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Abstract

Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of
estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived
from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of
the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm,
which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we
show that our proposed method leads to improved portfolio allocation.
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Introduction

The advent of modern finance began with Markowitz and his

seminal paper on portfolio optimization [1]. His theory provides a

mathematical approach to diversification by directly minimizing

the portfolio variance. Moreover, by adding constraints to the

optimization problem, one can e. g. prohibit or allow short-selling.

Other applications comprise the creation of portfolios which

constitute optimal hedges or track indices. However, a fundamen-

tal issue in portfolio allocation is the accurate and precise

estimation of the covariance matrix of asset returns from historical

data.

Covariance estimation and coping with its uncertainties have

occupied both researchers and practitioners since then. One of the

major difficulties with robust covariance matrix estimation arises

from nonstationarity of financial time series [2–4]. Here, changes

in the data generating processes force the estimation to rely on

short time windows of recent observations. In addition, the

number of parameters increases quadratically with the number of

assets, i.e., for a set of N assets, the covariance matrix has
1
2
N(Nz1) free parameters. For example, in order to estimate the

covariance matrix from the daily return series of a moderately

sized universe of one hundred assets, already 5050 free parameters

have to be estimated. Following a general rule of thumb, that 10

observations per parameter are required for a reliable estimate, the

observation window would need to cover approximately two years

of data. Such a temporal horizon, however, clearly contradicts

with reported nonstationarity of financial time series. In practice,

the situation is even exacerbated by non-Gaussianity of financial

time series [2,5,6], which increases the difficulty of covariance

estimation even further, especially in case of small sample sizes. A

possible remedy for problems caused by non-Gaussianity are

robust estimation techniques [7].

As the terms high dimensional and small sample size are rather vague

and interdependent, the difficulty of the task of covariance

estimation is commonly characterized by the ratio of sample size

to dimensionality, T=N, which governs the properties of the

spectrum of the sample covariance matrix [8,9]. For situations

where this ratio is close to one or even below, many estimators

which give better results than the sample covariance matrix have

been proposed. Here, an important class is formed by regularized

estimators, in which the effective degrees of freedom are reduced

by Shrinkage [10–13]. Another way to reduce the degrees of

freedom is to impose a latent structure on the data. Here,

commonly factor models are in use. Factor models assume the

data to be generated as a mixture of a small number of factors with

additive noise [14,15].

In this paper, we will analyse a purely statistical factor model

called (Maximum Likelihood) Factor Analysis [16]. As there is no

analytic solution for the parameters of the Factor Analysis model,

we cannot provide a stringent theoretic analysis of its properties.

Instead, by means of thorough simulations, we will provide

evidence that the spectrum of the covariance matrix derived from

a Factor Analysis model is biased. (We follow the terminology in
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[11], who deals with the bias in the spectrum of the sample

covariance matrix. We do not distinguish between bias and

systematic error.) To reduce the bias, we will propose the Directional

Variance Adjustment (DVA) algorithm, which estimates the magnitude

of the imposed bias in specific directions by means of a Monte

Carlo sampling approach and hence enables for its correction.

In the portfolio optimization literature Monte Carlo sampling is

known from Resampling Efficiency [17]. There, the authors follow

a fundamentally different approach. While we use resampling to

reduce the bias of the factor model, in Resampling Efficiency the

sample mean and covariance are used to generate additional data

sets, on which optimal portfolio weights are calculated which are

then averaged. This is supposed to lead to more stable and

diversified portfolios, but there is an ongoing debate on the merits

of this procedure [18]. Though not based on Monte Carlo

resampling, techniques for the correction of variance inflation in

principal components analysis are more related to our algorithm

[19,20].

At this point we would like to emphasize that in this paper we

will solely focus on the structure of risk in the stock market. A

discussion of the structure of expected returns (see, e. g. b-pricing

models, [21]) is not within the scope of the paper.

We will evaluate our novel covariance estimation procedure in

the context of portfolio optimization, where we will compare the

proposed DVA Factor Analysis model to the sample covariance,

Resampling Efficiency, Shrinkage, standard Factor Analysis and

the Fama-French Three-Factor model [22]. By means of analyzing

daily return data from 2001–2009 of three different stock markets

(US, EU and Hong Kong), we will show that our proposed

covariance matrix estimation scheme leads to an improved

portfolio allocation and hence provide evidence that it better

reflects the market’s risk structure.

The paper is organized as follows. We first review covariance

estimation methods and Maximum Likelihood Factor Analysis.

We will then investigate the bias in Factor Analysis by means of

simulated data. Then, we will introduce our novel DVA approach

for dealing with the systematic error in the model and show the

effectiveness in additional simulations. Finally we will present the

results of a thorough comparative study of various covariance

estimation methods in the context of portfolio optimization.

Methods

Sample Covariance Matrix and Systematic Error in its
Spectrum

The sample covariance matrix,

Csc
ij ~

1

T{1

XT
t~1

(rti{�rri):(rtj{�rrj),

where R is the (T|N)-matrix containing T observations of N
variables, is a consistent estimator of the covariance matrix: for

T?? the sample covariance matrix converges to the true

covariance matrix. When the ratio T=N is not large, however, the

sample covariance matrix tends to be ill-conditioned, implying

that its inverse incurs large errors. In the extreme case, when the

number of observations falls below the number of variables, the

covariance matrix gets singular.

