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Abstract

Functionally interacting perturbations, such as synergistic drugs pairs or synthetic lethal gene pairs, are of key interest in
both pharmacology and functional genomics. However, to find such pairs by traditional screening methods is both time
consuming and costly. We present a novel computational-experimental framework for efficient identification of synergistic
target pairs, applicable for screening of systems with sizes on the order of current drug, small RNA or SGA (Synthetic Genetic
Array) libraries (.1000 targets). This framework exploits the fact that the response of a drug pair in a given system, or a pair
of genes’ propensity to interact functionally, can be partly predicted by computational means from (i) a small set of
experimentally determined target pairs, and (ii) pre-existing data (e.g. gene ontology, PPI) on the similarities between
targets. Predictions are obtained by a novel matrix algebraic technique, based on cyclical projections onto convex sets. We
demonstrate the efficiency of the proposed method using drug-drug interaction data from seven cancer cell lines and gene-
gene interaction data from yeast SGA screens. Our protocol increases the rate of synergism discovery significantly over
traditional screening, by up to 7-fold. Our method is easy to implement and could be applied to accelerate pair screening
for both animal and microbial systems.
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Introduction

System-scale chemical and genetic screens have progressed from

testing single targets to testing combinations of targets. Pairwise

tests can reveal functional couplings, such as drug-drug synergism

and pathway modules, that cannot be captured by single target

screens. In a typical setting, the functional interaction between two

targets i and j (drugs or genes) is calculated as an interaction score

Xi j , commonly defined as:

Xi j~Wi j{WiWj , ð1Þ

where Wi and Wj are the relative phenotypes after perturbations

of single targets i, j and Wi j is the response to perturbation of the i

and j combination.

System-scale mapping of all interaction scores Xi j can serve

several important purposes. First, positive and negative values of

Xi j can be interpreted within the framework of epistasis analysis to

deduce pathway relationships between the targets i and j, or to

define functional modules in the system [1–7]. Second, both

negative and positive interactions are of considerable therapeutic

interest. Negative interactions reveal synergistic target pairs that

can increase efficiency and widen the therapeutic window of a

treatment. Positive interactions can reveal redundant target pairs

that may slow down the acquisition of drug resistance [8,9].

Screens in several cellular systems, e.g. cancer cells, have revealed

that combination effects are prevalent [10]; thus, mapping

interaction scores in cellular systems presents an important

challenge for systems biology [11–14].

In a traditional pair screening process, an interaction score, Xi j ,

is experimentally obtained for every pair (i,j), and pairs are

considered interacting if the interaction score (or some relevant

statistic that captures functional coupling) exceeds a threshold.

Exhaustive screening is a very costly strategy, since the number of

experiments needed grows quadratically with the number of

targets, n. The largest pair screening reported [4] is of a magnitude

of n&4500. However, to screen drug libraries (nw100,000) or

human shRNA libraries (nw5,000), the experimental burden

would be prohibitive for standard labs.

Here, we therefore recast the screening problem in terms of a

different goal: can we find a reasonably high fraction of all synergistic

pairs (e.g. 75%), by testing a relatively low fraction of all pairs (e.g.

20%)? The acceleration of pairwise interaction mapping was

previously proposed in the context of pulldown experiments for

PPI mapping [15,16], but also methods specific to genetic

interactions have been proposed [17,18]. Our method differs

from these in that it exploits properties of interaction networks

common to both PPIs and genetic networks, and hence has wider

applicability. In addition, the method does not assume a particular

experimental design as in pulldown experiments.

We introduce a mathematical notion of screening efficiency and

methods to maximize this efficiency, based on alternation between
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gradual experimental testing and a matrix algebraic technique to

predict synergism. The functioning of this novel algorithm does

not rely on the degree of target specificity, or a particular choice of

interactions measure, and using several data sets from yeast and

cancer cell lines, we demonstrate that our method greatly

improves screening efficiency and is both computationally efficient

and easy to implement. Further, the performance of the algorithm

can be improved by including similarity between drugs/genes,

such as target of action or functional interactions.

Results

Quantifying screening efficiency by the fractional
discovery rate

To characterize screening efficiency, we propose to use the

fractional discovery rate. Since the algorithms we propose are

stochastic in nature we suggest to use a metric which quantifies

the average behaviour of an algorithm when applied to a certain

data set.

