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Abstract

Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers
of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] ,0.01) is the difficulty
that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from
large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000
ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)
Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw
data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling,
concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After
exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of
185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A
total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were
discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when
large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.
chargeconsortium.com/main/exomechip.
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Introduction

Exome- and whole-genome sequencing is becoming increasing-

ly affordable and allows for detection and genotyping of rare

variants in the human genome. Yet, genotyping arrays remain a

cost-effective approach when investigating genetic polymorphisms

previously identified in large populations. A limitation of using

arrays to genotype rare variants is the difficulty that automated

clustering algorithms have to accurately detect and assign accurate

genotype calls [1,2]. Large sample sizes increase the number of

occurrences of rare variants and, therefore, should facilitate

automated clustering and genotyping.

An array focused on rare and low frequency coding variation,

hereafter referred to as the exome chip, has been developed by

querying the exomes sequenced in ,12,000 individuals and

aggregating the variation that is seen in more than two individuals

in more than two sequencing efforts (http://genome.sph.umich.

edu/wiki/Exome_Chip_Design). Participating studies in the

Cohorts for Heart and Aging Research in Genomic Epidemiology

(CHARGE) Consortium [3] consented to have their Illumina

Infinium HumanExome BeadChip intensity data analyzed

collectively (n = 62,266) in order to increase the accuracy of rare

variant genotype calls. The resulting cluster file (.egt) is publically

available and we show that its use, along with best practices,

increase genotype accuracy compared to other methods alone.

Results

Genotypes were obtained for 238,876 successful variants in

accordance with our best practices (96.4% SNP pass rate) which

were converted to PLINK format [4] by cohort and combined into

a single aggregate file for further analyses. Of the 62,266 samples

genotyped, 1,380 (2.2%) had a GenCall quality score in the lower

10th percentile of the distribution across all variants genotyped

(p10GC) ,0.38 or call rate ,0.97 and were excluded from allele

frequency calculations. Because founder effects and unique

population structure have been previously observed in Icelandic

samples [5,6], the Age, Gene/Environment, Susceptibility-Rey-

kjavik study was excluded from subsequent steps. Known

duplicated samples, individuals without self-reported race, and

the HapMap controls were also removed. After excluding

duplicate variants (n = 811), the minor allele frequencies (MAF)

for 238,065 successful SNPs and 56,407 samples by self-reported

race are described in Table 1. There were 10,693 monomorphic

SNPs (4.5%), and 78.6% of the variants on the exome chip have a

MAF ,0.005. Allele frequencies for each variant by race group

are reported in the SNP information file (see Methods and Data

Access sections). Ethnicity specific HapMap allele frequencies for

the 96 controls (48 CEU and 48 YRI) and genotypes are also

available.

CHARGE Exome Chip Best Practices
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To evaluate the performance of the rare variant calling

approach (see Methods), we compared exome chip genotypes

derived from three calling methods to available exome

sequencing data in 530 ARIC individuals. First, exome chip

genotypes were called with the Illumina issued cluster file

HumanExome-12v1.egt (see Data Access section for file

location) (Dataset I). Second, we used zCall (threshold set to

7) [7] to determine genotypes for the missing variant calls in

Dataset I to create Dataset Z. Third, we used the CHARGE

best practices (see Data Access) and joint calling approach

described to ascertain exome chip genotypes (Dataset C). A total

of 185,119 variants that were present in the exome sequence

dataset and passed our best practices were compared using

genotype concordance and uncertainty coefficient tests. Results

are presented in Table 2. The uncertainty coefficients indicate

that we can predict 86.4% of the information (entropy) in the

exome sequence data when using the Illumina cluster file,

91.2% when using the zCall algorithm, and 93.4% when the

CHARGE clustering method was utilized.

These data demonstrate the importance of implementing

stringent laboratory quality control measures in addition to the

clustering algorithms and rare variant calling approaches tested.

