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Abstract

Disease control is of paramount importance in public health, with infectious disease extinction as the ultimate goal.
Although diseases may go extinct due to random loss of effective contacts where the infection is transmitted to new
susceptible individuals, the time to extinction in the absence of control may be prohibitively long. Intervention controls are
typically defined on a deterministic schedule. In reality, however, such policies are administered as a random process, while
still possessing a mean period. Here, we consider the effect of randomly distributed intervention as disease control on large
finite populations. We show explicitly how intervention control, based on mean period and treatment fraction, modulates
the average extinction times as a function of population size and rate of infection spread. In particular, our results show an
exponential improvement in extinction times even though the controls are implemented using a random Poisson
distribution. Finally, we discover those parameter regimes where random treatment yields an exponential improvement in
extinction times over the application of strictly periodic intervention. The implication of our results is discussed in light of
the availability of limited resources for control.
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Introduction

Understanding the processes underlying disease extinction is an

important problem in epidemic prediction and control. Currently,

total eradication of infectious disease is quite rare, but continues to

be a major theme in public health. Temporary eradication,

sometimes called fade out, tends to happen in local spatial regions,

and may be followed by the reintroduction of the disease from

other regions [1,2,3]. In the case of diseases that possess co-

circulating strains such as influenza [4], or dengue fever which has

up to four strains [5], extinction may occur in one or more strains

while the others persist. Infectious disease transmission is also

conjectured to be responsible for certain species extinction [6,7].

Recently, large scale amphibian species have had major declines in

population, which have been linked with the spread of disease [8].

One main reason that diseases go extinct is due to the

stochasticity that is inherent to populations of finite size [9]. As

a disease evolves in a large finite population, there is the possibility

of insufficient transmission for it to stay endemic. Therefore, in

finite time, the number of infectious individuals can go to zero and

the disease dies out [10,11,12]. Other mechanisms that enhance

extinction include small populations and resource competition

[13], as well as heterogeneity in host–vector models [14].

Extinction or fade out may also occur within host, as in the

theoretical study of spontaneous virus clearance of Hepatitis C and

HIV [15].

To properly model the random interactions occurring in

populations, the study of disease extinction requires a stochastic

modeling approach. There are numerous studies from time series

analysis and epidemic modeling supporting stochastic fluctuations

due to random interactions [16,17,18,19]. The fluctuations may

act as an effective force that drives the disease to vanish [20].

While each stochastic realization is Markovian, extinction arises

from an organized set of fluctuations which may overcome the

instability of the extinct state. The goal is to identify the set of

fluctuations which result in the pattern of the noise necessary to

drive the system out of equilibrium from the attracting state to the

extinct state. The optimal path depends on boundary conditions in

the asymptotic limit of past and future history, and represents the

most probable trajectory from the endemic to the extinct state.

We remark here that although escape has been considered for

systems of Langevin type, the theory we present in this paper is for

discrete finite populations modeled as a master equation. In

continuous systems, a rigorous theory of escape rates for systems

driven by white Gaussian noise was developed by Freidlin and

Wentzell [21]. It was also found that the escape rates should

display a number of universal features, including scaling behavior

near bifurcation points [22,23], which has been confirmed by

many experiments [24,25,26,27]. Conversely, Allen and Burgin

[10] used Markov chain analysis to approximate the duration of

an epidemic in discrete time models. More recently, it was shown

that the state of the system is coupled to a deterministic model of

the noise shape [28]. In this setting, the optimal path is an unstable
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object, but may be associated with the dynamical systems idea of

having maximum sensitive dependence to initial conditions [29].

Treatment programs are common methods used to speed up the

extinction of a disease in a population [30]. In this paper, we aim

to quantify how random treatment programs increase average

extinction rates. We focus on a class of diseases with no immune

response. Models with no immunity are suitable for many bacterial

infections, such as meningitis, plague, and venereal diseases, as

well as certain protozoan illnesses, such as malaria and sleeping

sickness [31].

In general, little work has been done in analyzing stochastic

models with random treatment intervention. In this context, we

assume that treatments would be applied to infected individuals,

removing them from that group. Most intervention schedules are

designed as periodic, especially for childhood and seasonal diseases

[32]. Each intervention typically has a prescribed (deterministic)

schedule, or distribution, of treatment doses, but the extinction

event is still random. Similarly, there has been work on using

vaccination distributions as a control mechanism [33] and

recently, this idea has been extended to stochastic models in

[34,35].

