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Abstract

A competent interpretation of a musical composition presents several non-explicit departures from the written score.
Timing variations are perhaps the most important ones: they are fundamental for expressive performance and a key
ingredient for conferring a human-like quality to machine-based music renditions. However, the nature of such variations is
still an open research question, with diverse theories that indicate a multi-dimensional phenomenon. In the present study,
we consider event-shift timing variations and show that sequences of note onset deviations are robust and reliable
predictors of the musical piece being played, irrespective of the performer. In fact, our results suggest that only a few
consecutive onset deviations are already enough to identify a musical composition with statistically significant accuracy. We
consider a mid-size collection of commercial recordings of classical guitar pieces and follow a quantitative approach based
on the combination of standard statistical tools and machine learning techniques with the semi-automatic estimation of
onset deviations. Besides the reported results, we believe that the considered materials and the methodology followed
widen the testing ground for studying musical timing and could open new perspectives in related research fields.
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Communication, and Audiovisual Technologies of Universitat Pompeu Fabra. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: arcos@iiia.csic.es

Introduction

Music is an outstanding means of mankind’s emotional

expression [1]. In western art music, it is known that such

emotional expression owes to a great deal to the way performers

interpret a given piece or composition, beyond what is written in

the printed score [2,3]. Indeed, systematic and significant

deviations from the strict rendition of the piece are an essential

aspect of music performance [4,5]. Moreover, apart from

emotional expression, such deviations are believed to strongly

contribute to the comprehension of the musical message [3,6].

They are so common that the mere presentation of music as

notated in the score sounds too mechanical and highly unmusical

to us (cf. [7–10]). As Cook puts it [8], ‘‘the way performers shape

notes brings music to life’’.

Expressive deviations rely on the manipulation of sound

properties such as pitch, timbre, dynamics, and timing [4,5].

Timing is often considered to be the most important expressive

resource, and is perhaps the only variable over which any

performer has practically complete control, regardless of the

instrument used [11]. Timing generally refers to variations in the

temporal organization of musical events introduced by a

performer as compared to the strict adherence to tempo and

notated score values. Such variations can relate to different

temporal aspects such as note duration (interval timing; see, e.g.,

[12]) or note onset delay/anticipation (event-shift timing; see, e.g.,

[13]), and can be represented in different ways [14]. Research on

timing deviations has a long history, dating back to the beginnings

of the twentieth century (for pointers to such early works we refer

to [4]). Overall, the wealth of existing literature confirms that

performers make ‘‘systematic and significant deviations from strict

metricality’’ but, at the same time, indicates that ‘‘it is hard to

make generalizations about the nature of [such] deviations’’ [11].

In the literature we find different views on the origin of timing

deviations. There is evidence that timing deviations help the

listener to clarify phrasing [15–17], metrical accents [18], musical

form [19], and harmonic structure [20,21]. Complementarily,

different note patterns or groups exhibit some common timing

‘‘tendencies’’ [11], possibly affected by tempo transformations

[22]. All these works point towards musical structure as a source

for timing deviations, constituting the basis of the so-called

generative approach [6]. However, to the best of our knowledge,

as yet there is no systematic, compelling, and large-scale study in

this direction (i.e., involving multiple pieces, performers, instru-

ments, styles, and epochs). Moreover, timing deviations might not

arise solely from music structure. It has been also shown that they

can be idiosyncratic of a performer’s style [19,20,23], to the point

that machines can identify such performers using automatically-

extracted timing information [24,25]. Emotional expression is also

assumed to play an important role [1,2]. Besides, we also find the

so-called perceptual hypothesis [26], in which some observed

variations would be due to functional constraints of the auditory

system. This way, some time intervals would be heard shorter and

thus played longer as a phenomenon of perceptual compensation

[26]. Additionally, some timing deviations may be shaped in

accordance to patterns of biological motion [27] or instrument-

related motion [4,5]. Notice that all the previous references

assume that timing deviations are, to a large extent, under the

control of the performer and, thus, introduced voluntarily.

Nonetheless, one could always attribute timing deviations, to

some extent, to random temporal variability exogenous to the
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interpretation of the piece [27], originating from human internal

clock and motor noise [28].