The complete list of 8,994 failing SNPs identified in the jointly

called exome chip project are available for download on the

CHARGE public website. Genotypes ascertained with the

CHARGE jointly called exome chip cluster file (Dataset C) were

99.77% concordant with sequence data, 0.14% were missing in

exome chip data, in the exome sequence data, or both, and 0.09%

were discordant (Figure 1). Heterozygotes in Dataset C were most

often misclassified when compared to the common allele

homozygote, and mismatches were attributed equally to both

sequencing and genotyping (Table 2).

We also tested the ability of the CHARGE exome chip cluster

file to accurately assign genotypes in the three rarest variant bins:

singletons (minor allele count = 1), doubletons (minor allele

count = 2), and tripletons (minor allele count = 3). We observed

high concordance between exome chip singletons (99.99%),

doubletons (99.98%), and tripletons (99.97%) when compared to

their respective sequence genotypes in the same 530 ARIC

individuals previously described (data not shown). These results

are consistent with the global concordance tests which suggest we

are able to accurately call very rare variants.

Discussion

The results presented here demonstrate that rare variants on the

exome chip can be accurately called when using a large, combined

cluster file and best practices described when compared to existing

clustering algorithms and rare variant calling methods. The joint

calling protocol, accompanying cluster file, list of poor performing

variants on the chip, and annotation data are a valuable resource

for the scientific community and will be of great utility to those

having smaller sample sets where the calling of rare variants is

problematic. All new projects will require user decisions based on

their own cohort data and the metrics and best practices presented

here should be updated accordingly.

Materials and Methods

Subjects
Data from 62,266 participants from the following eleven studies

in the Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) Consortium [3] were included in this

joint calling experiment and study descriptions were published

previously: Age, Gene/Environment, Susceptibility-Reykjavik

(AGES) Study [8], Atherosclerosis Risk in Communities (ARIC)

Study [9], Cardiac Arrest Blood Study (CABS) [10], Cardiovas-

cular Health Study (CHS) [11,12], Coronary Artery Risk

Development in Young Adults (CARDIA) [13,14], Multi-Ethnic

Study of Atherosclerosis (MESA) [15], Family Heart Study

(FamHS) [16], Framingham Heart Study (FHS) [17], Health,

Aging, and Body Composition (HABC) Study [18], Jackson Heart

Study (JHS) [19], and the Rotterdam Study (RS) [20–23]. In

addition, we genotyped 96 unrelated HapMap samples (48 CEU

and 48 YRI) with each cohort and the list of sample IDs are

available as a reference on the CHARGE exome chip public

website.

Ethics Statement
All subjects provided written and informed consent to partic-

ipate in genetic studies, and all study sites received approval to

conduct this research from their local respective Institutional

Review Boards (IRB) as follows: ’’The National Bioethics

Committee‘‘ and ’’The Data Protection Authority‘‘ (AGES);

University of Mississippi Medical Center IRB (ARIC – Jackson

Field Center), Wake Forest University Health Sciences IRB (ARIC

– Forsyth County Field Center), University of Minnesota IRB

Table 1. Exome chip minor allele frequency distribution by race.

MAF Interval African Americans Caucasians Hispanics Asians All

(n = 13,375) (%) (n = 40,102) (%) (n = 2,128) (%) (n = 776) (%) (n = 56,407) (%)

0 23.6 16.5 43.6 77.5 4.5

(0, 0.001] 36.8 58.1 22.3 3.9 58.8

(0.001, 0.005] 14.6 8.6 13.9 3.9 15.3

(0.005, 0.01] 4.4 2.3 3.7 1.6 4.3

(0.01, 0.05] 7.9 3.8 5.1 3.0 5.7

(0.05, 0.1] 2.7 1.7 1.7 1.4 1.8

(0.1, 0.2] 3.0 2.4 2.4 2.1 2.4

(0.2, 0.5] 7.1 6.7 7.3 6.6 7.3

The following samples were excluded: all AGES individuals, race unknown or not reported, known replicates, HapMap controls, individuals with p10GC ,0.38, and
individuals with call rate ,0.97. Individuals with race designated as other were included in the overall MAF calculation, but data is not shown separately (n = 26). A total
of 238,065 variants were used for calculating minor allele frequencies after excluding those that failed laboratory quality control (n = 8,994) and duplicates (n = 811).
doi:10.1371/journal.pone.0068095.t001
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(ARIC – Minnesota Field Center), and Johns Hopkins University