Thus, one of the main problems in understanding treatment

scheduling is that deterministic schedule models are not an

accurate representation of the process. A more realistic scenario

is that, on average, treatment scheduling has a mean period or

cycle, but is itself a random process. In this paper, we study a

randomly distributed treatment program of infected individuals.

We are interested in evaluating treatment distributions by

minimizing the mean time to extinction for the disease. Running

simulations are computationally expensive and sensitive to

population size. The theory presented in this paper provides an

alternate method to approximate the mean time to extinction. In

our models, we identify conditions for which the escape rate theory

applies and control strategies are effective. In particular, we derive

explicit scaling functions of the exponent of the mean time to

extinction in terms of basic reproductive number and mean

treatment levels. We also identify the most effective treatment

schedules. Then, we compare the theory against numerical

simulations for verification.

Methods

In this paper, we use the stochastic SIS compartmental model as

a basic example to clearly demonstrate our mathematical methods

analytically and numerically. The methods can be extended for

use in more complex models, as necessary for a disease of interest.

The SIS model tracks the number of individuals in a population of

size N in one of two states: susceptible (X1) or infected (X2). In this

model, we assume that the individuals become susceptible to the

disease again upon recovery. The number of individuals in each

state changes as birth, death, infection and recovery events occur.

They are quantified by the following transition rates. If a

susceptible comes in contact with an infected individual, the

healthy individual may become infected. We use a mass action

term with the contact rate b to describe the flow of newly infected

individuals from the susceptible group. We assume infected

individuals recover at rate k and immediately re-enter the

susceptible group. New susceptible individuals are born at a rate

m, and both susceptible and infected individuals have a death rate

of d. In this model, we assume that the individuals recover from

the disease without significant mortality. We also assume that the

population is constant over time, on average, and therefore set the

birth rate is equal to the death rate, so d~m. This assumption

allows steady states in the model, for which we can analyze the

stability.

Associated with the parameters for a particular disease is the

basic reproduction number, R0, which defines on average how

many new cases appear over one infectious period per infective

[1]. Deterministically, when R0w1, the disease persists. In other

words, the extinct state is unstable and the number of infectious

individuals approaches a limit called the endemic state. The R0 for

a particular disease can be approximated from data. For example,

it was approximated from the epidemiological data from England

and Wales that the serogroup C meningococcal disease had

R0~1:36, [36]. In Africa, some malaria R0u estimates are close to

one, but others can be as high as 3,000 [37]. This variation is

attributed to environmental temperature variations and mosquito

biology [38]. Therefore, several groups have identified the

applicability for methods to analyze extinction in finite populations

near the bifurcation point R0~1. (See the review in [39].) In both

basic SIS [40,41] and SIR [42] models, the mean times to

Figure 1. Comparing quantitative approximations of the
action. For Model 1, plot of the numerical approximation of the
action (dashed curve) and the asymptotic approximation (solid curve)
as a function of the treatment, g. In this example, we use the
parameters b~105 year21 and N~8,000 people. As expected, the best
agreement is for small g.
doi:10.1371/journal.pone.0070211.g001

Figure 2. Checking the threshold for quasi-stationarity. A
contour plot of NSopt for Model 1 as we vary treatment, g, and the
contact rate, b. The darker colors represent larger values of NSopt. In this
case, the treatment frequency is n~4 year21 and N~8,000 people. The
solid black curve denotes where R~1, the boundary for the existence
of the endemic state in the mean-field model. Quasi-stationarity holds
for NSoptw1. Therefore, between R~1 and NSopt~1, a larger
population would be necessary for the mean-field equations and the
stochastic model to agree.
doi:10.1371/journal.pone.0070211.g002
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extinction were analyzed as a function of R0 very close to one. The

range of parameters in both papers is assumed to model extremely

slow disease propagation in large population limits. In this paper,

we continue with the analysis for a non-specific disease with R0

close to one, noting that parameters can be adjusted for a disease

of interest.

