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Abstract

Transcriptomic assays that measure expression levels are widely used to study the manifestation of environmental or
genetic variations in cellular processes. RNA-sequencing in particular has the potential to considerably improve such
understanding because of its capacity to assay the entire transcriptome, including novel transcriptional events. However, as
with earlier expression assays, analysis of RNA-sequencing data requires carefully accounting for factors that may introduce
systematic, confounding variability in the expression measurements, resulting in spurious correlations. Here, we consider
the problem of modeling and removing the effects of known and hidden confounding factors from RNA-sequencing data.
We describe a unified residual framework that encapsulates existing approaches, and using this framework, present a novel
method, HCP (Hidden Covariates with Prior). HCP uses a more informed assumption about the confounding factors, and
performs as well or better than existing approaches while having a much lower computational cost. Our experiments
demonstrate that accounting for known and hidden factors with appropriate models improves the quality of RNA-
sequencing data in two very different tasks: detecting genetic variations that are associated with nearby expression
variations (cis-eQTLs), and constructing accurate co-expression networks.
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Introduction

The transcriptional landscape of a cell is complex and with the

help of RNA-sequencing technology (RNA-seq) we are now

starting to characterize it. In particular, RNA-seq technology can

assay the entire transcriptome, including known isoforms of each

gene and even novel transcripts. Combined with genotyping

assays, we can more accurately elucidate the genetics of the

transcriptome by identifying diverse transcriptional events that are

associated with genetic variants. (Such associated variants are

referred to as eQTLs). In this way we can begin to precisely

identify the molecular mechanisms that underlie functional genetic

variations, including implicated disease loci from genome-wide

association studies, and prioritize implicated hits for follow-up

experiments [1].

However, quantifying expression levels from RNA-seq data is

not a trivial task: the output of an RNA-seq assay is millions of

short RNA sequences, which then must be mapped to the genome

and aggregated to quantify the expression level of each transcript.

The accuracy of the resulting expression level estimates depends

not only on the mapping and quantification algorithms, but also

on carefully correcting for several technological biases that result

in unwanted variability in the number of reads for each transcript.

For example, technical factors involved in sample collection,

library preparation, and sequencing may manifest as variation that

depends on the batch, date, or sequencing lane of a sample. Other

well-known examples of unwanted technical variability include

sequencing biases related to GC content [2], and variation due to

limited sequencing depths (SD) [3].

In addition to technical artifacts from measured, known,

covariates such as sequencing depth, it may be useful to account

for ‘‘hidden’’ covariates (or factors) that can introduce variability

into the transcriptome. Hidden factors may comprise technical

artifacts from unmeasured differences in sample preparation, while

others arise from factors not specific to RNA-seq technology [4].

For example, unwanted, or unknown biological variations in the

subject pool, such as in BMI, can have broad effects on gene

expression [5], resulting in biological variability that confounds

identification of the effectors of interest, such as disease causing

genes or eQTLs [6].

Such known and hidden systematic biases result in spurious

correlations between subjects or certain transcripts, and depending

on the type of analysis that is performed, lead to increased false

positives or false negatives. For instance, it is well known that

spurious correlations among subjects decreases the power to detect

eQTLs [7,8], and can also result in false associations [9]. Similarly,

co-expression networks constructed from uncorrected data will

likely include many false positive edges due to broad trends in the

data [10]. Normalizing RNA-seq measurements to account for

both known and hidden biases is a central task in the analysis of

such data. Indeed, several methods have been proposed for
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normalizing microarray data by attempting to account for both

known and hidden covariates, and these methods have been

shown to dramatically improve various down-stream analyses [6–

8,10,11] – resulting, for example, in a two- to three-fold increase in

the number of statistically significant associations between SNPs

and nearby transcripts (known as cis-eQTL) [7,12], as well as

significantly enhanced reproducibility of results among different

datasets [12]. However, to date, such methods have not been

applied to RNA-seq data.

In this paper, we first describe a unified residual normalization

framework encompassing most existing methods that attempt to

account for both known and hidden covariates. In particular,

existing normalization methods essentially combine a linear

dimensionality reduction step to estimate the hidden covariates

through matrix factorization, and a regression of the expression

data onto covariates constructed from both known and hidden

covariates. The way in which each of these two steps are

optimized, and combined, differentiates the various approaches.

This unified framework allows us to better compare existing

approaches, and identify components whose variation is linked to

specific underlying biological assumptions. For example, all

methods derived from this framework assume that hidden

covariates, like principal components, represent broad patterns

in expression that affect many genes in the same way – an

assumption likely to fail when the phenotype of interest is also

expected to have a strong effect on expression patterns (e.g.,

[13]).

To go beyond the limiting assumption of existing methods, we

formulate a new model of hidden co-variation, and develop the

HCP (Hidden Covariates with Prior) method to renormalize the

two largest RNA-seq data sets constructed to date [2,14]. HCP

infers a set of artifactual covariates, by modeling such covariates

using a prior that depends on linear combinations of known

covariates. In a sense, by using the known covariates as training

examples, HCP attempts to learn variability patterns that are likely

to be artifactual, instead of merely finding factors that can explain

the most variability. Based on the strength of the prior, HCP can

balance the tradeoff between removing ‘‘narrow’’ and ‘‘broad’’

components that exhibit similar patterns to the covariates’, and

more major components that do not. Further, HCP’s inferred

covariates can also capture additive relationships between

technical covariates that lead to spurious correlations (e.g., additive

effects of gender and age).

