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Abstract

Based on a recent model of paradigm shifts by Bornholdt et al., we studied mean-field opinion dynamics in an infinite
population where an infinite number of ideas compete simultaneously with their values publicly known. We found that a
highly innovative society is not characterized by heavy concentration in highly valued ideas: Rather, ideas are more broadly
distributed in a more innovative society with faster progress, provided that the rate of adoption is constant, which suggests
a positive correlation between innovation and technological disparity. Furthermore, the distribution is generally skewed in
such a way that the fraction of innovators is substantially smaller than has been believed in conventional innovation-
diffusion theory based on normality. Thus, the typical adoption pattern is predicted to be asymmetric with slow saturation
in the ideal situation, which is compared with empirical data sets.
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Introduction

Pursuing new ideas is a fundamental characteristic of our

modern society, where brand-new goods are always ready to push

their predecessors off the market. Innovation is one of the most

important keywords to understand our society in this sense, as

earlier societies were shaped by traditional ideas to be conserved in

an unaltered form as much as possible. For this reason, there have

been extensive empirical economic and business studies on how

innovations get started, diffused and approved in a society, and it is

becoming an attractive topic in statistical physics as well [1–8]. In

a classical work [9] about diffusion of innovations, Rogers claimed

that there is a common pattern in innovation dynamics, that

people adopting an innovation are normally distributed in time. As

a result, the cumulative number of adopters is expected to show an

S -shaped pattern over time, which is described by the error

function: It grows slowly at first, expands rapidly at some point,

and then slowly saturates to 100%. Deviation from the mean

adoption time, �tt , over the entire population defines five adopter

categories such as innovators (tv�tt{2s , 2.5%), early adopters

(�tt{2svtv�tt{s , 13.5%), the early majority (�tt{svtv�tt , 34%),

the late majority (�ttvtv�ttzs , 34%), and laggards (tw�ttzs ,

16%), where s is the standard deviation of adoption time. If

normality was true, it might reflect variations in individual

innovativeness, which is possibly an aggregate of numerous

random events and is normally distributed over the population.

However, this is a purely static picture of a non-communicating

population and it is an implausible description of an innovative

society.

At the same time, Rogers suggested a dynamic origin of this S -

shaped pattern by comparing it to an epidemic process. A relevant

description is then more likely to be a logistic function (see, e.g.,

Refs. [10–12]) than the error function. A logistic function is

basically written as h(t)~
1

2
1z tanh

t

2

� �
, which grows from zero

to one as time t goes from {? to z? . Here, the assumption is

that there is a single innovation like a disease, diffusing into a

passive population. However, the problem with this approach is

that ideas are evolving during the course of adoption, and

innovation researchers are already well aware that people actively

modify an adopted idea whenever it is possible and necessary,

which is termed re-invention [13] As a consequence, it is the rule

rather than the exception that every modified innovation may well

compete with all its predecessors, so the picture becomes more

colorful than the dichotomy of a new idea versus an old one. In

short, this epidemic description does not capture the genuine

dynamic feature of innovations, and even more refined mathe-

matical approaches such as the Bass model do not overcome such

limitations [11,12,14]. This issue is also deeply related to the pro-

innovation bias of diffusion research [9], which means that one

tends to overlook such an innovation that dies out by rejection or

replaced by a better one. Although there have been statistical-

physical approaches to introduce many competing ideas into the

dynamics of innovation [3–6], they are rather focused on scaling

behavior under specific stochastic rules than comparing the

findings with empirical observations.

To sum up, analytic concepts are lacking to explain actual

patterns of innovation diffusion as a fully dynamic process with a

multitude of ideas competing simultaneously. For this reason, we

consider simple ideal competition among ideas whose values are so

well-defined that everyone can adopt a better idea as soon as she

encounters it, without any barriers against the diffusion of

innovations. Even if this picture is unrealistic, it is theoretically

intriguing, and can serve as a reference point to start with when
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assessing innovations in practice. In particular, our results suggest

that the interplay of adoption and exploration must be considered

to achieve a plausible minimalist description, which leads to

neither normal nor logistic but slightly skewed behavior as a

signature of an ideal innovative society. This simple explanation is

in contrast to many variants of the logistic growth model that

describe asymmetry in empirical S -shaped patterns [11,12].