(Bloomberg School of Public Health) IRB (ARIC – Washington

County Field Center); University of Washington IRB (CABS);

Wake Forest University Health Sciences IRB (CHS – Forsyth

County Field Center), University of California, Davis IRB (CHS –

Sacramento County Field Center), Johns Hopkins University

(Bloomberg School of Public Health) IRB (CHS – Washington

County Field Center), and University of Pittsburgh IRB (CHS –

Pittsburgh Field Center); University of Alabama at Birmingham

(CARDIA – Birmingham Field Center), Northwestern University

IRB (CARDIA – Chicago Field Center), University of Minnesota

IRB (CARDIA – Minneapolis Field Center), and Kaiser

Permanente IRB (CARDIA – Oakland Field Center); Washington

University IRB (FamHS); Boston University IRB (FHS); Wake

Forest University Health Sciences IRB (HABC); University of

Mississippi Medical Center IRB (JHS); Columbia University IRB

(MESA – New York Field Center), Johns Hopkins University IRB

(MESA – Baltimore Field Center), Northwestern University IRB

(MESA – Chicago Field Center), University of California IRB

(MESA – Los Angeles Field Center), University of Minnesota IRB

(MESA – Twin Cities Field Center), Wake Forest University

Health Sciences IRB (MESA – Winston-Salem Field Center) and

the National Heart, Lung, and Blood Institute; Medisch Ethische

Toetsings Commissie (METC) at the Erasmus Medical Center,

and the Netherlands Ministry of Health, Welfare and Sport (VWS)

(RS). Joint calling of the array data was approved by the

Committee for the Protection of Human Subjects (CPHS) which

serves as the IRB for the University of Texas Health Science

Center at Houston.

Genotyping
Study samples were processed on the HumanExome BeadChip

v1.0 (Illumina, Inc., San Diego, CA) querying 247,870 variable

sites described elsewhere (see Data Access) using standard

protocols suggested by the manufacturer at the following seven

genotyping centers: Broad Institute (JHS), Cedars-Sinai Medical

Center (CHS, FamHS and MESA), Erasmus Medical Center (RS),

Illumina Fast Track Services (FHS), University of Texas Health

Science Center at Houston (AGES, ARIC and CARDIA),

University of Washington (CABS), and Wake Forest University

(HABC). Each center genotyped a common set of 96 HapMap

samples to be utilized for quality control and determination of

batch effects. The two channel raw data files (.idat) for all samples

were transferred to a central location and assembled into a single

project for joint calling. A summary of the samples genotyped

within each cohort by race and gender is described in Table 3.

Table 2. Results of missing data, genotype discordance, uncertainty coefficients and frequencies of exome chip data ascertained
by three calling methods and compared to exome sequence genotypes.