Consider the following hypothetical scenario: an idealized

screen is carried out in which the experimenter tests a growing

fraction z of all possible pairs of drugs/genes. At a given z a

fraction f of all synergistic pairs have been discovered. Now

imagine that we repeat the screening process many times and

calculate the average fraction of discovered pairs at a given z,

described by the curve f (z) (Figure 1A,B). We define the fractional

discovery rate as the derivative f ’(z). If an experimenter screens in

a systematic, ‘‘brute force’’ fashion, the expected value of the

fractional discovery rate will be given by (1{f )=(1{z), i.e. the

ratio between the remaining fraction of synergies (1{f ) and the

remaining screenable fraction (1{z). This implies that the

relation

f ’(z)~
1{f (z)

1{z
ð2Þ

holds for all z[½0,1�.
Let us now consider a screening principle, such as our proposed

method, that enriches for synergism. We summarize this

enrichment by a factor of t, where now instead

f ’(z)~t
1{f (z)

1{z
, ð3Þ

i.e. the fractional discovery rate is t times higher as compared to

‘‘brute force’’ experimentation. We refer to t as the screening

efficiency. We solve this differential equation, with boundary

conditions f (0)~0,f (1)~1, and obtain the explicit relationship:

f (z)~1{(1{z)t: ð4Þ

For t~1 this function simply describes a line with slope 1, going

from (0,0) to (1,1). Efficient screening procedures should identify a

large fraction of synergies from a relative low fraction of all pair

experiments, thus resulting in higher values of t (Figure 1B). An

oracle screen (knowledge of which pairs are synergistic) achieves

the maximum possible t, given by 1 divided by the prevalence of

synergistic pairs.

We will now discuss how to construct screening procedures that

improve synergism discovery. We thus proceed to formulate an

experimental protocol that incorporates the following three ideas;

(i) concurrent estimation of the synergism propensity; (ii) a novel

interaction score imputation framework which performs well in

cases where the screened fraction is low and can take biological

database information into account, and; (iii) an adaptive strategy

that toggles between principles (i) and (ii) to optimize screening

efficiency. These three components of the experimental protocol

are described in the sections below.

We assess the performance on nine data sets, comprising seven

cancer cell lines and two yeast data sets (Methods and Table 1) We

reason that achieving a high value of t across a range of screens of

different size and type of data should extrapolate to future screens.

Propensity-based sampling improves screening
efficiency

Based on the assumption that some targets are more likely to

interact than others (so-called ‘‘hubs’’ in a system), one should be

able to increase the screening efficiency, t, by prioritizing targets

that have been identified as synergistic in the early phases of the

screen. In previous work, Myers and co-workers have used such

methods to predict the number of interactors of yeast genes [4].

Here, we formulate an concurrent estimation scheme to

prioritize targets likely to be involved in synergies. We denote a

target i’s propensity to interact by Pi, i~1,:::,n. Given current

estimates of the Pi, we select pairs (i,j) for testing with probability

Pij , where

Pij!PiPj : ð5Þ

This simple screening protocol is random, but biased towards the

likely hubs of interactions (Algorithm 1, Methods). To make the

screening protocol adaptive, we use a Bayesian estimate of Pi, as

follows. We first assume that the likelihood to observe Xi synergies

for target i, is binomial distributed with parameters Pi, Ni . We

subsequently assume that the parameter of this distribution, Pi,

was drawn from a conjugate prior beta distribution with

parameters a and b. The estimate of Pi is thus given by:

P̂Pi~
Xiza

Nizazb
, ð6Þ

where Xi is the number of synergies found, and Ni the total

number of interactions tested for gene (or drug) i. This estimate is

the mean of the posterior distribution of Pi, given a beta-

distributed prior for Pi with parameters a and b. Maximum

marginal likelihood estimates of a and b from data suggest using

a~0:5 and b~n in our protocol (see Methods). This corresponds

to a prior belief that relatively few targets constitute hubs of

interaction. Applying this simple protocol to our set of 9 different

interaction score matrices, and averaging over a large number of

realisations, we achieve a t in the range 2.0 to 4.6 (Figure 1D). At

experimental fraction 20%, we are able to discover 37% to 67% of

all synergies (compared with 20% for brute-force screening). Using

of a flat prior (a~b~1, prior belief that roughly half the targets

interact) reduces t substantially (Figure 1D). The difference in

performance on the different data sets is mainly attributed to the

size of the data sets, where the method performs better on larger

sets of data (see Discussion).

Matrix imputation for highly incomplete interaction score
data

To improve screening efficiency further, we use matrix

completion to predict likely synergies from limited amounts of

screening data. Matrix completion methods to impute missing

values have been tested on interaction score matrices [19,20] when

a small percentage of data is missing. Recent results, however,

have shown that surprisingly few entries are needed for imputation

Searching for Synergies
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in cases where a matrix possesses some underlying ‘block-like’

structure [21,22]. This type of structure is know to be prevalent

among interaction score matrices [2,23].
Prediction of interaction scores using set