Using the two RNA-seq datasets, we apply HCP and existing

normalization methods to two tasks: (1) cis-eQTL detection, and

(2) co-expression estimation. In accordance with previous studies

with microarrays (e.g., [7]), our experiments confirm that all

methods that remove hidden covariates greatly improve both the

power of and consistency of cis-eQTL detection with RNA-seq

data – with some small differences in performance. However, on a

second task of constructing meaningful co-expression networks,

blindly removing hidden components is not ideal – in this scenario,

HCP outperforms simpler methods that make less stringent

assumptions about the hidden covariates.

Methods

In the following section, we will first introduce terminology for

defining the expression normalization problem, and then present

a unified residual framework for understanding the existing

approaches. Then we present our new normalization method as

derived from a natural extension to this framework.

Unified Representation of Existing Normalization
Methods
The goal of normalization is to decouple the true expression

signal from known and unknown artifacts in the data. To do so,

most existing methods (e.g., [6–8,10,11,13,15,]) assume that the

observed expression measurements can be modeled in log-space

(logarithm of read counts) using a Gaussian distribution with an

expectation that depends linearly on the known and hidden

covariates. Using this framework, the ‘‘true’’ expression measure-

ments can be obtained by subtracting off the effects of such known

and hidden covariates. Specifically, an expression dataset over n
subjects and g genes (or transcripts), as summarized in the n|g

matrix ŶY , is modeled as follows:

ŶY*N (YzXWzFB,
1

a
I) ð1Þ

where F is a matrix of known covariates (also referred to as

factors), Y is the true, and unobserved, expression dataset, X is a

matrix of hidden covariates, and B andW are matrices that model

the effect of known and hidden covariates for each gene. In this

setting X ,W , and B are unknown and must be estimated. Once

the unknowns are estimated, they are removed from the data, and

the true expression signal is computed as the residual

Y~ŶY{(XWzFB). The primary differences between the

existing methods are in (i) the types of covariates that are included

in F , (ii) the assumed priors (or equivalently, the regularization

form) on X ,B and W , and (iii) the optimization algorithm used to

fit the model parameters.

We note in the case of RNA-seq data, several authors have

proposed to model the raw read counts using Poisson or negative

binomial distributions (e.g., [16]); however, as described in the

next section, we chose to model the logarithm of counts with a

Gaussian distribution, as a well-studied downstream analyses that

we consider is performed on ranks and not the actual number of

reads (e.g., using Spearman correlation to identify eQTLs, see

Methods). Additionally, Gaussian likelihood is widely used by

practitioners (after suitable data transformation, e.g., [2,17–19]) as

it results in analytic solutions for the model parameters,

considerably reducing the computational complexity. Similar

analysis and insights could be applied to other distributional

choices for the likelihood.

As further detailed in the Extended Methods, most existing

methods can be derived from one of three special cases of the

above formulation: (i) assuming only known covariates, (ii)

assuming only unknown covariates, and (iii) assuming both known

and unknown covariates. In each case, once the relevant unknown

parameters are estimated, the corresponding artifactual effects are

subtracted from the data.

For example, in the simplest scenario where we assume no

hidden covariates, as in the ComBat method [15] or the regression

method in [20], we only need to estimate the matrix B, which
models the effect of known covariates on the expression of each

gene. Known covariates can include technical factors such as

batch or sequencing lane, or biological factors such as age, or

gender. The main limitation of the known-covariates-only

methods is by relying solely on accurate measurements of known

covariates, they cannot remove artifactual patterns that are not

measured. In the second scenario, where we only assume the

presence of hidden covariates, as in SVA [6], RUV [11], or sparse

factor analysis [21], we need to estimate hidden covariates (X ) and

their effects on each gene (W ). Depending on the priors placed on

these parameters, we can derive various versions of the matrix

Normalizing RNA-Seq Data with Hidden Covariates
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factorization problem, including singular value decomposition

(SVD), and factor analysis. The goal of matrix factorization in

general is to find a low-dimensional representation of a high-

dimensional dataset. In this way, the inferred hidden covariates

summarize broad patterns that effect a large number of genes in

the same way. Other related approaches include various Linear

Mixed Models (LMMs), such as EMMAX [9] or PANAMA [13],

that model the effect of hidden covariates implicitly by instead

representing the broad correlation structure across individuals (see

Extended Methods).

Finally, when assuming both known and hidden covariates (e.g.

[7]) we need to simultaneously estimate hidden covariates (X ),

their effect on each gene (summarized by columns of W ), and the

effect of known covariates on each gene (B). In this setting,

including the known covariates allows the model to also remove

narrower artifactual patterns (in addition to the broad patterns

captured by the hidden covariates), as long as such patterns are

exactly captured by the known covariates and result in variability

in the expression measurements. For example, PEER [7] is a

special case of this scenario. An additional assumption of PEER is

that each gene is affected by a limited (‘‘sparse’’) set of hidden

covariates. This assumption is represented by a particular form of

prior, known as the ARD prior, on the matrix W .