Moreover, the analysis tells us that the speed of progress in ideas is

coupled to how broadly ideas are distributed in the society: a fast

innovating society tends to be accompanied by a broad spectrum

of ideas, some of which can be far from state-of-the-art. It should

be kept in mind that the term ‘ideal’ is absolutely unrelated to any

judgments of value concerning the phenomena that we are

investigating but only means that we are considering a conceptual

construct that can be pursued analytically.

Methods of Analysis

Following Ref. [7], we assume that every idea is assigned a

scalar value x representing its quality. This automatically implies

that this quantity is transitive without any cyclic dominance

among ideas, and the strict dominance relationship between any

pair of distinct ideas prevents people from revisiting old ideas. A

difference from Ref. [7] is that x can take any real value, not only

an integer. Let P(x,t)dx denote the fraction of the population

choosing ideas between x and xzdx at time t . We then call

P(x,t) a probability density function (pdf) of idea x . Our

population dynamics approach on the mean-field level suggests

that the relative growth rate
1

P(x,t)

LP(x,t)

Lt
is proportional to the

fraction of those with x’vx as they are potential adopters of x .

This fraction is, by definition, the cumulative distribution function

(cdf) C(x,t):
ðx

{?
P(x’; t)dx’ and we thus have.

LP(x,t)

Lt
~k½C(x,t){�CC(t)�P(x,t), ð1Þ

where k is a positive proportionality constant representing the

rate of adoption, which can be set as unity by using a rescaled time
~tt~kt , and �CC(t) is the average of C(x,t) over the population.

Note that the total probability is always conserved becauseð
LP(x,t)

Lt
dx~k½�CC(t){�CC(t)�~0 [15]. An alternative way to

derive Eq. (1) is to start from a master equation [16]:

LP(x,t)

Lt
~

k

2

ðx

{?
dyP(y,t)P(x,t){

k

2

ð?
x

dyP(y,t)P(x,t),

where the first term describes an inflow adopting x and the second

term describes an outflow adopting higher values than x. It could

also be modified by inserting suitable kernel functions into the

integrals.

An integration by parts yields

�CC(t):
ð?

{?
C(x,t)

LC(x,t)

Lx
dx~

1

2
C2(x,t)

� �?
x~{?

~
1

2

since C(x~{?; t)~0 and C(x~?; t)~1 . It is convenient to

rewrite Eq. (1) only in terms of C(x,t) :

L2C x,tð Þ
Lt Lx

~k C x,tð Þ{ 1

2

� �
L2C x,tð Þ

Lx
ð2Þ

A stationary state with
LC(x,t)

Lt
~0 requires

LC(x,t)

Lx
~0 in

Eq. (2) since C(x,t)=
1

2
in general due to the boundary condition

at x~+? . The vanishing derivative with respect to x means

that P(x,t)~d(x{x1) with some constant x1, which should be

the highest value in the initial pdf with a compact support such

that P(x,t0)w0 only for x0vxvx1 at the initial time t0 . To

proceed to the general solution, let us rewrite Eq. (2) as

L
Lx

LĈC(x,~tt)

L~tt
{

1

2
ĈC2(x,~tt)

" #
~0, ð3Þ

where ĈC(x,~tt):C(x,~tt){
1

2
with the rescaled time ~tt~kt . Clearly,

Eq. (3) implies that the expression inside the brackets is a function

of t and independent of x. Inserting the boundary condition at

x~+? , the expression inside the bracket is {1=8 at every ~tt.
This means that the equation to be solved is the following:

LĈC(x,~tt)

L~tt
{

1

2
ĈC2(x,~tt)~{

1

8
: ð4Þ

The solution can be found as

ĈC(x,~tt)~
1

2
tanh g(x){~tt=4½ � ð5Þ

with a certain function g(x) . The definition of ĈC(x,t) requires

dg(x)=dx§0 with g(x?z?)~z? and g(x?{?)~{?.