projections. We proceed to define a customized matrix

completion method for interaction score data which, unlike

standard matrix completion algorithms, encompasses an option

to include prior information on functional similarity between

targets. For instance, our method can be used to include

information on shared mechanism of action between drugs, or

shared pathway membership between genes, both likely to give

rise to similar interaction behavior. We give a brief description of

the method here (details in Methods). The interaction score matrix

Figure 1. Efficient experimental screening. A: Principal difference between systematic screening (testing all pairs sequentially) and guided
screening (letting discovered synergistic pairs, marked as red X’s guide the subsequent steps of the screening process). B: We characterize the
screening process by the fractional discovery rate f ~1{(1{z)t attained at experimental fraction z, where t denotes the screening efficiency. In a
screening process with high t value, a large fraction of all synergies is found by testing a small fraction of all possible target pairs. t~1 corresponds to
systematic screening. C: A simple protocol to increase t is to direct the screen towards targets that seem prone to synergism. For this, we propose a
sampling protocol based on Bayesian estimates of a target’s propensity to interact. D: We use a beta-prior with parameters a~0:5,b~n, where n is
the number of targets. A flat prior (a~b~1) reduces performance.
doi:10.1371/journal.pone.0068598.g001

Table 1. Benchmarking data sets.

Data set Assay Number of targets

Costanzo et al. Synthetic Genetic Array 4457 (944 with prior information used here)

Schuldiner et al. Synthetic Genetic Array - like method 427

Colon cancer cell line (HCT116) Drug-drug interaction 190

Lung cancer cell line (A549) Drug-drug interaction 190

Glioblastoma cell lines (T98G, U343MG, U87MG,
U373MG, A172)

Drug-drug interaction 31 for each cell line

doi:10.1371/journal.pone.0068598.t001

Searching for Synergies
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X represents a point in the space of all symmetric n|n matrices.

We assume that this point lies in the intersection of three convex

sets, termed Rdata,Rmodular and Rsim, each encoding a different

type of evidence:

1. The set Rdata contains all symmetric matrices that agrees with

the currently available data, within an error tolerance level

(Methods, eq. 8). For example, if half the entries of the matrix

are known, then Rdata consists of all matrices where the known

entries (within error) are equal to the data, and where all other

entries are allowed to vary freely.

2. The set Rmodular contains all matrices with a sufficiently block-

like structure. Both gene-gene and drug-drug interaction scores

form clusters (blocks), thought to reflect some degree of intrinsic

modular organization of cellular pathways [24]. Following

[21], we define modularity as a constraint on the nuclear norm

of the matrix X (Methods, eq. 9).

3. The set Rsim contains all matrices X that conform with

externally defined information on functional similarities

between the targets. We expect some degree of correlation

between the rows/columns i and j in X , when targets (i,j) have

a similar biological function [4]. We represent functional

similarity by a matrix K , with the property X&KX , derived

from data sources such as PPI networks, GO terms and drug

mechanism of action (Methods, eq. 10).

We find a feasible point, i.e. a solution X located in the

intersection Rdata\Rmodular\Rsim, by a cyclical sequence of

projections onto these convex sets from a given starting point

(Figure 2A). This iterative algorithm is highly efficient and can be

applied to data where the number of targets n is quite large,

ranging up to a couple of thousand targets (see Implementation in

Methods).

Comparison to existing matrix completion methods. To

assess the performance of the novel imputation technique, we

compare our method to two other techniques: (i) The recently

proposed Local Least Squares (LLS) [19] which was advanta-

geously compared to other approaches such as Bayesian Principal

Components Analysis [25]; (ii) A meta-predictor, EMDI, which

combines LLS and several other methods by a weighted average

[20]. For each method, we separately assess the prediction

accuracy for each sample fraction z of observed matrix entries,

z[½0:1,0:9� (randomly sampled from the data). Our model gives

more accurate predictions from sparse data (10–20% observation)

across all data sets (Figure 2B), and is highly competitive even for

larger sample fractions z. We compared the prediction accuracy

measured as Pearson correlation over 20 independent runs. This

gave a strong significance (pv0:001) in 7 datasets (both yeast SGA

screens, colon cancer, lung cancer, and A172, T98G, U343 glioma

cells), and a moderate/weak significance in 2 datasets (U373 and

U87; p~0:02 and 0:06 respectively) For our comparisons, we also

considered the APN method by Battle et al. [5]. However, this

method is specifically aimed at predicting buffering/antagonistic

relationships, and is computationally heavy.

Combining propensity-based sampling with prediction-
driven screening

Our final screening procedure (Algorithm 2, Methods) com-

bines and alternates between the two different ‘‘search modes’’

described above: (i) propensity-based random sampling, biased

toward untested pairs comprising targets that have hitherto

exhibited a high propensity for interacting with other targets (in

steps 1 and 2); and (ii) greedy collection of target pairs for which

matrix completion has predicted a high degree of synergism (steps

3 and 4). The balance between the two search modes is

determined by their performance (step 5) (Figure 3A).