In summary, it is important to note that methods that do

attempt to infer hidden covariates (scenarios (ii) and (iii)) do so by

assuming that such covariates represent broad patterns that affect

many genes in the same way. This assumption leads to a matrix

factorization problem where the goal is to find a low-dimensional

representation of a high-dimensional dataset (either the original

data, or the residual after correcting for known covariates).

Effectively controlling for the complexity of such models then

becomes the main determinant of their performance, since such

models, in theory, are flexible enough to explain all the variability

in the data by means of the hidden covariates alone. In the

simplest form of matrix factorization such as SVD, model

complexity is controlled by just one parameter k that determines

the number of hidden covariates. Other models can have

additional parameters that also penalize the norms of each hidden

covariate or their effects, and in such models, complexity is not

only determined by k but by the simultaneous setting of all the

parameters.

Hidden Covariates with Prior (HCP)
The statistical model behind HCP is motivated by two

observations. First, in expression data in general, known artifacts

are often correlated with multiple non-consecutive principal

components (PCs), reflecting the fact that artifacts can have both

broad and narrow effects on expression; this observation has

motivated post-hoc methods that preferentially remove PCs that

are to some extent correlated with known confounders. Second, a

possible scenario that the existing methods do not address is partial

(or ‘‘noisy’’) prior knowledge about possible confounding effects.

For example, assume that we would like to account for smoking,

and remove its effect, but our prior knowledge about the subjects’

smoking behavior is incomplete because of reporting bias (some

subjects do not report their smoking activity). Similar motivations

have recently also inspired a method [22] for inferring the activity

of cellular processes in individuals while using possibly noisy

knowledge about pathway membership for genes.

Specifically, HCP infers a set of of artifactual covariates, by

modeling such covariates using a prior that depends on linear

combinations of known covariates: X*N (FC,
1

l
I), where C is an

estimated matrix with k columns. By adjusting the strength of this

prior, HCP’s objective function allows us to represent the tradeoff

between removing major trends in the expression patterns, and

preferring the removal of known covariates. Importantly, HCP

can also learn patterns of variation that are likely to be artifactual

(either broad or narrow), based on the types of variability patterns

that are captured by the known covariates. Using this prior, HCP

will preferentially remove components with similar patterns to the

covariates, allowing us to remove narrower components that are

known to be artifactual, and more major components that are not

(within a parameterized tradeoff scheme).

An alternative to the above approach would be to only assume

that each hidden covariate has a prior Gaussian distribution with

an expectation that depends on a known covariate (as opposed to

linear combinations of known covariates), which gives rise to the

expression X*N (F ,
1

s
I). However, HCP has two main advan-

tages over such a model: (i) HCP can summarize and collapse a

possible set of redundant covariates to a smaller set of relevant

covariates, and (ii) HCP can detect patterns that are associated

with linear combinations of known covariates (e.g., additive effects

of age and gender), that could also result in spurious correlations in

the data.

HCP accepts a set of known covariates in order to estimate

hidden covariates. Such known covariates can be any measurable

factors that can introduce variability in expression measurements

(for example, sequencing depth). As with the PEER method [7], it

is also possible to use HCP without any known covariates: in such

a scenario, both methods become equivalent to a matrix

factorization method that infers principle components with broad

effects on expression measurements. An additional advantage of

HCP is its low computational cost: though the resulting objective is

not jointly convex in X ,W , and B, it is convex in each alone given

a fixed setting of the rest. Therefore, this objective can be

efficiently optimized by using a simple coordinate descent

algorithm. In all of our experiments, computing the HCP solution

required less than one minute of computational time on a standard

desktop computer.

Results

RNA-seq Datasets
In our experiments we use two RNA-seq datasets; we will refer

to these as Pickrell data [2] and Montgomery data [14].

The Pickrell RNA-seq data consists of data for 69 Yoruba

HapMap cell lines (LCLs), and is available from http://eqtl.

uchicago.edu/RNA_Seq_data/. We obtained the raw number of

reads per exon, and aggregated the reads for each gene by taking

the union of all reads mapped to its exons (for details of the read

mapping procedure see [2]). All samples were done in replicates; in

our analysis, we consider the replicate that has the largest number

of mapped reads. We only considered genes with at least 30 reads

in 10 individuals, which resulted in 12,569 expressed genes. The

genotype data for 54 of these individuals is available from the pilot

1000 Genome project: ftp://ftp.1000genomes.ebi/ac.uk/vol1/

ftp/pilot_data.

The Montgomery RNA-seq data consists of 60 Caucasian (i.e.,

the CEU population) HapMap cell lines (LCLs), and is available

from http://jungle.unige.ch/rnaseq_CEU60/. Mapping and read

quantification per exon was done as in [23]. As above, we

obtained the raw number of reads per exon, and aggregated the

reads for each gene by taking the union of all reads mapped to its

exons. We only considered genes with at least 30 reads in 10

individuals, which resulted in 14,573 expressed genes. The

genotype data for 58 of these individuals is available from the

Normalizing RNA-Seq Data with Hidden Covariates

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68141



pilot 1000 Genome project: ftp://ftp.1000genomes.ebi/ac.uk/

vol1/ftp/pilot_data.