For disease control, the stochastic model assumes a treatment

schedule that occurs at randomly chosen times with a frequency n
times per year. Each time the treatment is applied, a fraction g of

all infected individuals recover and flow back into the susceptible

class. This assumes the treatment has 100% efficacy. To study the

effect of treatments that are not as effective, a prefactor for g could

be added to capture the smaller efficacy. That case is similar to

studying a smaller value for g, which is included in the parameter

range 0ƒgv1 and therefore we do not study this issue separately.

We use the master equation approach to describe the time

evolution of the stochastic system. The general theory of applying

the WKB method to finite populations begins by assuming that the

population of N individuals described by a state vector

X~(X1,X2, . . . ,Xn). Let the random state transitions governing

the dynamics be described by the transition rates W (X,r), with r
representing the increment in the change of each component of X .

Also, let the probability of finding the system in state X at time t be

r(X,t). We assume that the system possesses a single, strictly

stationary solution for the probability density,
Lr

Lt
~0, that

corresponds to the extinct state, where one or more of the n
components of the state vector X are equal to zero. The stability of

this solution is essential, since convergence to this stationary

solution represents the set of possible trajectories that lead to

extinction.

When the probability current at the extinct state is sufficiently

small, there will exist a quasi-stationary probability distribution

with a non-zero number of infected individuals that decays into

the stationary solution over exponentially long times. The rate at

which the extinction of infected individuals occurs may be

calculated from the tail of the quasi-stationary distribution. It

has been shown that a WKB approximation to the quasi-

stationary distribution allows one to approximate the mean-time

to extinction with high accuracy for a sufficiently large population

[43,40,41].

Approximating the probability by r(x,t)~A exp ({NS(x,t))
for the normalized state x~X=N (e.g., in an epidemic model, the

fraction of the population in the various compartments), we form

the Hamilton-Jacobi equation:
LS

Lt
zH x,

LS

Lx

� �
~0. In analogy to

Hamiltonian mechanics, the functions H and S are called the

Figure 3. The effectiveness of various treatment combinations
for Model 1. A plot of the mean time to disease extinction, text years,
vs. the fraction of infected treated, g, for different treatment
frequencies, n year21. The results for the Monte Carlo simulations are
averaged over 2,000 realizations and plotted as symbols. The curves of
the same color show the approximation of the mean time to extinction
by finding the action. The parameters are N~8,000 people and b~105
year21. Note the exponential decrease in the mean time to extinction as
the treatment fraction is increased.
doi:10.1371/journal.pone.0070211.g003

Figure 4. Probability density of extinction prehistory and the
optimal path to extinction for Model 2. The red point denotes the
endemic state. A simulation starts with the population at the endemic
state and stops when the number of infected individuals is zero. The
probability density uses the last five years of data from 200,000 Monte
Carlo extinction realizations.The parameters are n~8 year21, b~105
year21, g~0:1, and N~12,000 people. Red colors correspond to
regions of highest frequency for the path to extinction. The optimal
path (white curve) is computed from the Hamiltonian model and
connects the endemic state to the extinct state. Notice that it lies on the
peak of the probability density of extinction prehistory.
doi:10.1371/journal.pone.0070211.g004

Figure 5. The effectiveness of various treatment combinations
for Model 2. A plot of the mean time to extinction, text , vs. the fraction
of infected vaccinated during each treatment, g, for different treatment
frequencies, n year21. The averages of 2,000 Monte Carlo simulations
are shown with symbols. The curves of the same color show the
numerical approximation of text using the action S and a constant
prefactor. For the parameters, we use N~12,000 people and b~105
year21.
doi:10.1371/journal.pone.0070211.g005
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Hamiltonian and the action, respectively. Let p~
LS

Lx
, which is

called the momentum conjugate to x. Using the scaled transition

rates w(x; r)~W (Nx; r)=N, the Hamiltonian function is

H(x,p)~
P

r w(x; r)½exp (p:r){1�, and we analyze the system

using the characteristic equations: _xx~LpH(x,p), _pp~{LxH(x,p).

For a more detailed description of the WKB method and other

applications, see [44,45,40].

Model 1: Constrained SIS model with treatment

In the first model, we approximate the SIS dynamics by

reducing the dimension of the problem. Assume the average

population size is N and constrain the population size such that

X1zX2~N. Therefore, we can consider the dynamics of the

constrained SIS model in terms of infected individuals, X2. We

need only to consider the following transition rates, which describe

how individuals enter and leave the infected state:

W (X2; 1)~bX2(N{X2)=N, new infections ;

W (X2; {1)~(mzk)X2, recovery and natural death ;

W (X2; {tgX2s)~n, treatment :

.