We find that combining interaction prediction and propensity-

based sampling to guide the screening process results in a

screening efficiency t much better than the propensity-based

sampling alone (Figure 3C). For instance, our procedure detects

62% and 72% of the synergistic pairs in the yeast data sets by

testing only 20% of the interactions (Figure 3B). This drops to 46%

and 67% when we use propensity-based sampling only (compared

with expected 20% for brute-force screening). For the largest data

set [4], we see a 4.5-fold increase in efficiency t for the full protocol

over brute-force screening, which drops to about four-fold when

the prediction method uses no prior information, and to only

three-fold with propensity-based sampling alone (Figure 3D).

Discussion

Performance and data requirements: the impact of
modularity and screen size

We note that screening efficiency is most improved for the

larger screens. Intuitively, for small systems, there is not much

room for targeted screening to improve over brute-force methods.

However, as the number of possible interaction pairs grows, it

becomes more important to choose experiments carefully to speed

up detection. More formally, imputation methods based on

nuclear norm constraints (as in our Rmodular) work best when the

matrix rank k is much lower than the matrix size n. A theoretical

result by Candes et al. [26] states that sample size requirements to

make accurate predictions is proportional to kn log2 n. Assuming

the number of modules (k) remains relatively constant for the

different biological systems, n is thus the major determining factor

for screening efficiency. We repeat the analysis on subsets of the

largest data set, showing that screening efficiency indeed is

proportional to the number of targets (Figure S1 in File S1). Thus,

we expect the screening efficiency obtained with our protocol will

grow with the number of targets.

One reason why our prediction approach performs well

plausibly lies in the fact that all data sets we analyze exhibit a

strong degree of modularity. Previously, both the two yeast data

sets and the HCT116 and A549 cancer cell lines have been shown

to contain functional clusters [4,13]. To assess whether our own

measurements in five glioma cell lines also show some functional

modularity, we calculated the correlation (in the X matrix)

between drugs that belonged to the same vs. different categories.

This analysis confirmed that drugs in the same category (e.g. RTK

inhibitors) have higher correlations (Figure S2 in File S1).

In terms of other approaches proposed for accelerated pair

screening our method bears some resemblance to the algorithm

suggested by Lappe et al. [15]. That method was designed for

exploring PPI networks, and gathers information during the screen

to accelerate the process. The method exploits the fact that the

network contains hubs with high connectivity, and uses as bait for

the next experiment the protein that has been seen as prey most

often so far. That is similar to our propensity based approach, but

only works in the case where a target is tested against all other

targets, as is the case of mass spectrometry pull-down experiments.

Our method is different, and in a sense more refined, since it not

only selects an entire row of the matrix, but a specific matrix

element for testing.

The other component of our algorithm, which allows for the

incorporation of prior knowledge about the targets, is somewhat

similar to the method proposed by Wong et al. [17]. That method

uses a wide variety of prior data such as subcellular localisation of

the proteins, chromosomal distance etc. With this type of

Searching for Synergies
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information they can predict the probability that a gene pair

exhibits synthetic sick or lethal interactions. However their method

is not suited for a screening process and is not optimised for

handling incremental data. The main conclusions when compar-

ing our algorithm with other methods is hence that it combines

both a subroutine for defining single experiments based on

Figure 2. Predicting synergism scores from highly incomplete data via cyclical set projection. A: To improve screening efficiency further,
we introduce a projection-based predictor of synergism scores. An initial guess of a synergism score matrix X0 is projected first onto the set Rdata,
which corresponds to known interaction scores, then onto the set Rmodular, which contains matrices of approximately low rank, and finally onto Rsim,
holding the matrices consistent with known functional similarity. The projections are applied cyclically until convergence to a final prediction of X is
reached, which is guaranteed due to convexity of the three sets (here illustrating convergence in one iteration). B: Prediction accuracy in five
glioblastoma cell lines and reference data sets. Comparison between our projection-based method and two state-of-the-art methods for interaction
score imputation methods, LLS and EMDI. Generally, set based projections outperform the other methods (predictions correlate more with true
values), especially when the screened fraction z is small.
doi:10.1371/journal.pone.0068598.g002

Searching for Synergies
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previous findings in the screen, and allows for the incorporation of

prior knowledge about the targets.

In a natural sense every discovery algorithm is limited by the

type of assumptions that are made during the construction of the

method, or in other words what type of patterns the data is

expected to contain. In our case we have exploited the fact that

interactions matrices tend to exhibit block-like structure, which

mathematically corresponds to a low matrix rank, and also made

use of the observation that certain hubs exists in the data. This

implies that interactions which deviate from these patterns will be

less likely to be detected, and this means that the algorithm is not

geared towards ‘‘true’’ discovery, but limited by the assumptions

made.