Exome Sequence Exome Chip Missing Discordance Uncertainty

Genotypes Genotypes (%) (%) Coefficient

Dataset I AA AB BB XX Total

AA 94,878,501 33,679 4,467 183,952 95,100,599

AB 41,395 2,350,644 4,777 15,967 2,412,783

BB 3,658 4,642 495,626 1,809 505,735

XX 89,104 2,905 711 1,233 93,953

Total 95,012,658 2,391,870 505,581 202,961 98,113,070 0.30 0.09 0.864

Dataset Z AA AB BB XX Total

AA 94,964,611 115,849 4,394 15,745 95,100,599

AB 41,864 2,365,462 5,137 320 2,412,783

BB 3,557 5,635 496,351 192 505,735

XX 89,480 2,996 714 763 93,953

Total 95,099,512 2,489,942 506,596 17,020 98,113,070 0.11 0.18 0.912

Dataset C AA AB BB XX Total

AA 95,023,653 33,442 4,430 39,074 95,100,599

AB 41,850 2,363,664 3,969 3,300 2,412,783

BB 3,606 4,646 496,897 586 505,735

XX 89,391 2,930 706 926 93,953

Total 95,158,500 2,404,682 506,002 43,886 98,113,070 0.14 0.09 0.934

A total of 185,119 variants were used for these analyses, excluding duplicated variants, short insertion/deletions, XY chromosome SNPs, Y chromosome SNPs,
mitochondrial SNPs, sites not identified in the exome sequencing dataset, and failing SNPs as identified by the CHARGE best practices guidelines. Genotype classes are
represented as AA = common variant homozygote, AB = heterozygote, BB = rare variant homozygote, and XX = missing data. Dataset I: exome chip genotypes called
with Illumina cluster file. Dataset Z: zCall assigned genotypes to missing data in Dataset I. Dataset C: exome chip genotypes called with the CHARGE cluster file.
doi:10.1371/journal.pone.0068095.t002

Figure 1. Results of CHARGE exome chip genotype calls
compared to exome sequence data in 530 individuals.
doi:10.1371/journal.pone.0068095.g001
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The following variables were provided for each sample included in

the project: study specific sample ID, cohort name, sample type

(DNA or WGA), race (self-reported), gender, sample plate, sample

well, chip barcode, chip position, replicate ID, father and mother

IDs (if applicable).

Clustering, Genotype Calling and Laboratory Quality
Control

The Illumina GenomeStudio v2011.1 software was utilized with

the GenTrain 2.0 clustering algorithm. Genomic DNA study

samples and HapMap controls with call rates .99% (n = 55,142)

were used to define genotype clusters with races combined and

reruns excluded. The no-call threshold was set to 0.15 and we

excluded female Y SNPs when calculating SNP statistics. The

genotype quality score, representing the 10th percentile of the

distribution of GenCall scores across all SNPs genotyped (p10GC),

was visually examined in a scatter plot across all samples (Index vs.

p10GC). Samples with an empirically determined p10GC ,0.38

were identified as outliers and flagged for exclusion. The SNP

parameters ‘‘Expected Number of Clusters of Y SNPs’’ and

‘‘Expected Number of Clusters of mtSNPs’’ were set to 2.

Following automated clustering, all variants meeting the criteria

provided in Table 4 (n = 107,175) were visually inspected and

manually clustered, if possible, by two independent laboratory

technicians. AA and BB theta deviation cutoffs were determined

empirically. Variants removed from the HumanExome BeadChip

v1.1 (n = 4,969) and cautious sites, as defined by the exome chip

design committee (n = 333) (ftp://share.sph.umich.edu/

exomeChip/IlluminaDesigns/cautiousSites/cautiousSite.sorted.

sites), were also inspected. Samples with a call rate between 0.95

and 0.99 that had been previously excluded were brought back in

to the project and re-inspected based on the criteria listed in

Table 4. This additional review was necessary as the CHARGE

exome chip project contains samples from multiple DNA sources

and ethnicities that were genotyped at several centers. SNPs

exhibiting obvious batch effects were excluded. After joint calling,

reproducibility and heritability statistics, SNP statistics and sample

statistics were updated and the SNP-level quality control criteria

described in Table 5 were implemented. SNPs with reproducibility

(rep) errors .2, parent-parent-child (PPC) error .1, or parent-

child (PC) error .1 were not excluded, but were flagged and

reported back to the participating studies for further investigation.

A list of the 8,994 excluded variants is provided on the CHARGE

exome chip website as cluster positions for these sites are zeroed

out in the.egt file (note: all SNP statistics for these sites will be

converted to zero when the cluster file is imported into the

Genome Studio project). A portion of excluded SNPs may be

recoverable in projects with a homogenous population substruc-

ture, and we recommend clustering and reviewing the subset of

variants with the user’s high quality samples. Table 6 describes the

exome chip content and number of variants excluded by

functional category (see Annotation). Importantly, the v1.0 cluster

file should not be used for calling the Illumina v1.1 exome chip as

the two versions were manufactured with different bead pools.