For visualization purposes, we applied k-means clustering to

each dataset, using standardized, logarithm-transformed RPKM

values, where each gene has zero mean and constant variance, to

cluster subjects and genes. As shown in Figure 1, we observe strong

trends in the data, represented by broad clustering patterns in both

datasets. These clusters are present in both raw and RPKM data.

As it turns out, SD is the main covariate that significantly

correlates with this broad pattern (e.g., pv10{4 with the first,

fourth, and twelfth PCs in the Pickrell data). Obviously, removing

such artifactual trends will reduce, or remove, spurious correla-

tions, and is thus a key aspect of any analysis that involves

generalizing over genes or subjects. We note that from Figure 1,

though, it is evident that simple scaling normalization methods

such as RPKM or TMM [24], or rank-based normalization (e.g.,

Quantile normalization), cannot remove such broad clusters, as

these methods preserve the ranking of the genes in each subject.

One major explanation for this is that SD appears to affect

different genes differently, which cannot be accounted for by such

methods.

Known Technical Covariates
As we describe in the next section, we applied HCP and several

other methods that can be derived from the unified framework in

Equation (1) to normalize Pickrell and Montgomery RNA-seq

datasets. For methods that can use known covariates (like HCP,

PEER [7], and a simple ridge regression method), we identified

three technical covariates that can introduce subject-specific

variability: (i) total number of reads (i.e., SD), (ii) subject-specific

GC bias, and (iii) subject-specific gene-length bias. We describe

each of these covariates below. (These three covariates are over

subjects (or individuals), and constitute the columns of the matrix

F with dimensionality n|r where n is the number of individuals

and r is the number of known covariates, which is 3 in our case).

We note that the models we consider correct systematic biases

that vary over subjects (i.e., subject-specific covariates), and do not

consider covariates that only vary over genes and are constant for

the same gene in different subjects (e.g., direct effect of gene length

on reads mapped to each gene which is considered in RPKM

correction [25]). This is because we are not interested in the

absolute expression level of each gene, and our analyses consist of

identifying biological variability over subjects. Therefore, any bias

that affects all subjects by the same factor (e.g., constant gene

length for a given gene which affect the number of mapped reads)

will not impact the results, and will simply be subtracted out when

standardizing each gene.

We construct SD as the total number of mapped reads to exons

per-subject. We obtain subject-specific GC as the total variation in

read counts (in log space), per-subject, that can be explained by

GC content. To do so, we compute the correlation coefficient

between ŶYi and a for each subject i, where ŶYi is a vector with

elements representing the logarithm read count per gene, and a is

a vector with elements representing the percent GC content per

gene (i.e., aj is percent GC content of gene j). We considered

subject-specific GC bias as a covariate as it was previously shown

that GC bias can vary based on sequencing lane and so can be

thought of as a subject-specific covariate [2]. We also suspected

that a subject-specific gene-length covariate may capture technical

differences in terms of the initial RNA quality. Similarly to the

subject-specific GC bias, we obtain subject-specific length bias, for

subject i, by correlating ŶYi with b, where b is a vector representing

the length (in bases) for each of the genes.

Figure 1. Heatmap of RNA-seq data from (a) Pickrell data and (b) Montgomery data. Rows represent subjects (or individuals) and columns
represent genes. Using k-means clustering on corresponding RPKM normalized data, subjects are grouped in three clusters and genes are also
grouped into three clusters. As observed later, these broad clustering patterns are primarily driven by confounding factors such as sequencing depth.
doi:10.1371/journal.pone.0068141.g001

Table 1. Fraction of shared cis-eQTLs at 10% FDR between
pairs of various versions of normalized Pickrell RNA-seq data.

RPKM Raw Ridge SVD
SVD +
tech PEER HCP

RPKM 1.00 0.83 0.78 0.83 0.84 0.91 0.86

Raw 0.35 1.00 0.78 0.78 0.77 0.90 0.90

Ridge 0.18 0.43 1.00 0.65 0.60 0.82 0.88

SVD 0.09 0.20 0.31 1.00 0.77 0.83 0.77

SVD +
tech

0.08 0.18 0.25 0.70 1.00 0.74 0.70

PEER 0.07 0.16 0.28 0.60 0.58 1.00 0.73

HCP 0.06 0.16 0.29 0.53 0.53 0.70 1.00

Each row depicts the fraction of cis-eQTLs discovered using a particular
normalization method that are also discovered in another normalized version.
For example, the element at row i and column j (the (i,j)th element) depicts the
proportion of cis-eQTLs discovered using normalization method i that are also
discovered in normalization method j.
doi:10.1371/journal.pone.0068141.t001
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The specific choice of the three known covariates was due to

limited knowledge about other measured covariates in these two

datasets, and that previous publications have shown that these

types of covariates result in expression variability in RNA-seq data

(in particular sequencing depth, and per-subject GC bias). There

are many other technical or biological covariates, such as RIN,

batch number, time of day, BMI and so on, that can affect

expression, and should be utilized if available. Additionally, one

can also include non-linear functions of the available covariates so

as to be able to detect non-linear effects of the confounding factors.

