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Abstract

Records of social interactions provide us with new sources of data for understanding how interaction patterns affect
collective dynamics. Such human activity patterns are often bursty, i.e., they consist of short periods of intense activity
followed by long periods of silence. This burstiness has been shown to affect spreading phenomena; it accelerates epidemic
spreading in some cases and slows it down in other cases. We investigate a model of history-dependent contagion. In our
model, repeated interactions between susceptible and infected individuals in a short period of time is needed for a
susceptible individual to contract infection. We carry out numerical simulations on real temporal network data to find that
bursty activity patterns facilitate epidemic spreading in our model.
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Introduction

Communication between individuals is a fundament of human

society. Nowadays technologies such as sensor devices and online

communication services provide us with records of interaction

between individuals, including face-to-face conversations, e-mail

exchanges, and phone calls, in massive amounts. Such data often

consist of a sequence of interaction events. Each event is

represented by a triplet, i.e., the IDs of two individuals involved

in the event and the time of the event. One traditional way to

characterize such data is to represent them as an aggregated

network, in which the links are drawn between two nodes (i.e.,

individuals) that communicate in at least one event, and investigate

structural properties of the aggregated static networks [1]. Another

and richer representation of this type of data is to model them as

temporal networks, in which the links between two nodes exist

only at the time of an event [2].

Effects of temporal networks on contagious phenomena, such as

infectious diseases and rumors, have been investigated by various

authors. To simulate spreading dynamics on temporal networks,

we read the events in an empirical event sequence one by one in

the chronological order and possibly update the states (e.g.,

susceptible and infected) of the two nodes involved in the event.

Karsai and colleagues simulated the susceptible-infected (SI)

model on temporal networks and found that bursty activity

patterns slow down contagions [3]; Bursty activity patterns are

identified with a long-tailed distribution of the interevent times

(IETs) [4,5]. The slowing down occurs because, at an arbitrary

time point, the average time to the next event is longer for the

long-tailed IET distribution than for the exponential IET

distribution with the same mean. In other words, after an

individual gets infected, it tends to take longer time to infect the

neighbors under the long-tailed as compared to exponential IET

distribution. Other numerical [6,7] and analytical [8–10] results

also support that the long-tailed IET distribution mitigates

contagion. However, the burstiness was reported to accelerate

contagion on a different data set [11] and a different type of

epidemic dynamics. Our understanding of the effect of the

burstiness, and other temporal structures, on contagious processes

is still elusive.

In the present study, we show that bursty activity patterns

facilitate epidemic spreading in a variant of the deterministic

threshold model [12,13]. In standard models of epidemics

including the SI, susceptible-infected-recovered (SIR), and suscep-

tible-exposed-infected-recovered (SEIR) models, which have been

employed in the literature cited above, a susceptible node gets

infected from an infected neighbor with a constant probability in

an event, regardless of the amount of exposure to infected

neighbors in the past. However, history-dependent thresholding

effects in which the thresholding operates on the concentration of

the pathogen have been reported for some infectious diseases

mediated by bacteria, such as the tuberculosis and the dysentery

[14]. In the case of information propagation, the exposure to the

information increases one’s interest in a topic, and the attractive-

ness of a topic decays in time in the absence of stimulus [15,16].

We may need multiple interactions to persuade others to do

something, and repeated contacts in a short period can be more

effective than those dispersed over a long period. In general,
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contacts with the same person need not be as influential as the

same number of contacts with different persons. In this work, we

do not model such effects but focus on the limit where contacts are

worth equally much. To consider this type of infection, we

generalize the deterministic threshold model to the case of history

dependence and memory decay and simulate the proposed model

on temporal network data.

Results

Simulation protocols and data sets
Each node i is assumed to have an internal variable denoted by

vi§0 (i~1,2, . . . ,N ), which represents, for example, the

concentration of a pathogen in the individual or the individual’s

interest in a topic. Initially, vi to equal to zero for all i. We assume

that node i is in the susceptible (S ) state before vi exceeds a

threshold value vthr and that node i is in the infected (I ) state

once vi exceeds vthr. Each node is in either state. Nodes in state I
never return to state S; our model is an extension of the SI model.