In this article, we explore a complementary view on the

structural origin of timing deviations. In particular, we cast timing

deviations as being characteristic of a given composition, up to the

point of allowing the automatic identification of the musical piece

the recording belongs to. To validate this hypothesis we consider

onset deviation sequences or n-grams, i.e., the succession of

temporal anticipations or delays for each note attack. The choice

of this event-shift timing representation is motivated by the highly

percussive nature of the instrument being considered: classical

guitar. Classical guitar recordings represent an interesting test

corpus, as almost no studies on timing deviations consider this

instrument. One exception that does deal with general expres-

siveness in guitar recordings is [29] (this work also states a lack of

research with expressiveness and emotional performance with this

instrument and refers to some of the early works on such a general

topic). Noticeably, guitar recordings facilitate note onset detection,

as prominent attack times are present for almost all notes. To

obtain accurate attack times we rely on a score-synchronized,

semi-automatic approach to onset detection (see Materials &

Methods, MM). This allows us to go from the analysis of single,

experiment-specific performances to medium-scale real-world

music collections. We consider 100 professional/commercial

performances of 10 well-known classical guitar pieces of different

styles, spanning different epochs, and with some performers

interpreting different pieces.

By formulating our hypothesis as a classification problem and,

thus, within a strong statistical framework [30–32], we gain

objective and quantitative evidence for the structural, piece-

dependent nature of onset deviations. To show that the predictive

power of onset deviation sequences is generic and not biased

towards a specific classification scheme, we consider 7 basic

algorithms exploiting five different machine learning principles

[30–32]: decision tree learning, instance-based learning, linear

regression, Bayesian learning, and support vector machines.

Specifically, we use nearest neighbor algorithms with Euclidean

and dynamic time warping distances (NN-E and NN-D, respec-

tively), classification and regression trees (Tree), a naive Bayes

Gaussian classifier (NB), a logistic regression model (LR), and

support vector machines with linear and Gaussian kernels (SVM-L

and SVM-R, respectively). We additionally consider a random

classifier as a baseline. To evaluate identification performance we

employ standard out-of-sample cross-validation accuracies [30–

32], and to evaluate statistical significance we depend on the

power of the Wilcoxon signed-rank test [33] with Holm-

Bonferroni adjustment [34] (see MM).

Results

To compute onset deviations from the score we follow a semi-

automatic approach that yields a plausible placement of note

attacks [35]. In particular, we combine standard onset detection

algorithms for music signal processing [36–38] with a manual

synchronization of the score measures. With the latter, we can

correct potential errors in the automatic onset detection stage and,

furthermore, determine a ‘theoretical’ temporal onset location

corresponding to a straight, mechanical rendition of the piece. The

actual onset locations are then subtracted from the corresponding

notated locations, as if we were measuring temporal differences

from the score (Fig. 1). More specifically, the onset deviation for

the i-th note of the c-th composition in the r-th recording is

obtained by.

dr
ic
~ôoric{oric , ð1Þ

where ôoric is the temporal location of the i-th note onset according

a straight and manually synchronized rendition of composition c
(the one to which r belongs) and oric is the actual temporal location

of such onset in the r-th recording. Here, we express all temporal

variables in seconds. However, for comparison purposes, the full

sequence corresponding to a composition with nc notes,

dr~fdr
1,d

r
2, . . . d

r
nc
g, is normalized so that it has zero mean and

unit variance, thus leading to dimensionless units. After normal-

ization, subsequences of l consecutive onset deviations,

dric:l~fdr
ic
,dr

icz1, . . . d
r
iczl{1g, are used as n-gram features for

classification, taking ic by uniform sampling from all possible notes

of the piece (thus we guarantee the same ic for all renditions of the

same composition c). This sampling is performed 100 times,

yielding a sufficiently representative case base from all possible

combinations of sequences coming from different pieces. Further

details of the followed methodology can be found in MM.

In pre-analysis, we checked whether the magnitude of the

obtained onset deviations could be inferred from basic score

notation. The results suggested that the considered onset

deviations are quite independent of their associated relative note

duration, expressed with relation to the beat (e.g., 1=2 beat, 1=3
beat, 1=4 beat) or their associated pitch interval size, expressed in

semitones (e.g., z1 semitone, z2 semitones, {3 semitones).

Specifically, non-significant correlations were found (Figs. S1 and

S2). Overall, we found no compelling evidence of the relation

between onset deviations and the most fundamental short-time

score elements, i.e., the single notes. Apart from that, and as a side

note, we also observed that the distributions of onset deviations

generally do not conform to a standard Gaussian distribution (MM

and Fig. S3A). This aspect, if further confirmed, would differen-

tiate (largely voluntary) onset deviations from involuntary beat

fluctuations in human rhythm tapping [9], which were well

approximated by standard Gaussians. As a further side note, we

found some qualitative indication of long-range correlations in dr

(MM and Fig. S3B). In the case that long-range temporal

correlations existed, akin to the ones already observed in rhythm

notation [39] and in involuntary rhythm tapping fluctuations [9],

onset deviations performed by experienced musicians could be cast

as memory processes [40], and thus may have the potential to

contain non-trivial information of their context.