In terms of the pdf, it means that

P(x,t)~
LĈC(x,t)

Lx
~

1

2

dg(x)

dx

� �
sech2 g(x){

kt

4

� �
, ð6Þ

where ĈC(x,t):C(x,t){
1

2
and g(x) is an arbitrary function

satisfying dg(x)=dx§0 with g(x?z?)~z? and

g(x?{?)~{?. It can be readily checked that it contains

the stationary delta function as a special case. If the initial

distribution at t~0 is a normal distribution with unit variance,

C(x,0)~
1

2
1zerf(x)½ �,

and the time evolution is determined as

P(x,t)~
e{x2ffiffiffi

p
p
½1{erf2(x)�

sech2 g(x){
t

4

n o
, ð7Þ

where erf(x) is the error function and g(x)~arctanh erf xð Þ½ � .

The speed of this wave is v(x)~x=½4g(x)�~g{1(t=4)=t , which

decreases over time. As the speed decreases, the wave becomes

sharper [Fig. 1(a)]. As another example, we take a box distribution

defined on the interval between x~{1 and z1 as our initial

Innovation Diffusion
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pdf P(x,0). Then we have

g(x)~atanh x½H(xz1){H(x{1)�{H({x{1)zH(x{1)�f g,
where H(x) is the Heaviside step function. The solution is given as

P(x,t)~

sech2 arctanh(x){
t

4

h i
2{2x2

if {1vxv1,

0 otherwise:

8><
>: ð8Þ

As time goes by, it converges to a delta peak at x~1 [Fig. 1(b)].

Let us return to the general solution [Eq. (6)]. For any g(x) and

x0, the fraction of the population having passed this innovation

level x0, i.e., 1{C(x0,t), increases as a logistic function of t.

However, it should be noted that our starting point was not meant

to be the logistic growth model. The time evolution of P(x,t) is

fully determined once g(x) is given by the initial condition,

suggesting that innovation history is already determined at the

starting point as long as the rate of adoption k remains unaltered.

If the initial condition is nonzero only over a finite range of

x[½x1,x2�, for example, P(x,t) always evolves to a delta function at

x2. This deficiency makes it difficult to gain insight on the

innovation dynamics from the current formulation, revealing its

incompleteness.

The reason is that our current formulation does not include any

generative mechanism for innovations. Therefore, we add another

term to the adoption dynamics considered so far. It could be

argued that individual exploration for different ideas can be

modeled more or less by a Brownian random walk along the x-

axis:

LP(x,t)

Lt
~D

L2P(x,t)

Lx2
, ð9Þ

where D is a measure of exploratory efforts. Because it yields a

normal distribution with variance 2Dt, this could be interpreted as

invoking the classical idea of normality in the diffusion of

innovations, but this normality enters as a consequence of the

dynamic exploration process rather than a static trait. It also

expresses a conservative viewpoint that an individual alone

achieves only small modifications that may even degenerate

equally. This is obviously a huge simplification about the human

mind, but we shall be content with such a minimalist description at

the moment. Adding this exploratory mechanism to the adoption,

the resulting equation is written as

L2ĈC(x,t)

LtLx
~kĈC(x,t)

LĈC(x,t)

Lx
zD

L3ĈC(x,t)

Lx3
: ð10Þ

By rescaling ~tt~kt and ~xx~x
ffiffiffiffiffiffiffiffiffi
k=D

p
, we set both parameters k and

D as unity. Notably, Eq. (10) does not have a stationary solution

for the following reason: When LĈC(x,t)=Lt~0, the solution for Eq.

(10) is given as Weierstrass’ elliptic function, which is even and

does not satisfy the boundary condition of ĈC(x,t) at x~+?. This

might look counter-intuitive at first glance as the pdf tends to

converge to a single point due to adoption, which could be

balanced by exploration. However, a more correct picture is that

the pdf converges to a higher position than the center, so it

gradually moves upward via exploration instead of staying at a

fixed position. This notion turns out to be plausible as will be

explained shortly below.

If we consider the boundary condition, the actual equation to

solve here is given as

LĈC(~xx,~tt)

L~tt
~

1

2
ĈC2(~xx,~tt){

1

8
z

L2ĈC(~xx,~tt)

L~xx2
, ð11Þ

which can be shown identical to Fisher’s equation [17] by simply

changing the variables. Fisher’s equation was originally devised to

describe the frequency of a single mutant gene in a one-

dimensional population rather than a cdf, and it is interesting

that the same equation arises in the context of an infinite series of

mutants in an infinite-dimensional (i.e., mean-field) population.

This equation has been extensively studied in biology and physics

as one of the simplest reaction-diffusion systems [10,18,19]. We

only mention the basics of the known results about Fisher’s

equation and those who are interested in comprehensive

discussions may refer to Ref. [10] and references therein.