Therefore, the number of I nodes monotonically increases in

time. It should be noted that the SI model was used in place of the

more realistic SIR model in previous literature on static [17] and

temporal [3,11] networks. This is because the initial growth phase,

which determines the possibility of large-scale spreading initiating

from a small number of infected individuals, is the same between

the SI and SIR models.

When node i in state S interacts with an I node through an

event, vi is increased by unity. In the absence of interaction with

I nodes, vi is assumed to decay exponentially in time. In other

words, vi is given by

vi(t)~
X

te

g(t{te), ð1Þ

where

g(s)~
exp {s=tdð Þ (s§0),

0 (sv0),

�
ð2Þ

and te is the time of an event between node i and an I node, and

td is the decay time constant. An example time course of vi(t) is

shown in Figure 1.

The model contains two parameters td and vthr and can be

regarded as a variant of the deterministic threshold model [12,13].

Although we assume that all the nodes have the same values of td

and vthr for simplicity, it is straightforward to generalize the model

in the case of heterogeneous parameter values.

We simulate our model numerically on empirical temporal

networks in the following way. At t~0, we select a node as initial

seed i (1ƒiƒN) and set its state to I . All the other nodes are

initially in state S. Then, we chronologically read the event

sequence one by one and update vi and the states of the two nodes

involved in the event. Because our model is deterministic, the final

infection size (i.e., fraction of I nodes at time tmax, where tmax is

the time of the last event in the data set), denoted by Ii, is unique

for given initial seed i, td, and vthr. We examine spreading

dynamics starting from all the possible initial seeds, except for the

results shown in Figure 2 for which we select the node with the

maximum number of events as the seed.

We use two data sets. The first data set, called Conference in the

following, is the face-to-face conversation log between attendees of

a scientific conference [18]. The second data set, called Email, is

the record of e-mail exchanges between the members of a

university [19]. In the second data set, we neglect the direction of

the interaction (i.e., from sender to receiver) for simplicity. The

basic statistics of the data sets are summarized in Table 1.

Effects of the burstiness on infection size
In Figures 2(a) and 2(b), we plot the dependence of final

infection size Im on td and vthr for initial seed node m having

the maximum number of events in Conference and Email data

sets, respectively. In the blank parameter region, no infection

occurs such that Im~1=N. Naturally, Im increases with td and

decreases with vthr.

Next, we carry out the same set of simulations on the

randomized temporal networks for the sake of comparison. To

this end, we use the so-called randomly-permuted-times random-

ization, in which the time stamps of all the events are randomly

shuffled [2,3,6]. The randomization eliminates temporal proper-

ties of the original temporal networks such as bursty activity

patterns and the pairwise correlations of the IETs, whereas it

conserves all the properties of the aggregated networks, i.e.,

weighted adjacency matrix. In addition, daily and weekly activity

patterns are conserved at the population level although they are

not conserved for each individual.
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Figure 1. vi~0(t) for 1:05|106
ƒtƒ1:08|106 in Email data set. We

set td~1000. The vertical ticks in the box plot in the bottom indicate
the times of the events that involve node i~0.
doi:10.1371/journal.pone.0068629.g001