We now leave the preliminary analysis and its related

conjectures and concentrate on our main contribution, i.e.,

assessing whether onset deviations have some predictive power

of the composition being interpreted. If we plot the classification

accuracies Y as a function of l we see that all classifiers perform on

a similar range, with NB and SVM-R generally achieving the best

accuracies (Fig. 2). As expected, NN-E and NN-D perform

relatively similarly, thus indicating that no strong sequence

misalignments are present, thanks to the aforementioned semi-

automatic measure-based synchronization between score and

recordings (see also MM). Trees achieve the lowest accuracies

and seem to have some difficulties in learning from the considered

sequential information. Nevertheless, for lw5, all obtained

accuracies lie far beyond the random baseline, always increasing

with l (Fig. 2). Importantly, we see that statistically significant

accuracies can be reached with very short sequences dric:l (Fig. 3).

Specifically, it turns out that a single sample dr
ic:1

~fdr
ic
g is

sufficient to characterize a piece statistically significantly beyond

the random baseline, but with a low accuracy (l~1, Fig. 3A). This

difference increases with l, until no single accuracy across 100

Note Onset Deviations as Musical Piece Signatures
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trials goes below the ones achieved by the baseline (l~5, Fig. 3B).

Obviously, the longer the deviation sequence, the more powerful

the discrimination between compositions (e.g., l~170, Fig. 3C).

Shuffling dr results in classification accuracies that are almost

constant with l (Fig. S4) and, within the range of those achieved for

l~1 above. This indicates a temporal dependency between onset

deviations, and that this dependency is crucial for the task at hand.

To check whether the predictive power of onset deviation

sequences is robust with respect to the size of the music collection,

we can plot the accuracies Y as a function of the number of

compositions m (Fig. 4). With this we observe that the obtained

accuracies decrease at a much lower rate than the ones provided

by our random baseline, independently of l (see also Fig. S5). This

shows that onset deviations can be a reliable predictor of a musical

piece. Additionally, we confirm that accuracies are balanced across

compositions, with no exceptional confusion between pairs of

them (Fig. 5). In fact, we see that such confusions depend on the

classifier. This suggests that a specific confusion may not be due

mostly to the onset deviations themselves and, furthermore, that a

strategy based on an ensemble or a combination of classifiers

[31,32] could potentially increase the overall accuracy. As our

objective here is more focused on showing the predictive power of

onset deviations rather than achieving very high accuracies on a

music classification task, we leave the above strategy for future

work.

Figure 1. Methodology overview. The difference dr
ic
between notation and recording onsets is computed, and sequences of such differences dric :l

are used to train a classifier and to perform an out-of-sample cross-validation. Note indices ic are randomly selected for each composition, ic[½1,nc{l�,
keeping the same ic for all recordings of the same composition (see MM). The length of the sequences l is kept as a parameter in our evaluation.
doi:10.1371/journal.pone.0069268.g001

Figure 2. Classification accuracy as a function of the length of the onset deviation sequence. The error bars correspond to the standard
deviation and the shaded area denotes the range of all possible values (including minimum and maximum). The visual aid corresponds to a straight
line of the form Y(l)~azbl, where a is the intercept, b is the slope of the straight, and l is the sequence length. In the plot a~75 and b~0:1.
doi:10.1371/journal.pone.0069268.g002

Note Onset Deviations as Musical Piece Signatures

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e69268



Finally, it is worth mentioning that we also studied the

classification accuracies using sequences of note durations

relative to the beat, instead of note onset deviations. We

followed exactly the same procedure as for the onset deviations

but substituting this information by the relative note durations

as written in the score (we made 10 exact replicas from such

information in order to emulate having 10 recordings of each

composition, see MM). The results showed that the onset

deviation accuracies are similar, or in some cases even higher,

than the note duration ones (Fig. S6). Interestingly, the best

performing classifiers, NB and SVM-R, were also the ones

where such a difference was more clearly observable. Notice

that, as mentioned, relative note durations were found to be

uncorrelated to onset deviations (Figs. S1 and S2).