Another difficulty that arises when screening a novel system is to

decide on an appropriate synergy threshold value, which

effectively determines the number of targets in the screen. Data

sets from many diverse system do however suggest that interaction

scores have a charactersitic long-tailed, non-normal distribution,

which lends some hope to transferring knowledge from one system

to another. In most cases some preliminary data is also available,

e.g. from the SGA data in yeast [4] we could derive a reasonable

threshold value (see Methods), and this information can be carried

over to other genetic systems.

Conclusions

We have presented a novel method for screening of gene or

drug-pairs with the aim of finding synergistic interactions as

quickly and cost-efficiently as possible. We expect that advanced

matrix imputation methods and prediction based screening

procedures, as outlined here, may find several applications. For

the five cancer cell lines here analyzed, the proposed methods can

serve to rapidly map the interaction landscape for multiple drugs,

helping guide discovery screens, and defining combination

therapies that overcome some of the shortcomings of current

monotherapies for cancer.

We conclude that our approach exhibits good performance on

real experimental data. The proposed approach is distinct from

previous matrix completion methods, since it also incorporates

prior molecular information, and also distinct from methods that

Figure 3. Improving screening efficiency by combining propensity-based sampling with interaction score prediction via matrix
completion. A: We extend the simpler protocol (propensity-based sampling only, Figure 1C), adding a projection-based predictor to choose likely
synergistic pairs (steps 3 and 4). If the prediction-driven screening discovery rate is higher than the preceding propensity-based screening, a new
prediction-driven screening cycle is started (step 5). We switch between propensity-based sampling and prediction to increase the fractional
discovery rate. B: Fractional discovery rate across 9 data sets show marked improvement over brute-force screening. C: Estimates of the screening
efficiency t demonstrate that the full protocol (steps 1–5) gives better performance than propensity-based sampling only (steps 1–2). Yellow block:
additional contribution by projecting onto Rsim in the largest yeast SGA screen.
doi:10.1371/journal.pone.0068598.g003
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rely completely on molecular data [27–30]. In principle, the

approach can be generalized to incorporate additional constrain-

ing sets to further improve the solution; this is reserved for future

work.

The developed method is geared toward rapid discovery of

synergistic pairs, and, in order to achieve this, modular and

structural similarities between targets are exploited. The method is

thus more likely to discover synergistic interactions that follow this

modular pattern, whereas ‘‘unexpected’’ interactions will be

harder to find.

Future directions include the exploration of higher order

combinations [14], and to introduce improved, target specific

estimation of the propensities Pi, by for example taking into

account the observed negative correlation between single mutant

fitness and number of interactions [4]. It may also be interesting to

investigate formal techniques for experimental planning [31,32]

and refine strategies to define our functional similarity matrix, K
by including e.g. drug side-effect similarity [33]. These measures

might improve screening efficiency even further.

Methods

Preparation and generation of benchmarking data sets
Gold standard/public data. Our data consists of 4 publicly

available data sets (Table 1 and main text). The first two sets of

measurements that we study are standard two-gene synthetic gene

array data [4,19], which both contain interaction scores (eq. 1)

defined in terms of yeast viability under gene single/double gene

knockouts. We used interaction scores as provided, without further

normalization, obtained from the supplements of Costanzo et al.

[4] (SGA experiments, using the rigorous cutoff preparation of the

data; and SGA/ESP data as provided in the supplement of Colm

et al. [19]). We used QQ plots against a normal distribution to

choose a point where negative interaction scores deviated

significantly from a normal distribution. This gave us a threshold

value roughly 3 standard deviations from the mean, giving a

prevalence of synergies of 1%. The next two data sets were

obtained from Zalicus (previously CombinatoRx, a company that

pursues drug pair screening) and represent drug pair responses in

HCT116 and A549 colon cancer and lung cancer cells,

respectively. Here, the interaction scores quantify drug-drug

interaction across multiple doses, using a customized metric

defined as in Lehar et al. [13]. For the CombinatoRx data, we

used the synergism thresholds defined in the original publication

(an S-index less than 20.29) which corresponds to a prevalence of

synergies of 6%.

Experiment in five glioblastoma cell lines. In addition,

we generated data for five glioblastoma cell lines, as follows.

Glioma cell line T98G was obtained from ATCC and A172, U-

343MG, U-373MG and U-87MG were obtained from Cell lines

Services, Germany. All cell lines were grown in monolayer and

maintained in high-glucose (4.5 g/l) DMEM supplemented with

10% FBS (Fetal Bovine Serum), 1% PEST (Penicillin/Streptomy-

cin) and 2 mM L-Glutamine and incubated at 37uC with 5% CO2

in a New Brunswick Galaxy R Incubator. For the experiments we

selected a set of 31 compounds, some of which were selected

uniformly at random from a library, and some of which had a

similar or related mechanism of action. The drugs used are listed

in Supplementary Table 1 in File S1. Tumor cells were plated at

1:5|103 cells/well in a TPP 96-well plate 24 hours prior to

treatment. Cells were treated with drugs diluted in media, single or

in combination, and incubated for 48 hours. For combinations, 4

replicates were performed with 3–6 replicate negative controls of

equal amount of DMSO (0.1–0.2%). Viability studies were

performed using the alamar blue assay (Invitrogen Corp.). At

end of experiment cells were incubated for 4 hours with alamar

blue reagent (Invitrogen Corp.) for cell viabilty measurements.