Figure 2. Dependence of the final infection size Im on td and
vthr. (a), (b) Original temporal networks. (c), (d) Randomized temporal
networks. (a), (c) Im~108 in Conference data set. (b), (d) Im~3024 in Email
data set. No infection occurs in the blank parameter regions. The
parameter values for which at least one infection occurs are colored.
doi:10.1371/journal.pone.0068629.g002
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For the randomized temporal networks, the dependence of Im on

td and vthr are shown in Figures 2(c) and 2(d) for Conference and

Email data sets, respectively. We find that the parameter region in

which infection occurs is larger for the original temporal networks

(colored regions in Figures 2(a) and 2(b)) than for the randomized

temporal networks (colored regions in Figures 2(c) and 2(d)) for

intermediate values of td (102
ƒtdƒ104 and 104

ƒtdƒ106 for

Conference and Email data sets, respectively). In the original data

sets, the nodes tend to have many events in bursty periods and be

quiescent in other periods. The randomization procedure eliminates

bursty activity patterns. Therefore, vm(t) can reach vthr in such a

bursty period for the original but not randomized temporal networks

if td and vthr take intermediate values. In the randomized data sets,

vm(t) tends to decay faster than it grows, although the number of

events per node is the same between the original and randomized

data.

For Email data set, Im for the randomized data set (Figure 2(d))

is larger than that for the original data set (Figure 2(b)) when td is

large and vthr is small. This is mainly because the randomization

considerably increases the reachability ratio of initial seed m. The

reachability ratio of a node is defined as the fraction of nodes that

we can reach from the node by tracing the events in the

chronological order [20]. If every event can elicit infection, which

is the case when td is large and vthr is small, Im is approximated

by the reachability ratio of node m. The reachability ratio of node

m~3024 in Email data set is equal to 0.7458 and 0.9981 for the

original and randomized data sets, respectively. In contrast, the

reachability ratio of node m~55 in Conference data set is equal

to 0.9642 and 1 for the original and randomized data sets,

respectively; the difference is smaller than in the case of Email data

set.

In Figure 3, the average final infection size SIiT, defined as the

average of Ii over all the nodes i , is plotted as a function of td for

two values of vthr for each data set. Figure 3 indicates that SIiT for

the original temporal networks is larger than that for the

randomized temporal networks for a broad range of td for both

data sets. For Email data set, the SIiT values for the original data

set are similar to or larger than those for the randomized data set,

even for large td (Figures 3(c) and 3(d)). These results are

apparently inconsistent with the fact that Im is larger for the

randomized data set than for the original data set (Figures 2(b) and

2(d)) for large td. The inconsistency may be caused by the

competition between two opposite effects of the randomization.

First, the randomization tends to increase the reachability ratio of

each node to enhance epidemic spreading. Second, the random-

ization eliminates the burstiness to suppress epidemic spreading. For

nodes involved in many events, the first effect would dominate the

second effect (Figures 2(b) and 2(d)) and vice versa for nodes

involved in a small number of events. We will also discuss this point

in Discussion.

In the bond percolation on static networks, the probability that

single bonds are open (independent of different bonds) is the sole

parameter that determines the possibility that the entire network

has a giant component [1]. Motivated by this picture, we

hypothesize that the results shown in Figures 2 and 3 are largely

explained by the bursty nature of events on single links. In other

words, we speculate that the structure of the aggregated networks

or correlation between event sequences on different links do not

much influence the results. To test the hypothesis, we separately

Table 1. Statistics of the two data sets.

Conference Email

Number of nodes (N) 113 3,188

Number of events 20,808 309,125

Recording period 3 days 83 days

Time resolution 20 sec 1 sec

doi:10.1371/journal.pone.0068629.t001

Figure 3. Average final infection size SIiT for (a), (b) Conference
and (c), (d) Email data sets. Squares and circles correspond to the
original and randomized temporal networks, respectively. We set (a)
vthr~5, (b) vthr~20, (c) vthr~3, and (d) vthr~10.
doi:10.1371/journal.pone.0068629.g003

Figure 4. Average single-link infection rate S1=Tj?iT for (a), (b)
Conference and (c), (d) Email data sets. (a), (c) Original temporal
networks. (b), (d) Randomized temporal networks.
doi:10.1371/journal.pone.0068629.g004