Limitations of the Study, Open Questions, and Future
Work

The reported results can be argued to provide quantitative

support for a generative origin of timing deviations, i.e., that

these respond to the structure of the musical piece and its

psycho-perceptual consequences for interpretation. As men-

tioned in the Introduction, there is evidence that musical aspects

such as tempo, phrasing, metrical accents, musical form, and

harmonic structure can determine timing deviations. In our

experiments, mixing different compositions and their interpre-

tations, we found scarce evidence for the dependence of onset

deviations on individual score elements (specifically, of note

intervals and relative durations). However, this does not

preclude other score information like the aforementioned

musical aspects having a direct influence on onset deviations.

The fact that onset deviations perform similarly or slightly

better than relative note durations, combined with the fact that

the former were independent and uncorrelated to the latter, also

suggests that onset deviations encapsulate information that goes

beyond duration/temporal aspects of the score. Additional

medium- or large-scale quantitative studies with real-world

commercial recordings of classical guitar could provide more

insight into this question. An alternative plausible hypothesis for

the obtained results would be that onset deviations were so

specific to the musical composition, that deterministic rules

inferred from a pool of compositions could not be generalized

to cover all the variability in the pool. As existing research

Figure 3. Box plot of classification accuracies using different sequence lengths. These are l~1 (A), l~5 (B), and l~170 (C). The labels in
the horizontal axes correspond to classification algorithms: Random (0), NN-E (1), NN-D (2), Tree (3), NB (4), LR (5), SVM-L (6), and SVM-R (7). In all plots,
all accuracies are statistically significantly higher than the random baseline (pv0:01, see MM).
doi:10.1371/journal.pone.0069268.g003

Figure 4. Average classification accuracy as a function of the number of compositions. Results obtained using a sequence length l~120
(for l~25 see Fig. S5). The error bars correspond to the standard deviation and the shaded area denotes the range of all possible values (including
minimum and maximum). The visual aids correspond to a power law of the form Y(m)~c=mb, where c is a constant, m[½2,10� is the number of
compositions, and b is the power law exponent. The upper one is plotted with c~128 and b~0:12, and is associated with classification accuracies.
The lower one is plotted with c~80 and b~1, and corresponds to the random baseline. Notice that the exponent associated with classification
accuracies is much smaller than the one for the random baseline, which suggests that the absolute difference between the two increases with the
number of considered compositions and, therefore, with the size of the data set.
doi:10.1371/journal.pone.0069268.g004
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suggests, this hypothesis cannot be completely ruled out (cf.

[11]). Thus, one should also be open to the possibility that

timing deviations encapsulated some contextual aspects specific

to the composition but not related to the score (e.g., composer-

specific performance rules, historical performance consider-

ations, etc.). Regarding this latter hypothesis, it could perhaps

be interesting to replicate the experiments carried out here

considering cover songs or jazz versions, as these retain the

essence of the original composition while usually introducing

important changes in timbre, harmony, tempo, or rhythm [41]

(although semi-automatic onset extraction could be more

involved).

As our study was not designed to do so, the reported results

only provide weak evidence regarding the additional hypotheses

on the origins of timing deviations mentioned in the Introduc-

tion. It is true that the considered music collection contains a

number of recordings of different pieces by the same performer.

Hence, if performer-specific deviations dominated the raw onset

sequences, one would expect much worse piece identification

accuracies, as recordings would tend to cluster around

performers and not around pieces. However, the lack of a

sufficient number of performers having more than one

recording in the considered collection seriously challenges

clustering across performers and does not allow any strong

claim regarding this hypothesis to be made (it is worth

mentioning nonetheless that, as some works indicate

[19,24,25], performer-specific aspects may be better studied

after subtracting a global, average performance template like the

one we consider here). A similar argument holds for emotion-

based hypotheses. Assessing the biological or instrument-related

motion hypothesis would require a different collection contain-

ing recordings of the same piece played with different

instruments (perhaps the cover songs or jazz versions mentioned

above). In the present study, we wanted to focus on the classical

guitar, as this is an almost unexplored area. Finally, our results

suggest that randomness is a minor component of the

considered onset deviations, reinforcing their largely voluntary

nature. Indeed, if noise were very present in the considered

onset deviations, we would not be able to achieve the reported

classification accuracies. A precise quantification or estimation

of the amount of noise in timing deviations is, nonetheless, out

of the scope of the present study (it may moreover have a lot of

dependencies: instrument, genre, performance difficulty, etc.).

Regarding the reported preliminary assessments, we are

aware that many further improvements can be done, specially

for the case of long-range correlations. A complete character-

ization of note onset deviations, their relation to all possible

score elements, their distribution, and their long-range correla-

tions is beyond the scope of the present study. Nonetheless, we

believe our assessments are some of the necessary first steps

towards these goals and could motivate future research and

discussion (for instance, the fact that onset deviations do not

conform to a standard Gaussian distribution could lead

researchers in machine-based music rendering to explore other

distributions that could result in a more plausible listening

experience). Hence, we opt to include, link to some literature

and briefly explain such assessments.