Fluorescence was read at Exc544/Em590 on a microplate reader

(SPECTRAmax GEMINI XS, Molecular Devices). From viability

assays, we quantified the drug response as the ratio

W~ �YYtreated= �YYcontrol , where Y represents the fluorescence signal

and bar represents average across replicates. We measured

interaction scores for 465 drug pairs (corresponding to all pairs

chosen from 31 compounds) using eq. (1), which is usually referred

to as the Bliss interaction score. To identify synergies we proceed

as with the public SGA screens, lowered the threshold to 1.5

standard deviations, and obtain 6{14% synergies in the different

cell lines.

Estimating a target’s marginal propensity to interact
A target’s propensity to interact is estimated concurrently

during the screen using the formula

P̂Pi~
Xiza

Nizazb
ð7Þ

where Xi is the number of synergies found so far, Ni the total

number of interactions tested for gene (or drug) i, and we assume a

beta-prior, with parameters a and b, for a target’s propensity to

interact. The prior mean, a=(azb), signifies the a priori expected

interaction frequency of each target, here assumed to be the same

for all targets.

We estimated the parameters a and b from the data sets using a

maximum marginal likelihood estimate of the probability distri-

bution PA
i , i.e. the probability to find a gene (or drug) with i

synergistic interactions in data set A (Empirical Bayes) [34]. The

obtained values were for a in the range 0.26–1.05 and b close to

the number of targets (genes or drugs) n. As a rule of thumb, we

therefore suggest to use a~0:5 (the median observed value for all

data sets) and b~n as a prior in our protocol. These values of a
and b correspond to a prior skewed toward few interaction hubs.

We also compare the screening procedure obtained with a so-

called flat prior (a~b~1). This prior corresponds to a prior belief

that half of the targets are involved in a synergistic interaction and is

slow to adapt to findings in the early phases of the screen. Concurrent

estimates P̂Pi~Xi=Ni (no prior), on the other hand, are too sensitive

to early findings in the screen. In principle, a and b could be chosen in

a gene-specific manner, but this is reserved for future work.

Matrix completion for interaction scores
The interaction score matrix should be in the intersection

of three sets. We view the interaction matrix X as an unknown

point in the space of all real-valued symmetric matrices of size

n|n, denoted Symn. Our goal is to use different kinds of available

evidence to define constrained subsets of Symn, which contain the

feasible values of X . Given these subsets, we will predict X by

finding a single feasible point that is located in the intersection of

all three constrained subsets.

The first subset, Rdata5Symn, contains all symmetric

matrices that are consistent with our experimental observations.

This set is defined by the sum of square distance from the

experimental points, i.e.

Rdata~fX ; E(XV{MV)E2
F vedg ð8Þ

where M is the experimental data, and the notation MV denotes

that M is only determined (observed) for a subset V of matrix
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elements, which correspond to the known interaction scores. The

norm E:E2
F denotes the Frobenius norm (sum of the squared

elements) for matrices, and ed is an upper bound on the acceptable

disagreement (tolerance) with the experimental data.

The second subset, Rmodular5Symn, is the subset of matrices

that fulfill the criterion of having the characteristic ‘modular’

structure typically seen in interaction score data. Clusters of

interaction scores are frequently attributed to shared biological

functions. Previously, this principle has been used to interpret

interaction scores as functional modules, or make predictions of

the function of particular targets or drugs [2,4,24,35]. Here, we

instead aim to define a matrix algebraic constraint on X that

ensures modularity. To define a set of symmetric matrices that

have a modular structure, we apply the nuclear norm constraint

Rmodular~fX ; EXE?vemg, ð9Þ

where EXE? denotes the nuclear norm of X , defined as the sum of

the singular values of X . In practice, constraining the nuclear

norm of a matrix is used as a technique to constrain the rank of X

[22]. A small value of em thus implies few modules in the data.

Obvious alternatives to this constraint would be e.g. the

monochromaticity score by [24] and likelihood-based scores [36]

or constraining the rank of X . However, the nuclear norm, which

is a convex function of X , is very well suited for rapid optimization

techniques [21,22].