Equation (11) admits traveling wave solutions, and preserves the

shapes during propagation. The traveling wave solutions are stable

against small perturbations within a finite domain, moving with

the waves. Each speed builds up a unique wave shape, and speed v
is determined by the tail of the initial cdf in the following manner:

If C(~xx,~tt0)*e{a~xx with aw0 as ~xx?? at initial time ~tt0, the speed of

the wavefront asymptotically converges to v~
ffiffiffiffiffiffiffiffiffiffiffiffi
Dk=2

p
aza{1
� �

when aƒ1, and v~vmin~
ffiffiffiffiffiffiffiffiffi
2Dk
p

when aw1. In short, a longer

tail leads to a faster propagating wave. Even if an initial pdf has

bounded support, i.e., P(x,t0)w0 only for xvx1, a traveling wave

solution will develop with v~vmin instead of a delta function. The

information on the initial condition other than the tail exponent

becomes irrelevant in the asymptotic limit due to the random-walk

process. There is no traveling wave solution below vmin, which is

Figure 1. Adoption-only dynamics with different initial condi-
tions. (A) The normal distribution with unit variance [Eq. (7)]. (B) The
box distribution defined on {1vxv1 [Eq. (8)].
doi:10.1371/journal.pone.0068583.g001
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consistent with the impossibility of a stationary solution as stated

above. Another important feature is that the characteristic width w

of the wavefront is proportional to
ffiffiffiffiffiffiffiffiffi
D=k

p
because D and k

compete to determine width. In contrast, speed is expressed as

v!
ffiffiffiffiffiffiffi
Dk
p

as both the mechanisms of exploration and adoption

make positive contributions. As a consequence, the characteristic

time for a wavefront to pass through a particular point x is not

sensitive to D because w=v*k{1.

A fully analytic expression for a specific velocity

v~
5

2
ffiffiffi
3
p

ffiffiffiffiffiffiffi
Dk
p

&1:02vmin is available as:

C(x,t)~
1

4
3z2 tanh

x

4
ffiffiffiffiffiffiffiffiffiffiffiffi
3D=k

p {
5k

24
(t{t0)

" #(

{ tanh2 x

4
ffiffiffiffiffiffiffiffiffiffiffiffi
3D=k

p {
5k

24
(t{t0)

" #)
, ð12Þ

where t0 is a reference point in time [20,21]. As this expression is

handy to maintain qualitative features unaltered, we will focus on

this solution to observe differences from the normal or logistic

descriptions. The numbers presented here should be taken as

indicating qualitative features of the solution, and not as universal

values for arbitrary v. The shape of the wave P(x,t) is obtained by

differentiating Eq. (12) with respect to x, which is shown in Fig. 2(a)

at t~t0. As is clearly shown there, this pdf is not symmetric but

skewed negatively, i.e., with a longer tail on the left side. The

skewness is quantified from the second and third moments as

c1&{0:5772. Due to this skewness, while the mean is

�xx&{3:464
ffiffiffiffiffiffiffiffiffi
D=k

p
, the maximum is located at

x�&{2:401
ffiffiffiffiffiffiffiffiffi
D=k

p
. Consequently, the most commonly observed

idea tends to lead us to overestimate the population mean. Recall

the five categories defined with respect to the mean adoption time,

which is given by our P(x,t) as

�tt~

ð?
{?

tP(x~0; t)dt

� �
=

ð?
{?

P(x~0; t)dt

� �
~

12

5
, when t0~0

and the idea to adopt has value x~0 [Fig. 2(b)]. The standard

deviation around �tt is s&3:632, from which we can compute

fractions of the five categories as 1:36% (innovators), 12:66% (early

adopters), 39:42% (early majority), 32:13% (late majority), and

14:43% (laggards). Note that the fraction of innovators is only one

half of the existing estimate based on the normality. This is due to

the inherent skewness of the pdf as a solution for this dynamics.