Conclusions
In summary, the obtained results show (a) that onset deviation

sequences are a powerful predictor of the musical piece being

played, (b) that they are at least as powerful as direct music score

information corresponding to relative note durations, if not better,

(c) that such predictive power is robust to classification scheme

choices, to the size of the considered data set, and to the length of

the considered sequences, (d) that even very short sequences

provide statistically significant accuracies, and (e) that temporal

dependencies between onset deviations are key to obtaining such

accuracies. Moreover, we quantify how the length of onset

deviation sequences and, to a lesser extent, the size of the data set,

impact classification accuracy. Some additional preliminary

experiments are reported. In particular, our results show non-

significant correlations between onset deviations and relative note

durations or pitch intervals, and indicate that onset deviations do

not obey a Gaussian distribution. Finally, we discuss existing open

issues and some of the limitations of our study, while linking our

findings to the existing literature.

As a main objective, this article wants to provide a new and

fresh view on the topic of music timing variations. We believe that

by taking quantitative medium-scale approaches, considering real-

world commercial recordings, and different instruments apart

from piano is a necessary step towards a better understanding of it.

Here, the focus is on the utility of onset deviation sequences as

musical piece signatures, and on the predictive power of those

sequences. Hence, our main contribution relies on showing this

predictive power and studying it under different temporal

windows, even very short ones. With this in mind, the results

found are encouraging and open new research perspectives. We

hope future work will bring more evidence on the connection

Figure 5. Confusion matrices for two different classifiers. These are NB (A) and SVM-R (B). The color code indicates average accuracy per
composition (the higher, the darker). Compositions 7, 8, and 10 seem to be generally well-classified. For NB, compositions 2 and 3 attract many of the
confusions while, for SVM-R, composition 1 takes that role.
doi:10.1371/journal.pone.0069268.g005
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between musical pieces and the onset deviations extracted from

their performances.

Materials and Methods

Music Collection
In our music collection we have 10 different compositions, and

each composition is performed by 10 different guitarists, thus

yielding a total of 100 recordings. However, some performances of

different compositions have been interpreted by the same

musician. In total, we have 82 different guitarists, with some of

them playing between 2 and 5 pieces. The collection includes well-

known guitarists such as Andrés Segovia, John Williams, Manuel

Barrueco, Rey de la Torre, Robert Westaway, and Stanley Myers.

In order to encompass different epochs, we chose compositions

spanning four different periods: baroque, classical, romantic, and

modern (Table S1). Recording years go from 1948 to 2011, and

the number of onsets per score measure varies between 1 and 16.

A table relating compositions, recordings, and performers is

provided (Table S2).

Semi-automatic Onset Detection
In music signal processing, different techniques of varying

complexity for automatic onset detection exist [36,37]. These

usually work on the time domain, the frequency domain, or both

[37,38]. Due to the difficulty of the task, it is not expected that a

single method or parameter combination will work for all possible

specific cases [37]. Therefore, we needed to choose the correct

onset detection algorithm according to our needs, and tuned its

parameters appropriately for the data at hand. In our case, we

considered the 7 available algorithms in the Aubio library (http://

aubio.org) [38]. To choose one of the algorithms and its best-

fitting parameters we implemented particle swarm optimization

[42] and ran it over an independent, out-of-sample set of 12

classical guitar audio files with manually annotated onsets [35].

The best performing combination was found to be the Kullback-

Leibler algorithm [43] with a window length of 1024 samples, a

hop size of 512 samples, a peak-picking energy threshold of 0:53,

and a silence threshold of {67 dB (the sample rate was 44.1 KHz;

for further explanations we refer to the Aubio documentation

(http://aubio.org/doc/onsetdetection_8h.html) and [38]).

After detecting the onsets in our collection using the algorithm

and parameters above, we implement an additional onset

validation step. For that, we first manually annotated the score

measure positions of all recordings in our collection. This way, we

could unambiguously synchronize each measure in the audio file

with the corresponding measure positions in the written score. The

reference onset positions ôoric were then assigned by distributing the

onsets between each measure according to strict score notation

(Fig. S8). Additionally, we checked whether there were missing

onsets. If a score onset ôoric did not match an audio onset oric , we

imputed the temporal location corresponding to 7 milliseconds

before the highest audio signal magnitude (absolute values) closest

to ôoric and within a short-time window (Fig. S8). We used a window

centered at ôoric whose length corresponded to the 90-th percentile

value of the composition’s note durations (the 7-millisecond offset

was manually determined by visual inspection of a small subset of

the real data).