Exome Chip Performance
Genotypes derived from available exome sequencing of 540

ARIC participants were used as the comparison dataset to test the

performance of the exome chip. We excluded 10 individuals from

the sequencing dataset due to a high missing data rate ,0.90, or

non-overlap of individuals with existing exome chip data. Exome

sequencing data is accessible via dbGaP as part of the National

Heart Lung and Blood Institute (NHLBI) GO-ESP: Heart Cohorts

Component of the Exome Sequencing Project (ARIC) (Study

Accession: phs000398.v1.p1).

The following variants were excluded from the exome chip

dataset as they were not available in the genotype data derived

from exome sequencing results: replicate sites that were deter-

mined as triallelic or duplicates on opposite strands, short

insertion/deletions, XY chromosome SNPs, Y chromosome SNPs,

mitochondrial SNPs, or sites not identified in the exome

sequencing dataset (n = 56,042). Poor performing variants identi-

fied by our best practices criteria were removed if not previously

excluded (n = 6,709), thus a total of 185,119 variants were

available for concordance analyses in 530 individuals.

Since concordance results are potentially high due to rare

variation on the exome chip, we also calculated uncertainty

coefficients [24] to determine the degree of association between

each of the exome chip calling methods and exome sequence data.

The uncertainty coefficient is a measure of association that is based

Table 3. Sample sizes of cohorts participating in joint calling effort by gender and self-reported race.

Cohort African Americans Caucasians Hispanics Asians Other HapMaps Replicates Total

M F M F M F M F M F M F M F U1

AGES 0 0 1,305 1,767 0 0 0 0 0 0 24 24 6 9 0 3,135

ARIC 1,121 1,832 5,198 5,873 0 0 0 0 0 0 77 76 62 90 200 14,529

CABS 283 172 3,701 1,174 0 0 0 0 0 0 57 59 93 29 0 5,568

CHS 318 526 2,008 2,603 0 0 1 3 14 13 48 46 25 34 0 5,639

CARDIA 900 1,185 1,063 1,189 0 0 0 0 0 0 48 48 18 30 0 4,481

FamHS 213 409 933 1,191 0 0 0 0 0 0 14 23 1 0 0 2,784

FHS 0 0 3,702 4,475 0 0 0 0 0 0 75 69 47 76 0 8,444

HABC 515 680 930 839 0 0 0 0 0 0 48 47 7 5 0 3,071

JHS 1,063 1,795 0 0 0 0 0 0 0 0 64 64 0 0 0 2,986

MESA 1,129 1,464 1,282 1,397 978 1,151 387 386 0 0 44 44 51 39 0 8,352

RS 0 0 1,459 1,720 0 0 0 0 0 0 47 47 0 0 4 3,277

Total 5,542 8,063 21,581 22,288 978 1,151 388 389 14 13 546 547 310 312 204 62,266

1Gender is unavailable for blinded replicates in the ARIC study and four RS samples.
doi:10.1371/journal.pone.0068095.t003
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on information entropy [25], or the uncertainty in a random

variable, that is, a variable subject to chance variations.

Uncertainty coefficients are useful when evaluating results

obtained from clustering algorithms since genotype classification

is usually random (all minor alleles are not classified as either AA

or BB), thus the algorithm is not susceptible to rare variation bias

in which the more common genotype could have been called by

chance alone. See Press et al. (1992), pp. 758–762, for further

clarification of the uncertainty coefficient metric [26].

Annotation
Annotation of the v1.0 exome chip variants was performed with

dbNSFP [27]. The dbNSFP v2.0 annotations are available on the

CHARGE exome chip public website in the SNP information file.

dbSNP rs information has been curated and a look up table with

the associated Illumina SNP name is also available. The reason for

inclusion of the variant on the exome chip by the design team is

also provided in the SNP info file (ftp://share.sph.umich.edu/

exomeChip/IlluminaDesigns/annotatedList.txt).

Data Access
The following CHARGE supporting documents are located at

chargeconsortium.com/main/exomechip: CHARGE_Exome-

Chip_Best_Practices.pdf, CHARGE_ExomeChip_v1.0_Cluster_-

File.egt (cluster file for v1.0 chip), CHARGE_ExomeChip_-

v1.0_Excluded_Variants.txt (list of 8,994 zeroed out variants in

Table 4. Best practices criteria used to identify SNPs for visual
inspection and manual reclustering.