Figure 2. Shape of a traveling wave [Eq. (12)] resulting from
Fisher’s equation. (A) P(x,t)~LC(x,t)=Lx at t~t0 with D~k~1. The
solid vertical line is the mean, and the dotted vertical line is the mode of
the pdf. (B) Temporal pattern of adopting an innovation x~0 with
D~k~1 and t0~0. The solid (red) curve P(x,t) shows how the fraction
of the population with x~0 changes over time, whereas the dotted
(green) curve 1{C(x,t) shows the fraction that has adopted x§0 as a
function of time. The solid vertical line is the mean adoption time �tt, and
the dotted vertical lines represent �tt{2s, �tt{s, and �ttzs, respectively, to
distinguish the five adopter categories.
doi:10.1371/journal.pone.0068583.g002

Figure 3. Comparison of Eq. (12) with empirical data. (A)
Cumulative number of publications on the diffusion of innovations,
excerpted from Ref. [9]. The curve is obtained by fitting a functional
form N(t)~Ns½1{C(x,t)� [see Eq. (12)] to the data points where Ns is
the saturation number at t??. The fitting parameters are
(Ns,t0,k)~(3294,1964,0:32). (B) The same data shows larger deviations
when fitted with the logistic function Ns 1z tanh½k(t{t0)�f g=2 (green)
or the error function Ns 1zerf ½k(t{t0)�f g=2 (blue). Their best fitting
parameters are (Ns,t0,k)~(3797,1970,0:086) and (3769,1970,0:072),
respectively. (C) Broadband penetration rates in Greece and the United
Kingdom (UK) from Eurostat [22]. The curves were obtained in the same
way as above with Eq. (12), yielding (Ns,t0,k)~(21:7,2007,1:84) for
Greece and (31:7,2004,1:53) for the UK.
doi:10.1371/journal.pone.0068583.g003
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The shape of P(x,t)!C(xzdx,t){C(x,t) in Fig. 2(b) can also be

interpreted as the typical fate of idea x, spread by adoption but

soon dominated by its descendant xzdx.

Empirical Results

Although Eq. (12) describes only a special case of a specific

velocity, we can verify whether it fits to the empirical data set

found in Ref. [9]. Recall that a traveling wave with v~vmin

emerges from any initial pdf with a sufficiently short tail, which we

presume is close to reality in many cases. Therefore, it would be

useful to directly work with this solution, but it is more difficult to

handle than the analytic solution Eq. (12) for practical purposes.

Fortunately, the analytic solution shows little difference in its shape

compared to the solution with vmin. Thus, we work with Eq. (12) to

interpret two different data sets: the cumulative number of

publications of innovation and the broadband penetration rates in

European countries.

Publications of innovation
The data set in Fig. 3(a) shows the cumulative numbers of

publications on the diffusion of innovations every 4 years from

1940 to 1996. As we approach the late 1990 s, the rate of increase

decreases, but it is not symmetric with the early take-off around

the 1960 s. That is, the shape is slightly skewed as our theory

suggests [Fig. 2(b)]. The curve in Fig. 3(a) shows our fit of Eq. (12)

to the data set by the least-squares method. Although the attempt

is quite cavalier, the agreement with the data points is excellent.

When compared to fittings with the error function and the logistic

function, this functional form actually provides a better explana-

tion, in the sense that the sum of squared deviations becomes one

half of each of theirs [Fig. 3(b)]. From this fitting, we can estimate

the rate of adoption k&0:32. Plugging this value into Eq. (12), we

suggest that the relevant time scale of adopting the diffusion

concept of innovations amounts to 24=(5k)&15 years. One could

argue from this excellent fit that the research field is close to the

ideal situation that we have considered: researchers are relatively

open-minded about new ideas and their communication is not

much restricted by geographic factors. Based on this idea, the

deviation of empirical adoption patterns from the predicted curve

can serve as an indicator to quantify barriers against diffusion of

innovations. For example, a classical study of diffusion research on

the hybrid corn in Iowa [9] shows a positively skewed pdf contrary

to the prediction, which may hint at the strong resistance by the

farmers to the new idea at the early stage.

Broadband penetration in Europe
Our second example in Fig. 3(c) shows broadband penetration

rates in European countries, as published by Eurostat [22]. This

quantity means the number of high-speed connections (§144

Kbits/s) per 100 inhabitants. The figure tells us that the

broadband penetration in Greece started about 3 years later than

that in the UK, and its saturation level in the future will be 10%
lower than that of the UK. Despite these differences, the relevant

time scales of adoption are estimated to be about 3 years for both

countries.