Evaluating Normalization Methods

In the following section, we compare various normalization

methods in two different tasks: (i) identifying cis-eQTLs (ii) and

constructing accurate co-expression networks.

Identifying cis-eQTLs Using RNA-seq Data
We evaluated the residuals resulting from each normalization

method by computing the number of significant associations

between genes and SNPs that lie within 100Kb from the gene’s

transcription start site (TSS) (i.e., cis-eQTL analysis). SNPs that

are within 100Kb of multiple genes as assigned to the closest gene.

This type of evaluation based on cis-eQTL discovery is used in

many previous eQTL studies [7,8,12]; unlike trans-eQTLs

(association between SNP and distal genes), an increase in the

overall number of significant cis-eQTLs is unlikely to arise from

systematic artifacts because the particular genetic variation that

impacts each gene is specific to the gene (i.e., a ‘‘narrow’’

component), and further, normalization procedures remove variable

components of the data (and do not add variability), and therefore

it is very unlikely to falsely introduce spurious associations.

Following standard procedure [12,14], we computed a p-value for

the Spearman correlation coefficient for each gene and each

nearby (cis) SNP. We accounted for multiple hypothesis testing

using false discovery rate (FDR) [26] (applied to all tested SNP-

gene pairs), and report the number of discoveries at 1%, 5%, and

10% FDR.

Figure 2 shows the number of cis-eQTLs that were detected

using (i) the raw data, (ii) RPKM data, (iii) ridge regression (as in

Equation 2), (iv) SVD, (v) ridge regression to remove known

covariates followed by SVD (SVD + tech) (a simplified approx-

imation to PEER) (vi) PEER, and (vii) our HCP method. We set

the model parameters on one dataset (Montgomery), and use the

same setting on the other dataset – we obtained similar parameter

settings when using Pickrell data as the ‘‘training data’’ for

choosing the parameter settings. For SVD, we investigated several

settings for k~f2,4,6,:::,20g (the number of components that are

removed), and observed the best performance for k~10 (shown in

Figure 2). PEER also requires setting k, however, we noticed

negligible difference for settings of 6vkv40 and so selected

k~10 for both datasets. For our HCP method, we set

k~20,s1~20,s2~1,l~1, based on cross-validation on Mon-

tgomery data, and use the same settings of the parameters for all

experiments.

As shown in Figures 2a and 2b, HCP improves slightly on

PEER, and both methods increase the number of detected cis-

eQTL by three to four folds compared to the RPKM data.

Although the improvement of HCP over PEER is small, HCP is

much faster: whereas PEER required at least 20 minutes of

computation time (we used the C implementation of PEER

provided by the authors, using the default thresholds on

convergence), we can solve for the HCP solution in less than a

minute on a standard desktop computer. This figure also illustrates

that simpler methods, like ridge regression, that do not attempt to

remove hidden covariates perform much worse than the other

methods. In addition to ridge regression, we also investigated the

performance of other ‘‘known covariates only’’ approaches that

use different priors on W . In particular, an element-wise sparsity

prior, using the ‘1 norm to regularize W , or low dimensionality

prior, using the nuclear norm to regularize W , did not improve

the performance of the ‘‘known covariates only’’ approach (data

not shown). As demonstrated by Figures 2a and 2b, joint

estimation of known and hidden covariates (as in PEER and

HCP) tends to result in better performance compared to simply

removing the top principal components of the data.

Using the HCP model, we find that 74% of the variance of

removed expression (X|W ) can be explained by known factors,

where 35–75% of variance of each hidden factor can be explained

by a combination of known technical factors, and an additional 5–

20% of some factors can be explained by non-linear combination

of these factors (based on five fold cross-validation). The remaining

variance is likely to be due to other technical or biological factors

that are not directly measured.

In addition to the eQTL test, we also compared the consistency

of the eQTL discovery in the two datasets. To do so, we computed

the Spearman correlation coefficient between the vectors of SNP

(and also gene) p-values in the two datasets. There are 75,358

shared SNPs that are associated with a gene (i.e., cis-SNP),

corresponding to 7,751 genes. As shown in Figures 2c and 2d,

HCP along with PEER and SVD greatly improve the consistency

of discoveries between these two studies.

Differences in cis-eQTL Discovery Based on

Normalization. Having shown that accounting for both known

and hidden factors greatly improves cis-eQTL discovery, two

related questions naturally follow: (1) to what extent do the cis-

eQTLs discovered by various methods overlap, and (2) to what

extent are newly discovered cis-eQTLs detectable in the original,

unnormalized dataset? To answer these questions, we first

investigated the concordance between the list of cis-eQTLs

produced by the different normalization methods. As a first

analysis, we assessed the fraction of shared cis-eQTLs at 10% FDR

between all pairs of normalized datasets. As shown in Table 1, all

normalization methods re-discover a large fraction of cis-eQTLs

that are discovered in the most basic version of the data (e.g.,

RPKM normalized). However, removing hidden covariates does

not uniformly decrease the p-values and the discrepancy is not

merely a thresholding issue. This is evident from from the low

Spearman correlation coefficients between vectors of gene-SNP p-

values obtained for RPKM and various versions of normalized

data: the Spearman correlation coefficient between RPKM and

SVD, PEER, and HCP, are 0.17, 0.29, and 0.3, respectively.