Burstiness and a Threshold-Based Epidemic Dynamics

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68629



examine the event sequence on each link. For each link, i.e., node

pair (i,j) with at least one event, Tj?i(t) is defined as the time

required for node i to be infected since node j is infected at time

t. We emphasize that we do not consider influences from other

nodes on i in this analysis. We take the time average of Tj?i(t),

denoted by Tj?i, over 0ƒtƒtmax. A problem with the time

averaging is that Tj?i(t) is indefinite for sufficiently large t because

i does not get infected by time tmax. Therefore, we adopt the

boundary condition in which the first events between nodes i and j
virtually replay after t~tmax. We denote the time of the first

event between i and j by t1. If we temporarily set

Tj?i(tmaxzt1)~Tj?i(t1), it takes at most tmax{tzt1zTj?i(t1)

for node i starting with vi(t)~0 to be infected from node j, where

tlastƒtƒtmax and tlast is the last time before which Tj?i(t) is

finite. Therefore, we set Tj?i(t)~tmax{tzt1zTj?i(t1) for

tlastƒtƒtmax. This boundary condition is the same as that is used

in Ref. [21] for defining the average temporal path length. If

Tj?i(t1) is indefinite (i.e., infection never occurs between i and j ),

Tj?i is set to infinite. We define denoted by S1=Tj?iT as the

average of 1=Tj?i over the 20% links with the largest numbers of

events, because the majority of the links possesses a small number of

events in both data sets. This thresholding leaves 441 and 6,932

links for Conference and Email data sets, respectively.

S1=Tj?iT for the original and randomized temporal networks

are shown for various td and vthr values for Conference

(Figures 4(a) and 4(b)) and Email (Figures 4(c) and 4(d)) data sets.

Because infection can be induced only through a single link in the

present simulations, we examined vthr values that are much smaller

than those used in Figures 2 and 3. For both data sets, S1=Tj?iT
for the original temporal networks (Figures 4(a) and 4(c)) is larger

than that for the randomized networks (Figures 4(b) and 4(d)) for

intermediate values of td (102
ƒtdƒ104 and 104

ƒtdƒ106 for

Conference and Email data sets, respectively). The behavior of

S1=Tj?iT is consistent with the results of the network-based

simulations (Figures 2 and 3).

Discussion

We numerically simulated a variant of the deterministic

threshold model on empirical temporal networks. We found that

the average final infection size for the empirical temporal networks

is larger than those for the randomized temporal networks in a

broad parameter region (Figures 2 and 3). The bursty nature of the

IETs on single links has a sufficient explanatory power for the

results of the network-based simulations (Figure 4). The burstiness

promoted epidemic spreading when the decay exponent td takes

an intermediate value (102
ƒtdƒ104 and 104

ƒtdƒ106 (sec-

onds) for Conference and Email data sets, respectively). This range

of td may be practical because the influence of a pathogen that an

individual has received may last for hours to days.

The finding that the burstiness facilitates the spreading also

sheds light on a function of the redundant interaction events. We

previously found that about 80% of the events are redundant in

the sense that they affect little on bridging efficient temporal paths

in Conference data set [22]. However, for the spreading dynamics

in our model, such redundant events play a crucial role in

increasing vi(t) within bursty periods. Threshold models can be

generalized to temporal networks in several ways. Reference [23],

for example, considers a sliding window where only contacts

within the window matters for the spreading. The authors

examined two types of threshold rules–whether the threshold

operates on all the total number of contacts with I in the interval

or on the fraction of such contacts. The output was data

dependent, but for most of their datasets, the results for the

present model are similar to their results in the case of an absolute

threshold. This suggests that we should be careful in generalizing

our results too much (even though they should probably hold true

for email and conference contacts).

In the previous section, we mentioned two possible consequenc-

es of the randomization of temporal networks: weakened

burstiness and enhanced reachability. To disentangle the contri-

bution of the two factors to epidemic spreading is difficult, because

the two factors are simultaneously affected by the present

randomization scheme. Therefore, looking for alternative ran-

domization procedures or generative models of temporal networks

in which burstiness and reachability are independently controlled

is warranted for future work.
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