To check the accuracy of the obtained oric , we manually

validated 223 onsets, randomly sampled from the whole data set.

Specifically, we annotated the temporal difference between what

we considered to be the true onset location and the one

determined by our approach (Fig. S7A). The vast majority of

the inspected onsets were at their correct locations. Using a

threshold evaluation strategy to determine the percentage of

correct onset placements [38], we estimated that only a 6.7% of

them were not placed on the exact location they should be. This

number drops to 2% if we consider a threshold of 150 milliseconds

(Fig. S7B).

After extracting onset positions oric , onset deviations are

computed as in Eq. 1, obtaining a sequence dr~fdr
1,d

r
2, . . . d

r
nc
g

for a composition with nc note onsets. Notice that, as mentioned in

the Introduction, this is an event-shift representation of timing.

Notice furthermore that, due to the manual synchronization of

each score measure with the audio signal, the first onset of each

measure would result in dr
ic
~0, thus losing several meaningful

onset deviations. To alleviate this problem we consider a 4-

measure window synchronization, and average the onset devia-

tions dr
ic

obtained when moving this window in steps of one

measure (i.e., the final dr
ic

in the j-th measure is obtained by

averaging the four dr
ic

obtained by synchronizing the beginning of

measures j{3 and jz1, j{2 and jz2, j{1 and jz3, and j and

jz4). Thus, with the exception of the onsets at the beginning and

end of the piece, dr
ic

would be obtained as the average over four

deviation values (we however made a further refinement and avoid

the extremes, i.e., the maximum and minimum values, and

compute the average between the two central ones). The raw onset

deviations for the considered recordings can be found online

(http://www.iiia.csic.es/̃tan/downloads/

2013_OnsetDeviations_Data.tar).

Preliminary Side Checks
All compositions provided similar numbers for the statistics of

raw onset deviation values dr
ic

(Table S3). Additionally, we

manually confirmed that maximal anticipations/delays generally

corresponded to full cadences, usually ritardandos found in piece

endings or strong structural locations (cf. [19–21,25]). For

instance, in the middle of the twenty-first measure of C02 (J.S.

Bach, BWV 1007), for all performances, we observed a long

pause between 0.5 and 1 seconds, which does not correspond to

any existing annotation in the written score. Also, in C03 (A.

Barrios, La Catedral–Prelude), the notes corresponding to the

melody in the arpeggios are significantly delayed in most of the

performances.

As a separate preliminary check, we ran some tests in order to

assess the nature of the distribution of the samples in dr
ic

. First, we

checked whether such distribution could be assumed to be a

standard Gaussian distribution

P(d)~
1

s
ffiffiffiffiffiffi
2p

p exp
{(d{m)2

2s2 , ð2Þ

where d here stands for a single onset deviation value and m and s
correspond to the mean and standard deviation of all nc values in

dr, respectively. For each recording we ran an Anderson-Darling

test [33] for the null hypothesis that dr was drawn from a Gaussian

distribution. The Anderson-Darling test is known to be one of the

most powerful statistical tools for detecting most departures from

normality [44]. Under such test, the null hypothesis was rejected

for 93 of the 100 recordings at a significance level of pv0:05 and

for 88 of the 100 recordings at pv0:01. Visual inspection of the

data also gives us a qualitative confirmation of this result (Fig.

S3A).

Next, as a further separate preliminary check, we wanted to

assess whether we could find some indication of long-range
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correlations in dr. For that, inspired by [9,39], we performed a

small qualitative investigation of whether a power law could

explain the power spectral densities S(f ) obtained from dr. In

particular, we considered whether

S(f )!
1

f b
, ð3Þ

where b is the power law exponent. A visual inspection of

individual linear fits to the power spectral densities S(f ) obtained

from different recordings suggests the possibility of a power law

(Fig. S3B). Noticeably, the fits yielded exponents b in the ranges

provided by [9]. Since, as mentioned, we only wanted to have an

impression of the behavior of S(f ), we did not pursue more robust

power law fitting strategies such as the ones followed in our

previous work [45,46] or elsewhere [47], nor did we consider more

advanced techniques for determining the existence of long-range

correlations such as the ones employed, e.g., in [9,39].