Finally, though there is a large overlap between the discoveries

made when using different normalization methods that estimate

hidden covariates (e.g., Table 1: 73% of cis-eQTLs discovered by

PEER are also discovered by HCP), normalization does result in

differences in lists of prioritized cis-eQTLs (e.g., 30% of cis-eQTLs

discovered by HCP are not discovered by PEER). So in short, the

methods that account for hidden covariates do not produce

completely different results compared to those that don’t, and most

of the discoveries made in baseline models (e.g., RPKM or Ridge)

are also rediscovered by the more complex models. However, in

additions to the baseline discoveries, hidden covariates methods

discover statistically significant associations that were perhaps

impacted by unknown confounding factors, which reduced the

detection power.

Normalizing RNA-Seq Data with Hidden Covariates

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e68141



Accuracy in Co-expression Network Analysis
A correlation between two genes is often indicative of co-

regulation, co-functionality, or a regulatory relationship. In fact,

the ‘‘guilt-by-association’’ principle [27] is routinely applied to co-

expression networks to identify genes with similar functionalities,

or to predict function for unknown genes. However, technical

artifacts in expression data that lead to spurious correlations

between the subjects result in false positive associations between

genes, reducing the accuracy of guilt-by-association based

approaches.

As we showed in the last section, a normalization step that

removes confounding variability in the RNA-seq data greatly

improves the power of cis-eQTL detection. On the other hand, the

correlation between genotype and expression are expected to be

much narrower and weaker than correlations between expression

levels of two co-functional or co-regulated genes, and it is not clear

if an un-guided removal of the top principal components will also

remove true biological variability that is not evident in the cis-

eQTL detection task. In this section, we investigate the accuracy of

co-expression networks constructed from Montgomery and

Pickrell datasets in terms of reflecting co-functionality between

genes, after the application of several normalization methods.

In particular, we investigate the consistency of the constructed

co-expression networks with prior knowledge about co-function-

ality of genes, by attempting to use these networks as input to a

gene function prediction algorithm. More specifically, we follow a

standard approach (as in [28], also see [29]): we first construct a

co-expression network from each dataset using the Pearson

correlation coefficient. We then attempt to predict gene function

from each network using a label propagation algorithm [30].

Specifically, from each network, we predict gene function for Gene

Ontology (GO) [31] categories (downloaded September 2010) that

have between 30–300 annotations. We excluded all annotations

with an IEA evidence code, as these annotations are less reliable

and not manually curated. We evaluated the performance using

average area under the precision recall curve (AUP) in predicting

each gene function in 5-fold cross-validation.

As a first analysis, for all the normalization methods we used the

same parameter setting as in the previous section; by doing so, we

also investigate the robustness of these methods with respect to the

type of down-stream analysis performed on the normalized data.

Figure 3 shows AUPs for each of the co-expression networks. Since

the performance of SVD significantly varies based on the setting of

its parameter k (shown in Figure 4), the final performance

comparison in Figure 3 shows both the best setting of k for cis-

eQTL detection, and for the GO prediction test (SVD (2) and

SVD (10), respectively). Unlike the cis-eQTL detection task, an

unguided removal of top principal components, where k is

maximized for the performance on cis-eQTL task, significantly

reduces the accuracy of co-expression networks compared to the

RPKM data. In contrast, PEER and HCP still remove hidden

covariates using the same setting optimized for the cis-eQTL task,

Figure 2. Detection of cis-eQTL on (a) Pickrell and data (b) Montgomery data. Correlation between (c) SNP-level p-values and (d) gene-level
p-values in Montgomery and Pickrell datasets. P-values for the correlation coefficients for SNP-level comparisons are show on top of each bar. For the
gene-level comparison, all p-values for the correlation coefficients are smaller than 10{100. Error bars show the 90% confidence intervals for the
correlation coefficients.
doi:10.1371/journal.pone.0068141.g002
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resulting in prediction of gene function. Therefore, compared to

principal components, the hidden components that are removed

by PEER and HCP are more likely to be artifacts, and these

methods are less prone to overfitting.

Discussion and Conclusion

RNA-sequencing is becoming widely adopted in large-scale

transcriptomic studies, and specifically in genetics of gene

expression studies (eQTL studies) (e.g., Geuvadis project http://

www.geuvadis.org/web/geuvadis/RNAseq-project and GTEx

project [32]). A major factor in deriving meaningful biological

knowledge from transcriptomic studies that are based on healthy

subjects or unstimulated data, where there is no apparent response

component, is correcting for unwanted variability that stems from

technical factors or unwanted biological variation. The impact of

such factors on expression variability is often larger than those that

derive the biological questions of interest, and if unaccounted for,

results in spurious associations, or a loss in power. For instance,

previous eQTLs studies have shown that, depending on the size of

the study, removing even up to 50 PCs of expression data

improves identification of genetic associations between cis-SNPs

and expression variability of local genes [33].

