNAs and protein-coding genes. (A) LincRNAs have lower expression levels than protein-coding genes.
Maximal expression abundance (log2-normalized FPKM counts as estimated by Cufflinks) of each lincRNA (red) and coding (black) transcript across all
tissues. (B) Tissue-specific expression. Shown are distributions of maximal tissue specificity scores calculated for each transcript across all tissues. (C)
Cluster of the fractional density of lincRNAs across the row of log-normalized FPKM counts estimated by Cufflinks in each listed tissue. (D) Cluster of
the fractional density of RefSeq protein-coding genes across the row of log-normalized FPKM counts estimated by Cufflinks in each listed tissue.
doi:10.1371/journal.pone.0070835.g003
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Discussion

In this report, we presented the first comprehensive annotation

of mouse lincRNAs based on whole transcriptome sequencing of

multiple tissues and we provided in-depth analyses of these novel

transcripts that lay the groundwork for further characterization of

their pathophysiolocal consequences. We first reconstructed tissue-

specific mouse transcriptomes from deep sequencing data to reveal

a significant number of novel lincRNAs. The effectiveness of this

approach is supported by the successful assembly of known

protein-coding genes and lincRNAs and by the confirmed

recurrence of novel lincRNAs in the majority of the six biological

replicates for each tissue. We then calculated a tissue specificity

score based on the FPKM for each transcript and demonstrated

that mouse lincRNAs are expressed in a much more tissue-specific

manner than protein-coding genes. The tissue specificity of

lincRNAs is also reflected in the histone marks surrounding their

transcriptional start sites (TSS), suggesting that lincRNAs share

similar transcriptional signatures with protein-coding genes.

Furthermore, we analyzed the conservation of lincRNAs across

vertebrate species and revealed that lincRNAs have been under

weaker selective constraints than protein-coding genes across

mammalian and vertebrate ancestral genomes, which is consistent

with previous reports based on other lncRNA catalogs [4,27,29].

Finally, utilizing a module based algorithm, we were able to

predict putative functions for at least 878 lincRNAs, and we

presented evidence supporting the hypothesis that lincRNAs might

act in cis to affect expression in their chromosomal neighborhood.

Our work significantly complements the recent ENCODE

publications [30]. The ENCODE project, which is an interna-

tional effort to identify all regions of transcription, transcription

factor association, chromatin structure, and histone modification

in the human genome, has recently published 30 papers including

a few that extensively characterize lincRNAs [27,31,32,33].

However, ENCODE papers focus mainly on human samples

which carry high degrees of genetic diversity and which often have

very limited ‘‘true’’ biological replicates. On the other hand, the

sequencing data used in our study were produced from mice of

identical breeding with little genetic variance, as documented by

the similarity of the six biological replicates provided. In addition,

the strain of the two founder mice used in this study has been

widely used to model human metabolic diseases, particularly

obesity, diabetes, and cardiovascular disorders. A complete

annotation of lincRNAs in this strain allows a unique opportunity

for comparative analyses between humans and mice and it also

provides an informatics resource to further validate the relevance

of genomic variance in disease pathogenesis which is sought by the

ENCODE project.

Our work also provides a framework for identifying and

characterizing lincRNAs in other model organisms (Figure S5).

Detailed annotations of genomes and transcriptomes of model

organisms have proved to be instrumental in advancing almost all

research areas of biology and the elucidation of lincRNA

expression in model organisms will likely generate exciting new

insights into how they function. Our lincRNA discovery pipeline

can be easily adapted to study other model organisms and could

help to annotate lincRNAs in these essential research subjects.

Most importantly, our work establishes a roadmap for scientists

to study the physiological function of lincRNAs and to eventually

pinpoint their pathological role in human disease. A number of

human SNPs associated with disease have been mapped to

lincRNA loci [34,35] yet their causal relations with these

pathological conditions have not been established. For mutations

in coding genes, generating and characterizing a genetic mouse

model is often the first step in establishing causality, but no mouse

models with targeted knockouts of disease-associated lincRNAs

have been widely adopted for study partly due to the incomplete

annotation of mouse lincRNAs. Our work could fill this critical

gap and is, in fact, already in practice in our current collaboration

that aims to dissect the function of lincRNAs in physiology and

disease in experimental mice.

Materials and Methods

RNA-seq data set
All RNA-seq data of mouse tissues used in this study were

obtained from the Mouse Genomes Project at the Wellcome Trust

Sanger Institute and can be directly downloaded from their

website (accession number: ERP000591). Polyadenylated RNA-

seq data utilized in this study were generated from six biological

Figure 4. Histone marks of tissue specific lincRNAs (A) Trimethylation of lysine 4 of histoneH3 (H3K4me3) at promoter regions for heart, liver,
spleen and thymus tissue. (B) Methylation of lysine 4 of histoneH3 (H3K4me1) at promoter regions. Red lines represent all lincRNAs, green lines
represent tissue-specific lincRNAs and black lines represent random control.
doi:10.1371/journal.pone.0070835.g004
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replicates of six mouse tissues including heart, hippocampus, liver,

lung, spleen and thymus (the mouse strain used is a cross of

C57BL/6J and DBA/2J). Each tissue yielded 54 million reads per

sample on average, and the reads were paired and both lengths

were 76 bp.

Publicly available annotations
In this study we downloaded protein-coding genes of RefSeq

[15], Ensembl [19], UCSC [18], and Vega [36] from the UCSC

genome browser and all known noncoding genes from NON-

CODE 3.0 database [17] (Table S2).