Since the population variable in the master equation is integer-

valued, we choose to keep the integer part tgX2s of gX2 (rounding

down). Using these transition rates, the master equation for the

constrained SIS stochastic process is

Lr(X2,t)

Lt
~

(mzk)((X2z1)r(X2z1,t){X2r(X2,t))

zn(r(X2ztgX2s,t){r(X2,t))

z
b

N
((X2{1)(N{(X2{1))r(X2{1,t)

{X2(N{X2)r(X2,t)):

ð1Þ

Note that for any particular realization of the master equation,

the treatment ceases to have an effect whenever gX2v1 (i.e.,

X2v1=g) since for all those numbers of infecteds tgX2s~0. It is

well known that the basic reproduction number for the determin-

istic SIS model without treatment (g~0) is R0~b=(mzk). With

treatment, we define the reproduction number R~b=(mzkzng).

Equation (1) will always possess as a solution a stationary

distribution with the probability of observing zero infected

individuals r(0,t)~1, which we identify as the extinct state

(X2~0). If Rw1 and N is large enough, Eq. (1) will also possess a

quasi-stationary solution with an infected fraction fluctuating

around an endemic state. Hence, if Rw1 the disease can spread

through a population and is considered endemic.

Next, we rescale the state variable by the population by using

the normalized variable x2~X2=N. Therefore, the Hamiltonian

function for the SIS model is

H(x2,p2)~bx2(1{x2)(ep2{1)z(mzk)x2(e{p2{1)

z
n

N
(e{gNx2p2{1),

ð2Þ

and the associated Hamiltonian system is

_xx2~bx2 1{x2ð Þep2{(mzk)x2e{p2{ngx2e{gNx2p2 ,

_pp2~{b 1{2x2ð Þ ep2{1ð Þ{(mzk) e{p2{1ð Þzngp2e{gNx2p2 :
ð3Þ

The Hamiltionian system has three steady states of interest.

Associated with deterministic dynamics (p~0) are the disease free

equilibrium is (x2,p2)~(0,0) and the endemic state is

(x2e,p2e)~(1{
1

R0
{

ng

b
,0). In addition, there is a stochastic die

out state, (x20,p20)~(0,p�), with p� implicitly defined by

ngp�~b(ep�{1)z(mzk)(e{p�{1): ð4Þ

While stochastic die out state is similar to the disease free

equilibrium having x2 = 0, the difference is that momentum is

nonzero. In an extinction event, the solution starts near the

Figure 6. A comparison of the action approximations for Model
1 and Model 2. This plot shows the quantitative difference in the
action approximation for Model 1 (blue) and Model 2 (red) as we vary
R0 and g. In this example, we use parameters b~105 year21, n~4
year21, and N~120,000.
doi:10.1371/journal.pone.0070211.g006

Figure 7. A comparison of periodic and random treatment
effectiveness. For Model 1, a plot of the Monte Carlo simulated mean
time to disease extinction for random (points connected by dotted
lines) and periodic (symbols) treatment schedules vs. the fraction of
infected vaccinated during each treatment. Results are shown for
treatment frequencies, n = 2, 4, 8, and 12 year21 averaged over 2,000
realizations. The parameters are N~8,000 people and b~105 year21.
Note that the random treatment schedule has average extinction times
consistently lower than the periodic treatment schedule.
doi:10.1371/journal.pone.0070211.g007
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endemic state and approaches the stochastic die out state, not the

disease free equilibrium.

Note that the endemic state exists only if x2ew0. In addition,

the endemic state has zero momentum, which is consistent with

our expectation that the probability distribution have a maximum

at x2e and hence
LS(x2e)

Lx2
~p2e~0. Since the variables x2 and p2

of the WKB approximation are not restricted to integer values,

here the rounding of gX2 poses no problem. However, this means

that in the WKB framework, the treatment pulses have an effect at

arbitrarily low values of x2, in contrast to the master equation

framework where, because of the rounding, treatment stops being

applied whenever X2v1=g.

Model 2: Full SIS Model with Treatment
The second model is the unconstrained SIS treatment model in

two-dimensions. We calculate S and I separately and allow the

population fluctuation about N. If the fluctuations are small

compared to N, the system will behave like the one-dimensional

approximation.