Consistently with previous studies on microarrays, we find that

when using RNA-seq data, removing broad expression trends

(either PCs of expression data, HCP or PEER hidden factors)

results in a drastic increase in the number of cis-eQTL discoveries

(between 2 to 3 fold). Further, we find that the improvement in the

number of cis-eQTL discoveries is not very sensitive to the exact

number of PCs that are removed, so long as a sufficiently large

number of PCs are removed (e.g., accounting for 60–80%

variance in expression) – for example, here, we saw that removing

between 8–16 PCs resulted in similar performance. For the cis-

eQTL analysis, we inferred and removed 20 HCP factors.

However, the same conclusion is unlikely to hold for identification

of trans-eQTLs. In this study, we did not have sufficient power to

Figure 3. Mean average precision (AUP) in predicting gene function from co-expression networks constructed from various
normalization methods, on (a) Pickrell, and (b) Montgomery data. The figure shows the performance of SVD at two different parameter
settings (SVD (10) with k~10, and SVD (2) with k~2). Error bars show the standard errors. Figure shows the cumulative performance for (c) Pickrell,
(d) and Montgomery, datasets for the top 50 best predicted GO categories for each method.
doi:10.1371/journal.pone.0068141.g003
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identify trans-eQTLs, and as an alternative, we investigated the

effect of normalization on accurate estimation of co-expression

networks. Because master regulators, or hub genes, impact the

expression levels of many target genes, their expression profiles are

likely to be correlated with the expression PCs. This is also

expected to hold for trans-eQTLs, because they are likely to

impact the expression levels of many target genes. In our co-

expression network analysis, we found that accurate estimation of

co-expression between genes is much more sensitive to removing

expression PCs; for instance removing 10 expression PCs (as done

for cis-eQTL analysis) resulted in a drastic loss of accuracy in

identifying known co-functional interactions (Figure 4). On the

other hand, the parameter settings of HCP and PEER are more

robust across the two types of downstream analyses that we

investigated; removing the same number of hidden components

improves performance in both analyses. This observation indicates

that the hidden components removed by HCP or PEER more

precisely capture the artifactual component, and are less likely to

remove biological signal. However, from a technical perspective,

there are several fundamental difference between PEER and

HCP. First, HCP prefers to identify components that resemble

known artifacts, either linearly or non-linearly. This distinction will

be important when we have a noisy knowledge of the true artifacts.

Second, HCP can potentially account for a large set of correlated

known covariates, and summarize their impact on expression

variability by a few HCP factors.

In summary, we have presented a unified residual normalization

framework that encompasses most existing methods that attempt

to account for known and/or hidden confounding covariates, and

to remove their effects from expression data. As discussed, the

framework enables a better understanding of the similarities and

differences between the various existing approaches. Further,

using this framework, we presented a novel normalization method

called HCP. Whereas the existing approaches assume that one of

the most distinguishing features of the hidden covariates is that

they capture very broad patterns in the data, HCP attempts to

learn the types of patterns (either broad or subtle) that can be

artifactual. Based on the experiments conducted, we see that

normalization models that account for both known and hidden

covariates drastically reduce spurious correlations, and lead to

more accurate co-expression networks and cis-eQTLs. Further, a

model like that of HCP, that can account for both broad and

subtle patterns of correlation in order to infer hidden covariates

yields an effective and flexible method for correcting systematic

biases.

Extended Methods

In the next few sections we consider special cases of the unified

normalization framework, summarized by Equation (1): (i) no

hidden covariates, (ii) no known covariates, (iii) and both known

and hidden covariates, and discuss the resulting normalization

methods. As we will show, most existing normalization methods

fall under one of these scenarios.

Known Covariates
In the simplest case where we assume no hidden covariates, we

can solve for B by minimizing the negative log likelihood of the

data:

argmin
B

DDŶY{FBDDFzV(B) ð2Þ

where DDADDF~trace(ATA) is the squared Frobenius norm of A,

and V(B) is the penalty placed on B. For example, placing a

Gaussian prior on B*N(0,
1

s2
I) (also known as the ridge penalty),

equivalent to V(B)~DDBDDF~
X

i,j
B2
i,j , often alleviates over-fitting

and results in better performance on test data. Here, we can

analytically solve for B and obtain the residual Y~ŶY{FB.