The third subset, Rsim, contains all matrices consistent with

prior pathway information. In contrast to the previous subset,

Rmodular, which contains any matrix with any modular structure,

Rsim contains more specific information, i.e. it defines a particular

modular structure defined by external data. We define this set by:

Rsim~fEX{KXE2
F vesg ð10Þ

Here, K is a matrix that reflects the expected degree of similarity

between rows and columns of X . To motivate this definition,

consider an unknown interaction score xij and a linear interpo-

lation function that predicts xij from any available ‘‘neighboring’’,

scores xrj , (r,j)[V. In other words,

x̂xi j~

P
r ki rxr jP

r ki r

ð11Þ

here, kir is a non-negative weight that quantifies the functional

similarity between target i and r. We organize these weights into a

matrix format K~fkirg and scale the rows/columns to sum to 1,

i.e. K is a bistochastic matrix. We note that a fully observed X is

consistent with the above kernel estimate if X&KX , i.e. when

EX{KXE2
F is small, which motivates the definition of the set Rsim

(eq. 10).

Functional similarity data. We explored which available

data sources can be used to construct a matrix K with the property

that X&KX . Here aiming for a heuristically defined K , we first

defined K from different data sources, as the properly scaled

matrix formed from (i) protein-protein interaction networks, (ii) co-

expression networks, (iii) naı̈ve GO term correlations; and, (iv)

GO-term derived semantic scores [37–39] using 18 alternative

tables from Yang et al. [40]. To gain insight about the usefulness of

each data type as a prior to predict gene-gene interactions in yeast,

we evaluated a total of 22 different K-matrices (listed in

Supplementary Table 2 in File S1) using the metric

dK~1{EX{KXE=EXE,

which will assume the value 0 if K fails to capture the contents of

X and 1 if X is perfectly explained by K . (We remind the reader

that K is a bistochastic matrix with zero diagonal, which excluded

the trivial solution K~I , the identity matrix). Overall, the results

show that PPI, GO term correlations and GO semantic scores

were relatively equal in explanatory power (explaining up to 19%

of X , Supplementary Table 2 in File S1) and while mRNA from

one particular compendium were slightly less efficient. In the

simulations below, we thus computed the average K for PPI

(MINT) [41], mRNA, GO correlation and GO semantic data.

Averaging was done using identical weights for each of the data

types. The possibility of readjusting such weights during an

ongoing screen, is reserved for future work.

For the glioma experiments, we defined five functional groups

among the 31 drugs (Supplementary Table 1 in File S1). We thus

defined Kij~0 when drug were in two different groups, and

Kij~1 when they were in the same group. This matrix was

subsequently scaled by bistochastic scaling.

Predicting interaction scores by cyclical projection onto

convex sets. Our next task is to find an interaction matrix,

which is located in the intersection of all three subsets in Symn, i.e.

it fits the data (X[Rdata), it is modular (X[Rmodular); and, it is

consistent with database information (X[Rsim). In other words,

X[Rdata\Rsim\Rmodular ð12Þ

There are highly efficient numerical methods to find the

intersection of sets. Here, we find the solution by a cyclical

sequence of projections, a method which has previously been

applied to signal recovery and feasibility problems with multiple

constraints [42–44].

Our algorithm starts with X0~0 (a matrix with all entries equal

to zero) and subsequently alternates between these three steps:

For t~0, . . . ,Tmax

X3tz1/projRdata
(X3t,ed )

X3tz2/projRmodular
(X3tz1,em)

X3tz3/projRsim
(X3tz2,es)

8><
>:

ð13Þ

where proj(:,:) denotes projection onto (or towards) the respective

set (in the Frobenius norm). Each function in equation 13 thus

maps a point Xq in the space of matrices to a new point Xqz1,

which lies within the current set of interest Rqz1 and also is at a

minimal distance to the previous point Xq.

We cycle over projections until a converge criterion is met (see

below). If the sets have a nonempty intersection, convergence is

guaranteed by that fact that the three operations are cyclically

applied projections onto convex sets [42].

By default, our method starts from an initial guess of a matrix of

zeroes. To assess the robustness of the algorithm to differences in

the initial guess in matrix space (i.e. the starting point in figure 2A),

we performed a simulation in which Saccharomyces cerevisiae data

with 80% missing values were imputed, using randomized

matrices as X0 (each matrix containing iid normally distributed

random values with m~0 and s~100). For each of the 100

simulations, the maximum deviation of 2 matrix elements between

any two simulations was always less than 10{7, with a mean of

3|10{9, i.e. within the numerical precision (Figure S3 in File S1).

This suggest that the performance of the algorithm is insensitive to

the choice of initial condition.
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Our method is a heuristic extension of previously described

matrix completion algorithms Softimpute and SVT [21,22,26]. As

a special case (relaxing constraints on modularity and functional

similarity) our algorithm corresponds to the Softimpute algorithm

[22]. The inclusion of functionality similarity is not a feature of this

previous method, nor of the other methods considered in our

comparison study (LLS [19] and EMDI [20]). Moreover, the

general framework of cyclical projections we employ may have

other extensions (e.g. by including additional convex set

constraints for other data types), but this exploration is reserved

for future work. All comparisons presented are based on Pearson

correlation. However, using sum of squares prediction error did

not alter the ranking of the tested methods.