For the two-dimensional model, let the state vector be

X~(X1,X2) and the transition vector be r~(r1,r2). The changes

in the susceptible and infected populations for a single transition

are represented by the transition rates:

W (X; (1,0)) ~Nm, birth of new susceptibles ;

W (X; ({1,0)) ~mX1, natural death for susceptibles ;

W (X; (0,{1)) ~mX2, natural death for infectious ;

W (X; (1,{1)) ~kX2, natural recovery ;

W (X; ({1,1)) ~bX1X2=N, new infections ;

W (X; (tgX2s,{tgX2s)) ~n, treatment :

.

Here, as in Model 1, the non-integer quantity gX2 is rounded

down to tgX2s. Again, rescale the state variable by the population

and use the normalized vector x~(x1,x2), with x1~X1=N and

x2~X2=N. Using the definition of the master equation, the

Hamiltonian in normalized variables is

H(x,p)~
m(ep1{1)zbx1x2(e{p1zp2{1)

zkx2(ep1{p2{1)zmx1(e{p1{1)

zmx2(e{p2{1)z
n

N
(egx2Np1{gx2Np2{1),

ð5Þ

and the associated Hamiltonian system is

_xx1

~mep1{bx1x2e{p1zp2zkx2 ep1{p2

{mx1e{p1zngq2egx2N(p1{p2)

_xx2

~bx1x2e{p1zp2{kx2ep1{p2

{mx2e{p2{ngx2egx2N(p1{p2)

_pp1 ~{bx2 e{p1zp2{1ð Þ{m e{p1{1ð Þ

_pp2

~{bx1 e{p1zp2{1ð Þ{k ep1{p2{1ð Þ{m e{p2{1ð Þ
{ng p1{p2ð Þegx2N(p1{p2):

ð6Þ

Note once more that in the WKB framework, the treatment

pulses have an effect for arbitrarily small x2. For this Hamiltonian

system, the endemic state is located at the point

(x1,x2,p1,p2)~
1

R0
z

ng

b
,1{

1

R0
{

ng

b
,0,0

� �
ð7Þ

and the stochastic die out state is (x1,x2,p1,p2)~ 1,0,0,p�ð Þ, with

p� defined implicitly as in Eq. (4).

Results

We now use these Hamiltonian models to approximate the

mean time to extinction. Topologically, the solution that describes

an extinction event in the Hamiltonian system will connect the

endemic state (xa) and stochastic die out state (xs). The connecting

manifold is, in fact, the most probable path to extinction when the

stochastic system starts initially at the endemic state [40,41]. This

set of points is called the optimal path. Points on the path will also

satisfy the Hamiltonian on the energy surface H(x,p)~0 since it is

a solution to the time-independent version of Hamilton-Jacobi

equation.

Figure 8. The effectiveness of various treatment combinations for a fixed treatment supply. Using Model 1 with a fixed treatment supply
gn~constant, we plot the mean time to extinction as a function of g (panel a) or, alternatively, as a function of n (panel b). The symbols represent the
Monte Carlo simulation results for gn = 0.1, 0.2, and 0.3 averaged over 10,000 realizations. The curves represent the direct numerical solution of the
associated master equation. The parameters are N~8,000 people and b~105 year21. Note that the mean time to extinction is a decreasing function
of g and an increasing one of n.
doi:10.1371/journal.pone.0070211.g008
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From the definition of the momentum, p(t)~
LS

Lx
, the action

along the optimal path can be approximated by

Sopt~

ð?
{?

popt(t)
: _xxopt(t)dt~

ðxs

xa

popt
:dxopt: ð8Þ

Using this quantity, we approximate the mean time to

extinction by evaluating

text~BeNSopt , ð9Þ

where B is a prefactor that depends non-exponentially on the

system parameters and on the population size. An accurate

approximation of the mean-time to extinction depends on

obtaining B [46].

It is usually not a trivial task to identify the set of points that

describe the optimal path. In some cases, it can be found

analytically. One example is Model 1 with g~0, since Eq. (2) has

an explicit solution for p2 when constrained to H(x2,p2)~0. An

alternative approach is approximating the solution asymptotically.