Feature Extraction
The features we use as input for classification are normalized

onset deviation subsequences or n-grams. First, the entire

sequences dr~fdr
1,d

r
2, . . . d

r
nc
g for each recording r are normalized

to have zero mean and unit variance, �ddr~(dr{m)=s, where again

m and s correspond to the mean and standard deviation of all nc
values in dr. Next, for each composition c, the one to which the r-

th recording belongs, an integer note index ic is uniformly chosen,

ic[½1,nc{l�. This, together with the predefined sequence length l,

determines a subsequence �ddr
ic:l
~f�ddr

ic
,�ddr

icz1, . . .
�ddr
iczl{1g. The final

data D that serves as input for the classifier consists of the union of

n-gram feature sequences plus the composition labels across all

recordings. Formally,

D~
[100

r~1

�ddr
ic:l

,c
n o

, ð4Þ

where
S

denotes the union operator and, as mentioned, c

indicates the composition index of the r-th recording. Notice that,

due to the random choice of ic and the fact that nc§173 (Table

S1), the ic for each composition might be different. However,

notice also that ic is the same for every recording of composition c.

Hence, the same subsequence position is taken for all recordings of

a composition.

Apart from onset deviations, some of the performed

experiments consider other information from the score. This is

the case for pitch intervals and relative note durations. Pitch

intervals, which we denote by D, are expressed in semitone

differences between consecutive notes (e.g., z1 semitone, z2
semitones, {3 semitones). Relative note durations, which we

denote by d, are taken as the written note duration with respect

to the beat (e.g., 1=2 beat, 1=3 beat, 1=4 beat). In the latter

case, for classification, we compute the 10 different sequences

(one for each composition) and then produce 10 copies of each

in order to emulate 100 performances. The rest of the process is

the same as explained above except that, in the normalization

step, we replace the mean m by the mode of the distribution.

We believe this is a more sensible approach, as the distribution

of relative note durations is discrete and often discontinuous (see

Fig. S1). Notice that, in the case of relative note durations and

in contrast to onset deviations, there will be no differences

between performances. This makes relative note durations a

very strong adversary against which the predictive power of

onset deviations can be compared.

Classification
We cast the problem of identifying the piece from its onset

deviations as a 10-class classification problem [30–32]. To show

that the predictive power of the considered feature sequences is

generic and not biased towards a specific classification scheme, we

employ basic algorithms exploiting five different machine learning

principles [30–32]: decision tree learning, instance-based learning,

logistic regression, probabilistic learning, and support vector

machines. The algorithm implementations we use come from

scikits-learn (http://scikit-learn.org) version 0.10 and, unless stated

otherwise, their default parameters are taken. Since our focus is on

assessing the predictive power of onset deviation sequences rather

than obtaining the highest possible classification accuracies, we

make no tuning of the classifiers’ parameters. In total we use 7

algorithms [30–32] plus a random classifier:

N NN: k-nearest neighbor classifier. We use the Euclidean

distance (NN-E) and dynamic time warping dissimilarity (NN-

D). For dynamic time warping we use a standard implemen-

tation with a global corridor constraint of 10% of the sequence

length [48]. The number of neighbors is arbitrarily set to k~1.

N Tree: classification and regression tree classifier. We use the

Gini coefficient as the measure of node impurity and

arbitrarily set a minimum number of 2 instances per leaf.

N NB: naive Bayes classifier. We employ a Gaussian function to

estimate the likelihood of each onset deviation.

N LR: logistic regression classifier. We use L2-regularized logistic

regression with automatically-scaled intercept fit.

N SVM: support vector machine. We consider a linear kernel

(SVM-L) and a radial basis function kernel (SVM-R).

N Random: random classifier. We additionally consider a

random classifier as the baseline. It outputs a randomly

selected class from the pool of all available training labels.

Evaluation Strategy
For each data set D we perform standard 20-times, 10-fold, out-

of-sample cross-validation [30–32]. Even if our music collection is

already balanced (10 performances per piece), we force internal

training and testing data sets to be balanced as well. Hence, we

train with 9 performances per piece and test with 1. We

additionally ensure that all classifiers observe the same training/

testing sets. As different selections of ic could affect the results, we

repeat the whole process 100 times, in order to obtain a reliable

estimation of all possible accuracies (not only for average

accuracies and their standard deviations, but also to have a

proper idea of maximum/minimum values and reliably assessing

statistical significance). In summary, we generate 100 data sets

D1,D2, . . .D100 and test each classifier with them. This yields a

total of 100|8 accuracy values (100 for each classifier, including

the random baseline) computed from 20|10 folds.