Best Practices Criteria

All X, Y, XY and MT variants

Call frequency between 0.95 and 0.99

Cluster separation ,0.4

AB frequency .0.6

AB R mean ,0.2

Het excess .0.1

Het excess,20.9

AA theta mean between 0.2 and 0.3

BB theta mean between 0.7 and 0.8

AB theta mean between 0.2 and 0.3

AB theta mean between 0.7 and 0.8

AA theta deviation .0.025

AB theta deviation $0.07

BB theta deviation .0.025

AB frequency = 0 and minor allele frequency .0

AA frequency = 1 and call rate ,1

BB frequency = 1 and call rate ,1

MAF ,0.0001 and call rate ? 1

Rep error .2

PPC error .1

PC error .1

Variants removed from v1.1 exome chip

Cautious sites

AA: allele A homozygote; AB: heterozygote; BB: allele B homozygote; Het:
heterozygote; MAF: minor allele frequency; MT: mitochondrial; PC: parent-child;
PPC: parent-parent-child; R: normalized intensity; Rep, reproducibility.
doi:10.1371/journal.pone.0068095.t004

Table 5. Exome chip SNP exclusion criteria.

Exclusion Criteria

Call frequency ,0.95 (except Y chr)

Cluster separation ,0.4

AB frequency .0.6

AB R mean ,0.2

Het excess .0.1

Het excess,20.9

AA theta mean .0.3

BB theta mean ,0.7

AB theta mean ,0.2 or .0.8

AA theta deviation .0.06

AB theta deviation $0.07

BB theta deviation .0.06

Obvious batch effects

AA: allele A homozygote; AB: heterozygote; BB: allele B homozygote; Het:
heterozygote; R: normalized intensity.
doi:10.1371/journal.pone.0068095.t005

Table 6. Exome chip content and CHARGE excluded variants
by functional category.

Category1 Total Variants Variants Excluded

exonic;stopgain 5,193 145

exonic;splicing;stopgain 90 1

exonic;stoploss 239 2

exonic;splicing;stoploss 5 0

splicing 2,263 60

exonic;splicing;synonymous 3,363 74

exonic;splicing 70 1

exonic;splicing;nonsynonymous 5,237 105

exonic;nonsynonymous 208,779 7,369

exonic;synonymous 6,415 281

UTR3 518 46

UTR5 77 6

ncRNA_splicing 1 1

ncRNA_exonic 111 8

ncRNA_UTR3 8 0

ncRNA_UTR5 1 0

intronic 5,762 254

ncRNA_intronic 447 23

downstream 187 19

upstream 181 7

upstream;downstream 8 0

intergenic 8,549 528

indel 137 10

mitochrondrial 226 54

no annotation 3 0

Total 247,870 8,994

1dbNSFP was used for annotating variants [27] (see Methods).
doi:10.1371/journal.pone.0068095.t006
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cluster file), CHARGE_ExomeChip_SNP_Info_File.tsv.txt and

Read Me file includes Illumina annotation, dbNSFP annotation,

dbSNP rs numbers, overlapping sites between the HumanExome

BeadChip v1.0 and v1.1, reason for inclusion, and race specific

allele frequencies for each variant, including HapMap controls.

Sample identifiers (CHARGE_ExomeChip_HapMap96_Con-

trol_List.csv) and genotypes for the 96 unrelated HapMap controls

(CHARGE_ExomeChip_HapMap96_Genotype_Data.csv) are al-

so available.

The Illumina genotyping protocol (Infinium_Best_Practices_

370-2009-010.pdf) and cluster file (HumanExome-12v1.egt) are

available with a MyIllumina login at https://icom.illumina.com/.

The exome chip content data sheet is publicly available at http://

www.illumina.com/documents/products/datasheets/datasheet_

humanexome_beadchips.pdf.

zCall is a rare variant caller for array-based genotyping

provided by Goldstein et al. and available for download at

github.com/jigold/zCall [7]. PLINK is a freely available analysis

toolset at http://pngu.mgh.harvard.edu/purcell/plink/ [4].
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