There are also several numerical approaches. One common

method is to treat the system as a two point boundary value

problem and solving using a shooting method [47]. In this paper,

we use a generalized Newton’s method that involves iterating an

initial guess of the solution in the entire time domain [48]. Our

initial guess must satisfy the property that the solution will stay

asymptotically near the steady states except for a small,

continuous, transition region between the two. This iterative

procedure requires discretizing the model differential equations in

time, using a second order approximation for the derivatives, and

then solving the entire resulting system of nonlinear algebraic

equations simultaneously.

Equation (9) holds if and only if a quasi-stationary distribution

exists. This is the case if the time to extinction is exponentially

long, i.e., NSopt&1. Assuming that an endemic state does exist

(x2ew0); NSopt&1 will be satisfied for N sufficiently large or, for

fixed N, for an R sufficiently large and ng sufficiently small. The

last conditions on the parameters mean that the disease should be

highly transmissible and that the treatment should not be too

intense. See Text S1, for a more detailed treatment on the

necessary conditions for the quasi-stationary solution to exist.

Model 1
Because the Hamiltonian system for the constrained model is in

two dimensions, the first approximation to the action path

simplifies to

Sopt~

ð0

x2e

p2(x2)dx2, ð10Þ

with p2 explicitly as a function of x2, evaluating the integral along

the optimal path. The Hamiltonian function of Eq. (2) does not

allow for an algebraic solution for p2(x2) from the equation

H(x2,p2)~0 that describes the path connecting the endemic state

to the extinct state when g=0. Therefore, the integral in Eq. (10)

must be approximated.

For this model, an asymptotic approach can be used to

approximate the action along the optimal path to extinction. We

assume g%1, which implies small treatment pulses. We expand p2

in g and substitute this expression into the equation H(x2,p2)~0.

The resulting expansion is

p2(x2)~{ ln (R0(1{x2)) 1{
ng

b(1{x2){(mzk)

� �
zO(g2):ð11Þ

The first term in the expansion S~SzS1=N is given by Eq.

(10). In [49], the second term in the expansion of the action in

powers of N is given as a more complicated integral along the

path. We expand the two integrals giving S and S1 in powers of g
and evaluate them in closed form using computer algebra

software. If we compare this asymptotic approximation to the

numerical approximation for the action along the optimal path

and evaluate Eq. (9), we see excellent agreement as shown in the

example in Figure 1. In this example, we set the birth rate m~0:2
year21 and recovery rate k~100 year21. These generic param-

eters are chosen to represent a slowly spreading disease, but with a

large m to demonstrate the scalings. For the remainder of the

paper, we will use these parameters in examples for both models.

These values provide results that can be clearly visualized and

easily reproduced.

Note that while the action does not depend on the size of the

population, to first order, the mean time to extinction does. The

population size must be large enough for the system to be quasi-

stationary. Our model assumes that disease extinction is a rare

event, which occurs in the tail of the distribution described by

exp ({NSopt). Conversely, the peak of the distribution occurs at

the endemic state. As R decreases to one, the distance between the

endemic state and the disease free equilibrium decreases and the

probability of the system having zero individuals in the infected

state becomes significant. Therefore, the exponent must be large

and negative, or equivalently the action must be sufficiently large

compared to the population so that Sopt&1=N.

To quantify where the system is quasi-stationary, we evaluate

evaluate NSopt using the numerical approximation of the optimal

path and Eq. (10). In Figure 2, we show a contour graph of NSopt

with frequency n~4 year21 and a population of 8,000. The

parameters region to the right of NSopt~1 will allow quasi-

stationarity, meaning extinction will lie in the tail of the

distribution. Between R~1 and NSopt~1, a larger population

would be necessary for the mean-field equations and the stochastic

model to agree. As the population increases (N??), the

NSopt~1 boundary will move to the left, towards the R~1

boundary. For N large enough, one expects these two curves to be

close to each other and nearly parallel, as we see in this figure.

The final step in finding the mean time to extinction is

approximating the prefactor in Eq. (9). Following the approach in

[49], we obtain

B~
1

(b{(mzk){ng)(R0{1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pR0ng

N(mzk) ln (1z
ng

mzk
)

vuut : ð12Þ

(We use Eq. (49) of [49] with A1~
1

R0{1
, which is the value

that corresponds to our case.) Note the dependence on the

treatment parameters g and n.