RNA-seq reads mapping
We used the spliced read aligner TopHat version V1.31 to map

all sequencing reads to the mouse genome (mm9) [14]. Two

rounds of TopHat mapping were used to maximize the splice

junction information derived from all tissues. In the first round, all

reads were mapped with TopHat using the following parameters:

min-anchor = 5, min-isoform-fraction = 0, and the rest set as

default; in the second round of TopHat mapping, all splice

junctions produced by the initial mapping were collected and fed

into TopHat to re-map each sample with the following param-

eters: raw-juncs, no-novel-juncs, min-anchor = 5 and min-isoform-

fration = 0. Biological replicates of mapped reads from the same

tissue were merged into a single BAM file to facilitate the

transcript assembly and quantification.

Transcriptome assembly
Aligned reads from TopHat were assembled into transcriptome for

each tissue separately by both Scripture [11] or Cufflinks [12]. Both

assemblers use spliced read information to determine exon connec-

tivity, but with different approaches. Cufflinks uses a probabilistic

model to simultaneously assemble and quantify the expression level of

a minimal set of isoforms and provides a maximum likelihood

explanation of the expression data in a given locus. Scripture uses a

statistical segmentation model to distinguish expressed loci from

experimental noise and uses spliced reads to assemble expressed

segments. It reports all statistically significantly expressed isoforms in

a given locus. The two approaches might generate different results in

terms of assembled transcripts and numbers of products.

Cufflinks version V1.0.3 was run with default parameters (and

‘min-frags-per-transfrag = 0’) and Scripture version 1.0 was run

with default parameters besides the omission of paired-end

information to avoid conflicts that could occur while running

Cufflinks abundance estimation mode in later steps.

Novel lincRNAs detection pipeline
As expected from a mouse tissue cohort, individual transcript

assembly may have noise from multiple sources such as artifacts

generated by the sequence alignment, unspliced intronic pre-

mRNA or genomic DNA contamination. To enhance the

reliability of constructing expressed lincRNAs from mouse tissues,

we developed an analysis pipeline to minimize noise and maximize

recovery of ‘‘true hits’’ by implementing the following five steps: (1)

Recalculate FPKM (fragments per kilobase of exons per million

fragments mapped) and read coverage of each transcript across the

six tissues separating transcripts as reliably expressed instead of

background noise on the basis of FPKM using a trained decision

tree; (2) Compare the combined transcripts with mouse coding

genes with well-established databases such as Refseq [15], UCSC

[18], Ensembl [19], Vega [36] for coding genes, and NONCODE

for noncoding genes [17] and an independent Pseudogenes

database [37] to eliminate transcripts that have at least one exon

overlapping with any of them; (3) Calculate the coding potential of

each transcript using CPC (coding potential calculator) [20] and

CNCI (Coding Noncoding Index) in-house software to recover the

transcripts which can be categorized as noncoding (CNCI, is a

powerful signature tool that profiles adjoining nucleotide triplets to

effectively distinguish protein-coding and non-coding sequences

independent of known annotations; CNCI software is available at

http://www.bioinfo.org/software/cnci); (4) Select transcripts that

have more than one exon and which are longer than 200 bases; (5)

Select the remaining transcripts that are located in the intergenic

regions, at least 1 kb from any known protein-coding gene.

Tissue specificity score and histone modification data
To evaluate the tissue specificity of a transcript, we devised an

entropy-based method to quantify the similarity between a

transcript’s expression pattern and another predefined pattern

that represents an extreme case in which a transcript is expressed

in only one tissue [38]. All histone modification data were from

mouse ENCODE data and were downloaded from UCSC

Browser (http://hgdownload.cse.ucsc.edu/goldenPath/mm9/

encodeDCC/wgEncodeLicrHistone/).

Conservation analyses of mouse lincRNAs
We used the liftOver (http://genome.ucsc.edu/cgi-bin/

hgLiftOver) tool to identify the orthologous locations of mouse

lincRNAs in the human genome and used TransMap tools, which

implements syntenic BLAST-Z alignments, to map all mouse

lincRNAs to known transcripts across vertebrate linage.

Supporting Information

Figure S1 The distribution of JS score between lincR-
NAs (black line) and protein-coding genes (red line).
(TIF)

Figure S2 Orthologous transcripts of mouse lincRNAs
in mammals and other vertebrates. An example of mouse

novel lincRNA conserved with Transmap transcripts between

mouse, Human and Rat.

(TIF)

Figure S3 Comparison of expression patterns between
lincRNA:protein coding gene pairs (red line), coding:-
coding gene pairs (blue line) and random coding gene
pairs (yellow line).
(TIF)

Figure S4 The distribution of correlation coefficient
between 878 lincRNAs and their neighboring genes. The

portion of lincRNAs in five intervals of correlation coefficient are

represented as different colors (left pie). The portion of lincRNAs who

have high correlation (.0.8) and are involved in the same biological

processes with their neighboring genes are also depicted (right pie).

(TIF)

Figure S5 Data analysis framework of this study.
(TIF)

Table S1 Sample information and RNA-Seq statistics.
(XLS)

Table S2 All the annotated coding, non-coding and
pseudogenes resource.
(XLS)

Table S3 Total transcript counts during the processing
pipeline.
(XLS)
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Dataset S1 The catalog of 10,571 transcribed lincRNA
genes.

(BED)

Dataset S2 The list of JS scores of lincRNA genes.

(XLS)

Dataset S3 The list of JS scores of protein-coding genes.

(XLS)

Dataset S4 The orthologous regions of mouse lincRNAs
in the human genome.

(XLS)

Dataset S5 The function prediction results of mouse
lincRNAs.

(RAR)

Dataset S6 The list of GO terms according to the
number of lincRNAs.
(XLS)

Dataset S7 The lincRNA and protein-coding gene pairs
that shared the same GO annotations.
(XLS)
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