Implementation
Our cyclical projection algorithm, explained above, starts with

an empty interaction score matrix X0~0 and subsequently applies

three projection operations (onto the sets Rdata, Rmodular and Rsim)

to obtain a sequence of iterates X1,X2,:: until convergence, here

defined as a small fractional change of X in terms of the Frobenius

norm, i.e. EXt{Xt{1E2
F=EXt{1E2

F vd, with d set to 0.0001.

For practical purposes, the projection functions (eq. 13) are not

parameterized with the tolerance constants e (ed ,em,es) used to

define the sets, but with penalties lw0. This has no consequence

for the solution of the problem, since for a given e there is a l
which produces the same solution and vice versa [45]. We provide

the derivation of the explicit projection formulae and parametri-

zation using l in the Supplement (Lemma 1–3 in File S1). The

projection operations have the following computational forms:

pro jRdata
(X )~Xz

ld

1zld

(MV{XV)

pro jRmodular
(X )~st(X ,lm)

pro jRsim
(X )~(I{((I{K)2zI=ls)

{1(I{K)2)X

ð14Þ

Here, M is the experimental data, and the notation MV denotes

that M is only determined (observed) for a subset V of matrix

elements, which correspond to the known interaction scores. I
denotes the identity matrix and st(:,:) is a soft-thresholding

operation on the singular values of X , defined as

st(X ,lm)~U ~SSVT , where X~USVT is the singular value

decomposition (SVD) of X , and ~SS is defined as ~ssij~0 for i=j,

and ~ssii~max(0,sii{lm) [21,22].

We implemented this algorithm in MATLAB, using the

PROPACK package to calculate the Singular Value Decompo-

sitions necessary for projection onto the set Rmodular. We choose l
constants as follows. ld is kept constant at a default value of 10

(changing this value did not affect the results in a significant

manner, although values close to zero should be avoided as ld~0
would imply that the experimental data are non-informative).

lm,ls are chosen by five-fold cross-validation, in which 20% of

data points in V are left out and predicted for a series of (lm,ls)

pairs. We chose the pair that maximizes predictive power,

measured by the Pearson correlation between observed and

predicted values.

One should also note that for some choices of l, the three R sets

will become too small, and not overlap; in such cases the algorithm

will instead converge onto a limit cycle, alternating between a

limited number of solutions. In these cases, we recommend

decreasing the l values, alternatively using the average X over the

three cycling steps as a solution that lies close to all sets [42].

In terms of algorithmic speed, the most time-demanding step is

the calculation of the first few components of a singular value

decomposition (SVD) of X (to project onto Rmodular). The

projections onto Rdata and Rsim merely require matrix multipli-

cations. The MATLAB implementation uses the PROPACK

package to compute the SVD. As an example of a running time,

the method requires 2 seconds to converge for a 500 matrix and

about 10 minutes for a 4000 matrix. However, in cases where

n&10,000 improved SVD methods are needed and we consider

adding this to future versions of the implementation. The code is

available from the authors upon request.

Screening via propensity-based sampling and interaction
score prediction, Algorithms 1 and 2

Algorithm 1 outlines the screening strategy that incorporates

prior knowledge or observed marginal interaction propensity for

each gene or drug, i.e. how frequently an individual target is

involved in a synergistic interaction. Algorithm 1 consists of

iteration of steps 1 and 2 below. Algorithm 2 is the screening

principle that incorporates both marginal propensity and interac-

tion score prediction via matrix completion. Algorithm 2 is defined

via steps 1 through 5. Two tuning parameters, n1 and n2,

determine the number of experiments to perform in each step of

the screen. While it is theoretically possible to step through the

screen one experiment at a time, it is probably not the most

practical strategy. As a default we used n1~n2~1% of all pairs.

Propensity-based sampling: steps 1 and 2.

1. Estimate probabilities P1,P2, . . . ,Pn for the targets to have

synergism with any other target (see main text for definition of

Bayes estimates of Pi).

2. Perform n1 experiments sampled from the untested fraction

experiments, where the sampling probability for each pair is

proportional to PiPj .

Prediction-driven screening: steps 3 and 4.

3. Use the matrix completion method defined by equations (14) to

predict interaction scores X .

4. Pick the n2 most extreme predicted interactions and test them

by experiment.

Switching between the propensity-based and prediction-

driven paradigms.

5. Estimate the hit rates H2 for the n2 most recent prediction-

based experiments and H1 for the n1 previous random

experiments (sampled as in step 2). If H2wH1 go to step 3.

Otherwise go back to step 1. The hit rates are defined as the ratio

between the number of identified synergies and the total number

of experiments.

Supporting Information

File S1 Supporting figures and tables.

(PDF)
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