To quantify the accuracy of the approximation to the mean

time to extinction in Eq. (9), with S up to O(N{1), we compare it

to the average extinction time found by a Monte Carlo simulation

as described in Gillespie [50]. In Figure 3, the graph shows this

comparison over a range of treatment percentages (g) and
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frequencies (n). The simulation uses a population of 10,000 and we

averaged the results of 2,000 realizations. As expected, the mean

time to extinction decreases as the treatment percentage and

frequency increase. Note the excellent agreement for small g, for

which the asymptotic approximation was derived. Because the

distribution of the mean extinction times is approximately

exponential, the standard deviation of the data is equal to the

mean. Therefore, as the mean decreases to zero, the standard

deviation decreases and the prediction becomes more accurate.

Also, we see an improvement in agreement as n is increased. This

is because the controlled rate to zero is faster with increasing n,

and the system has less time to relax back to the endemic state.

Model 2
The full SIS model has a Hamiltonian system in four

dimensions and asymptotic approximations of the optimal path

and action are not tractable. Therefore, we rely on numerical

approximations. For example, we show the probability density of

extinction prehistory and the optimal path to extinction in

Figure 4. A simulation starts with the population at the endemic

state and stops when the number of infected individuals is zero.

The probability density uses the last five years of data from

200,000 Monte Carlo extinction realizations. Red colors corre-

spond to regions of highest frequency for the path to extinction.

The optimal path (white curve) is computed from the Hamiltonian

model. Notice the agreement of the optimal path and the peak of

the probability density of extinction prehistory. We also compare

the approximation for the mean time to extinction given by the

theory to data found by Monte Carlo simulation for small g in

Figure 5. There is an exponential decrease in the mean time to

extinction as we increase the treatment, agreeing with the theory.

Note that the standard deviation of the data is equal to the mean,

as in Model 1, since the extinction times are exponentially

distributed, approximately.

We also comment on the differences in the constrained and

unconstrained SIS models with treatment. In Figure 6, we

compare the numerical approximations for actions of the two

models. We see that they agree for small R0, but the action for the

constrained model increases much faster as both R0 and g
increase. This follows the result in [20], where the action for the

constrained SIS model with no intervention was shown to have a

logarithmic dependence on for R0w1. The constrained treatment

model also follows the logarithmic scaling. In contrast, the

unconstrained SIS model has an action which exhibits a quadratic

power law dependence on R0{1. In addition, the theory can be

used to avoid expensive simulations of long extinction times in

large populations. The benefit of the full model is that it captures

disease dynamics in a population with significant size fluctuations.

The theory captures the rate of change in the mean time to

extinction so that effectiveness in treatment schedules can be

quantified.

Discussion

In this paper, we quantified how treatment enhances the

extinction of epidemics using a stochastic, discrete-population

framework. Specifically, we based our study on a general

formulation of an SIS model with treatment that is applied

randomly in a Poisson fashion, accounting for the limited amount

of resources. We used a WKB approximation to the master

equation of the stochastic process to calculate the average time to

extinction starting from the endemic state, as a function of the

transmissibility of the disease and the strength and frequency of the

treatment. We compared the extinction times obtained analytically

and numerically from the WKB approximation with the values

obtained from Monte Carlo simulations.

In addition, we explored the significance of the quasi-

stationarity assumption that is fundamental to the WKB approx-

imation. The existence of a quasi-stationary distribution peaked at

the endemic point produces a meta-stable state in which the

population fluctuates in a neighborhood around the same endemic

point. In contrast, the extinct state lies in the exponentially small

tail of the distribution. When a quasi-stationary distribution exists,

the extinction of a disease is a rare event, i.e. the mean time to

extinction is exponentially long. As we show in Text S1, the time

to extinction is indeed exponentially long when the disease-free

point lies in the tail of the distribution. The occurrence of

extinction as a rare event means that the fluctuations exhibited by

the random population dynamics are much smaller than an

effective activation barrier. If the fluctuations are not small

compared to the barrier, then the extinction events are not

necessarily in the tail of the distribution, and hence not a rare

event.