In fact, the rates of adoption, evaluated from the broadband

penetration rates, do not change much across European countries.

Table 1 shows the least-square fitting results of Eq. (12) to the

broadband penetration rates from 2002 to 2010 in EU member

countries [22]. Note that the values in column t0 are relative to

2002. In Fig. 4, we plot the resulting k values in Table 1. The

horizontal axis represents the summary innovation index (SII),

which has been developed to assess aggregate national innovation

performance of the EU member countries [23]. It is a composite

index showing how many relevant indicators such as education,

employment and R&D are above or below EU averages. Figure 4

Table 1. Fitting results of Eq. (12) to the broadband penetration rates from 2002 to 2010 in EU member countries.

Country Ns t0 k Country Ns t0 k

BE 33.560.4 0.4960.04 0.9060.02 LU 34.860.9 2.5860.08 1.5660.10

BG 15.561.0 4.4360.11 1.9060.31 HU 22.061.0 3.3660.10 1.4360.12

CZ 21.461.1 3.3760.13 1.6860.21 MT 43.4616.9 3.7461.15 0.8560.33

DK 40.762.0 0.9960.21 1.3960.21 NL 40.560.9 1.0660.08 1.3360.08

DE 38.562.5 2.6760.18 1.0560.10 AT 26.961.2 1.1160.14 0.9360.08

EE 28.561.2 1.9960.13 1.3660.15 PL 18.560.8 4.3160.08 1.4160.08

IE 23.760.5 3.3860.05 2.0360.11 PT 19.860.9 1.4860.15 1.3060.14

EL 21.760.5 4.7560.04 1.8460.06 RO 14.060.7 4.2560.19 2.5460.58

ES 24.960.6 1.8460.08 1.1560.06 SI 26.860.8 2.8260.07 1.2860.07

FR 33.961.1 2.1060.10 1.2660.09 SK 19.162.0 4.3960.20 1.5360.24

IT 22.360.5 1.9360.07 1.3660.07 FI 31.160.9 1.3660.13 1.8960.20

CY 28.061.6 4.1260.11 1.4760.13 SE 35.461.7 1.2660.17 1.2960.16

LV 20.160.8 3.4760.10 1.8760.19 UK 31.760.3 2.0560.04 1.5360.04

LT 21.560.4 3.1260.04 1.5260.05

doi:10.1371/journal.pone.0068583.t001

Figure 4. Summary innovation index (SII) versus the rates of
adoption in the European Union (EU) member countries.
doi:10.1371/journal.pone.0068583.g004
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suggests that the differences in innovativeness measured by the SII

cannot be explained by the differences in the rates of adoption.

Therefore, if we use the SII as a proxy variable for measuring

speed v!
ffiffiffiffiffiffiffi
Dk
p

, the differences in the SII should be explained by

variations in the measure D of exploration activity.

If k is uniform, our model predicts that more diverse values of x
will be observed in a society where innovation occurs faster

because both v and w scale as
ffiffiffiffi
D
p

. The abundance of laggards

with low x results from the fast innovation but also fuels it as

market potential, and both effects are incorporated in the solution.

Discussion and Summary

In summary, we have studied an ideal innovative society where

a better idea has a better chance to diffuse into the population.

Our model is characterized by competition among an infinite

number of ideas. In the presence of an adoption mechanism only,

we are able to find the full solution exhibiting logistic behavior, but

it is a purely deterministic view leaving the concept of innovation

obscure. By adding another term for exploratory behavior, which

connects to the classical idea of normality, we have found traveling

wave solutions as described by Fisher’s equation, whose velocity is

proportional to the square root of exploration activity D times the

rate of adoption k. At the same time, its width is proportional toffiffiffiffiffiffiffiffiffi
D=k

p
due to the competition of adoption and exploration.

Incorporating both the normal and logistic features, the shape of

the solution is neither normal nor logistic but negatively skewed,

leading to a discrepancy between the mean and the mode as well

as a significantly smaller size estimate of innovators compared to

that of the conventional theory. It is compared with the asymmetry

in empirical adoption patterns and proposed as a reference point

to assess the effectiveness in diffusion of innovations. Furthermore,

as the rates of adoption do not vary much across countries, we

predict a tendency for the width of a distribution to be positively

correlated with the overall speed of innovations.
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