As we use matched samples Di, we assess statistical significance

with the well-known Wilcoxon signed-rank test [33]. The

Wilcoxon signed-rank test is a non-parametric statistical hypoth-

esis test used when comparing two matched samples (or related

samples, or repeated measurements) in order to assess whether

their population mean ranks differ. It is the natural alternative to

the Student’s t-test for dependent samples when the population

distribution cannot be assumed to be normal [33]. We use as input

the 200 accuracy values obtained for one classifier and the random
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baseline. To compensate for multiple pairwise comparisons, we

apply the Holm-Bonferroni method [34], a post-hoc statistical

analysis method controlling the so-called family-wise error rate

that is more powerful than the usual Bonferroni correction [49].

Supporting Information

Figure S1 Scatter plot of relative note durations from
the score versus onset deviations. This plot corresponds to a

random sample of 50 values per performance. Different colors

correspond to different compositions. Kendall t rank correlation

coefficients between relative note durations d and onset deviations

d were low across all possible 10|10 comparisons between score

and performance: t[({0:24,0:24), �pp~0:41+0:42.

(TIF)

Figure S2 Scatter plot of note intervals from the score D
versus onset deviations d. This plot corresponds to a random

sample of 50 values per performance. Different colors correspond

to different compositions. Kendall t rank correlation coefficients

between note intervals D and onset deviations d were low across all

possible 10|10 comparisons between score and performance:

t[({0:11,0:1), �pp~0:49+0:30.

(TIF)

Figure S3 Onset deviation distributions and long-range
correlations. (A) Examples of onset deviation distributions P(d).
For comparison we also depict a standard Gaussian distribution

(see MM) with mean and standard deviation directly derived from

d (Table 3). (B) Examples of power spectral densities S(f ) from the

full onset deviation sequences. The visual aids correspond to a

power law as formulated in MM. From left to right, the power law

exponents obtained are 1, 0.8, 0.7, and 0.4. Frequencies f are

linearly scaled for ease of visualization. For both plots, the color-

coded legends correspond to recording identifiers, CXXPYY,

where XX corresponds to composition number, XX [½1,10�, and

YY corresponds to performance number, YY [½1,10�.
(TIF)

Figure S4 Classification accuracy as a function of the
length of the onset deviation sequence when shuffling.
The error bars correspond to the standard deviation and the

shaded area denotes the range of all possible values (including

minimum and maximum). The visual aid corresponds to a

constant straight line of the form Y(l)~a. In the plot a~27.

(TIF)

Figure S5 Average classification accuracy as a function
of the number of compositions. Results obtained using a

sequence length l~25. The error bars correspond to the standard

deviation and the shaded area corresponds to the range of all

possible values (including minimum and maximum). The visual

aids correspond to a power law of the form Y(m)~c=mb, where c
is a constant, m[½2,10� is the number of compositions, and b is the

power law exponent. The upper one is plotted with c~140 and

b~0:28, and is associated with classification accuracies. The lower

one is plotted with c~80 and b~1, and corresponds to the

random baseline. The exponent associated with classification

accuracies is much smaller than the one for the random baseline,

what suggests that the absolute difference between the two

increases with the number of considered compositions and,

therefore, with the size of the data set.

(TIF)

Figure S6 Classification accuracy as a function of the
length of the onset deviation sequences: comparison
between onset deviations and relative note durations.
These are KNN-E (A), KNN-D (B), Tree (C), NB (D), LR (E),

SVM-L (F), and SVM-R (G). Dark blue squares correspond to

onset deviation sequences d , light orange diamonds correspond to

relative note durations d, and black dashed lines correspond to the

random baseline.

(TIF)

Figure S7 Semi-automatic onset detection accuracy. (A)

Histogram of analyzed onset temporal differences. (B) Onset

deviation error rate as a function of a threshold (see text).

(TIF)

Figure S8 Onset placement and imputation example. (A)

After synchronizing the audio with the score, we have matches for

all score onsets except ôor8. (B) For this, we look at possible onset

candidates inside the green window, inside which the highest

amplitude peak is highlighted (see text).

(TIF)

Table S1 Information about compositions. The last two

columns correspond to note durations relative to the beat (see

text).

(PDF)

Table S2 Information about compositions, musicians,
and recordings. Table relating composers, compositions, and

recordings. Columns correspond to compositions except for the

last one, which corresponds to performer birth and death dates.

Rows correspond to performers. In each cell, recording year and

recording label are shown.

(PDF)

Table S3 Summary statistics for onset deviations for all
performances of a given composition. All values are
given in seconds.

(PDF)
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