Deterministic models of treatment are not accurate represen-

tations of the process in practice when applied to finite population

realizations. A more realistic description is that, on average,

treatment scheduling has a mean period or cycle, but is itself a

random process. To quantify the difference between the deter-

ministic and the stochastic descriptions, we compared the mean

time to extinction for a strictly periodic and a Poisson-distributed

treatment schedule obtained by averaging the Monte Carlo

simulation results of many extinction events starting from the

endemic state. We assume that a fraction g of the infected

population is treated at a frequency of n times per year and

immediately return to a susceptible state. Therfore, the treatment

is applied deterministically as a function of time and not simulated

as a random event. In Figure 7, simulations support evidence that

the random schedule had a faster mean time to extinction over the

range of frequencies. The reason for this is that when the system is

close to the extinct state, there is a benefit to having a number of

treatment pulses in a short window of time; such a series of

frequent treatment pulses are possible in the Poisson treatment

scheduling but not in the deterministic one. Increasingly rapid

pulses prevents the disease from relaxing to its endemic state,

thereby enhancing the extinction rate.

The treatment program that we implement in our model has

two degrees of freedom: the frequency n and the fraction of

infected individuals that are treated, g. On average, there are n:(1
year) treatment pulses each year and at each one, a number Ngx2

of infected individuals are treated, where x2 is the infected fraction

at the moment each treatment pulse occurs. Supposing that there

are a fixed number of treatment doses Nngx2e
:(1 year) = constant

that may be applied each year (here x2e is the fraction of the

population that is infected at the endemic point). A natural

question that arises is the following: Given a fixed number of total

treatment doses, how are n and g chosen so that the time to disease

extinction is minimized. In both of our SIS models, the fixed

number of treatment doses translates into ng~ constant. Monte

Carlo simulations of Model 1 show that, for given a fixed ng
quantity, the mean time to extinction decreases as a function of g,

or alternatively, increases as a function of n (Figure 8). The drop is

particularly sharp for g?0. This appears to be a consequence of

the rounding down of gX2 whenever a treatment pulse occurs (see

Methods section). The treatment ceases to have an effect when

there are less than 1=g infecteds; for very small g, the threshold

1=g is significant when compared to the number of infecteds at the

endemic state. Thus, the treatment helps to bring the number of

infected down to 1=g, but not all the way to extinction. This issue
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does not appear if one instead chooses to round gX2 to the next-

highest integer (results not shown). With this alternative method of

rounding, the time to extinction actually has a sharp increase as

g?0. Monte Carlo simulations of Model 2 corroborate this

finding. Thus, given a fixed number of resources, our stochastic

simulations demonstrate that in order to eliminate infectious

diseases, it is better to increase the pool of individuals reached by

the treatment, rather than increase its frequency.

In conclusion, we have described a method to quantify the

effectiveness of a random treatment program. We find that

increasing the magnitude and frequency of randomly scheduled

treatments provide an exponential decrease in average extinction

times. We have presented evidence that supports how larger

campaigns applied less frequently are the most effective in

facilitating disease eradication. Several assumptions in the model

clarify the accuracy of the analytic approximation to the mean

time to extinction, but its exponential rate of decrease as we

increase the intervention is consistent with simulations throughout

our analysis as populations get very large. The techniques

considered here can be easily generalized to other diseases, such

as those that include seasonality or population structure. Future

work in this area could provide a more targeted control strategy

that would be robust in fluctuating environments as well as more

efficient and economical disease eradication.

Supporting Information

Figure S1 Quasi-stationarity depicted through proba-
bility distributions. Graphs of the WKB approximation of the

SIS probability distributions using Eq. (3) for N~200. We show

the case of R0~2, for which extinction is in the tail of the

distribution. Conversely, extinction has a significant probability in

the case of R0~1:1. Note the height of the curve for X2~0. The

dotted vertical lines show the location of the endemic state in X2

for each case.

(TIFF)

Figure S2 The drift of probability distributions for
systems without quasi-stationarity. A plot of the solution

of the one-dimensional master equation in with g~0 over time

using the distribution from the WKB approximation, Eq. (3), as

the initial condition. For R0~2 (panel a), the extinct state lies in

the tail of the distribution and a quasi-stationary distribution exists.

Extinction occurs only over exponentially long times. For R0~1:1
(panel b) the endemic state is close to the absorbing boundary and

extinction is not a rare event. The absorption of this distribution

into the boundary is apparent.

(TIFF)

Text S1 Supporting Information: Quasi-stationarity.

(PDF)
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