The RPKM normalization method [25], a standard method for

RNA-seq data, along with TMM [24], can be expressed as a

solution to the above problem. In particular, RPKM normaliza-

tion accounts for SD and gene length bias by dividing all reads

assigned to a gene g (or transcript) in subject i by (i) ri, the SD of

subject i (in millions) and (ii) lg, the length of gene g (in thousands

of base pairs). Therefore, the logarithm of the RPKM value is

given by zi,g~�yyi,g{ log ri{ log lg, where �yyi,k is the logarithm of

number of reads mapped to gene k in subject i. So we can derive

the RPKM values from the residual model by assuming that

sequencing depth has a constant effect (i.e., the same regression

coefficient) on all genes. Unlike the RPKM normalization, the

regression problem posed in Equation (2) allows the total number

Figure 4. Performance of SVD on the GO prediction test with varying number of removed PCs (i.e., setting of k) on (left) Pickrell and
(right) Montgomery data. The red star marks the optimal setting of k for the cis-eQTL task.
doi:10.1371/journal.pone.0068141.g004
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of reads and gene length to affect different genes differently, which

will turn out to be important. Other related approaches that can

be derived from Equation (2) include the linear regression

framework proposed by [20], and the Empirical Bayes regression

method in ComBat [15]. In the latter, the regularization term

V(B) is designed so that multiple genes share the same parameter.

This choice helps avoid over-fitting in small n regime.

Hidden Covariates
In the second scenario, where we only assume the presence of

hidden covariates, depending on the constraints placed on X and

W , we can derive various versions of the matrix factorization

problem, including singular value decomposition (SVD), factor

analysis (FA), and non-negative matrix factorization (NNMF). For

example, for SVD optimizes:

argmin
X ,W

DDŶY{XW DDF ð3Þ

Suchthat : X~VS1=2,W~S1=2UT,

VTV~I ,UTU~I ,diag(S)§0

In this setting, the number of columns of X , k, is unknown.

Typically, k is set by the user to achieve a fixed level of ‘‘explained

variability’’. Alternatively, k can also be tuned simultaneously as

part of the same optimization problem (e.g., by introducing a

group penalty on X that penalizes the sum of norms of columns of

X [13]), or can be set based on a significance test (e.g.,

permutation test in SVA [6], or significance of principal

components in PCAsig [7]). Other related approaches to SVD

include SVA [6] and RUV [11] which explicitly use prior

knowledge to determine which principle components are artifac-

tual. For example, SVA consists of a regression step first to remove

the effects of interest from the observed expression dataset, and

then it performs an SVD on the residual dataset – in this way, the

effect of interest are not accidentally removed by the Principle

Components. RUV uses control genes, which, to some extend, are

expected to have constant expression across individuals, to identify

variability patterns that are likely to be artifactual. In addition,

minor alterations to the above allow us to derive several variations

of the FA model. For example, FA assumes ŶY*N(XW ,S) with a

diagonal matrix S that is estimated along with X and W , and

sparse FA assumes an additional sparse penalty on X (e.g.,

element-wise ‘1 penalty on X ) [21].

Known and Hidden Covariates
Finally, assuming both known and hidden covariates, we need

to estimate X ,W and B:

argmin
X ,B,W

DDŶY{XW{FBDDFzVB(B)zVX (X )zVW (W ) ð4Þ

where VW ,VX and VB are the penalties on W ,X and B,

respectively. Assuming the same orthogonal constraints on X and

W as in Equation (3), we can solve Equation (4) by iterating

between (i) solving for B using the current estimate of X and W ,

and (ii) solving for the SVD of (ŶY{FB) to set X and W . As

another example, the PEER [7] method essentially solves the

above objective, while assuming prior Gaussian distributions with

zero-means on X ,W , and B, and a sparsity-type prior on W .

We can also derive various forms of Linear Mixed Models

(LMMs) such as EMMAX [34], and PANAMA [13] from the

same framework. In particular, LMMs optimize a slightly different

objective, by first specifying a Gaussian prior on W*N(0,
1

s1
I)

and B*N(0,
1

s2
I) and then integrating out W and B from the

likelihood N(ŶY DXWzFB,I) to obtain the final objective function.

Recall that optimizing the likelihood N(ŶY DXWzFB,I) with

respect to X ,W ,B is equivalent to finding the solution to Equation

(4). LMMs model the effect of W , and B, implicitly through the

initial integration of the likelihood. Such approaches are typically

used to detect eQTLs while correcting for population structure in

genome wide association studies (GWAS), where columns of F

represent the first few principal components of the SNP data.

Hidden Covariates with Prior
HCP can also be derived as a natural extension of this unified

framework that is not fully encapsulated by the existing methods.

In particular, optimizing the log likelihood of the data, as modeled

by HCP, results in the following objective:

argmin
X ,B,W

DDŶY{XW DDFzlDDX{FCDDFzs1DDW DDFzs2DDCDDF ð5Þ

where C is the unknown matrix of effect of known factors F on

unknown factors X , and k, l,s1,s2 are the model parameters. Like

any hidden factor model, increasing k increases the variability in

ŶY that can be explained by the model. However, in addition to the

setting of k, the model’s capacity and performance depends on

l,s1,s2. In our experiments, we set the model parameters using

cross-validation based on a particular task of interest (e.g., set the

parameters to maximize the number of recovered cis-eQTL on

some portion of the genes, and use the same setting for all other

genes); for comparison we use the same procedure for setting k

and other relevant parameters for the other models (e.g., SVD and

PEER) that estimate hidden covariates. In all of our experiments,

computing the HCP solution required less than one minute of

computational time on a standard desktop computer.
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