Though the sample covariance is an unbiased estimator of the

true covariance matrix, this estimator exhibits a systematic

misestimation of the spectrum of the covariance matrix which

depends on the ratio of observations to dimensionality T=N. In

particular, large and small eigenvalues are systematically over- and

underestimated, respectively (see, e. g. [11]). In order to illustrate

this systematic error, we generated empirical spectra from the

Marčenko-Pastur density of eigenvalues for i.i.d. standard

normally distributed variables [8]. The Marčenko-Pastur density

is the eigenvalue density in the limit T ,N??, but already for

sample sizes as small as 20 or 30 the empirical distribution is very

similar [23]. Figure 1 shows the analytical solution for the

empirical spectra for various ratios of sample sizes to dimension-

ality. The magnitude of the systematic error scales with the inverse

of this ratio, for the degenerate case (T=Nv1) there are N{T
zero eigenvalues. Even for T=N~100, the spectrum still differs

visibly from the true one.

In the literature, several methods have been proposed for

correcting the spectrum. In Shrinkage [12,13,24], the goal is to

find a suitable convex combination of the sample covariance

matrix Csc and a shrinkage target Ctarget,

Csh~lCscz(1{l)Ctarget, ð1Þ

where the shrinkage target is either fixed (e. g. Ctarget~I) or a

biased estimator with lower variance (e. g. all correlations set to

their average value). For selecting the optimal shrinkage strength

l, Ledoit and Wolf proposed an analytic solution [24], which is

computationally faster than the commonly used model selection

via crossvalidation. Shrinkage can be combined with factor

modelling by taking a factor model as the shrinkage target [12].

Recently, direct shrinkage of the inverse has been proposed [25].

Random Matrix Theory (RMT, for an overview see [9]) allows

for several alternative approaches to correct the spectrum.

Rosenow et al. propose to retain only those eigenvalues of the

correlation matrix which are larger than the largest eigenvalues of

a random matrix, given by the Marc
^
enko-Pastur law, and

therefore likely to reflect some real structure [26]. The model

itself is equivalent to a principipal components analysis (PCA)

factor model based on the correlation matrix, where RMT is used

for selection of the appropriate number of factors. Laloux et al.

propose a similar model: instead of setting the eigenvalues in the

bulk of the spectrum to zero, they are set to their average value

[27]. A detailed analysis of these methods is beyond the scope of

this article. Note that these methods are closely related to the

Factor Analysis factor model -which we will discuss in the

following- and thus exhibit a similiar performance and suffer from

the same bias.

An interesting approach is described by el Karoui: he inverts the

Marčenko-Pastur law -which describes the distribution of the

sample eigenvalues- numerically in order to obtain an estimate of

the true spectrum from the sample [28]. Here, one has to be aware

of two facts: first, the inversion is not unique and therefore a prior

or parametric ansatz has to be applied. Second, the largest

eigenvalue of the covariance matrix of asset returns is normally

isolated from the bulk. This is problematic, because the inversion

leads to a continous spectrum. These aspects make the application

of this approach less straightforward and, to our knowledge, no

publication with portfolio simulations exists in which a compete-

tive performance was achieved.

The following section introduces factor models as a type of

restricted covariance estimator.

Factor Models as Restricted Covariance Estimators
In finance, factor models form an important class of restricted

covariance estimators. In a factor model, the returns rti of the ith

asset at time t are described as a weighted sum of M random

factor returns ftm multiplied with exposures Xmi to these factors

DVA: Bias Reduction in Factor Analysis
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and additional random noise eti:

rti~
XM
m~1

ftm:Xmi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
systematic risk

%hbracez eti|{z}
specific risk

%hbrace ð2Þ

ei\\fj , V i,j

ei\\ej , V i=j:

Here, the systematic risk entirely describes the dependencies

between the assets, while the asset specific risks are assumed to be

independent.

In the statistics and signal processing literature, this is often

referred to as a mixture model, where X is the mixture matrix and

f are the source signals (see, e. g., [29]). Calculating the covariance

matrix, one obtains

Cfm~RTR~(FX)T(FX)zETE

~XTSfXzSe,
ð3Þ

where
X

f
is the covariance of the factors and the diagonal

matrix
P

e
is formed by the asset specific noise variances (cf.

Figure 2).

The advantage of factor models lies in the reduced number of

parameters for covariance estimation. Essentially, this means that

a higher bias is accepted in exchange for a reduced variance. In

quantitative finance, three different types of factors are employed

to build up factor models: fundamental, macroeconomic and

statistical factors [4,30].

In a fundamental factor model, assets are analysed and certain

key metrics are used for setting up the factor model. Fundamental

factor models are especially well suited when only a short history of

data is available, e. g. for weekly or monthly data, as fewer

parameters have to be estimated from the history than in a

statistical factor model. The best-known model of this kind is the

Fama-French three-factor model [22], in which the factor time

series f are based on portfolios governed by market beta, book-to-

market ratio and market capitalization. The exposures to these

factors are obtained from the coefficients of a linear regression

model.

In contrast, macroeconomic factor models predetermine the

factors as macroeconomic time series which are supposed to affect

the asset returns. As in the Fama-French model, the exposures are

obtained by linear regression. Examples for macroeconomic time

series used in factor models are unemployment rate, GNP, FX or

interest rates. However, for daily or higher frequency stock market

returns, macroeconomic factor models are of limited use and

therefore neglected in the following (for an overview, see [4]).

The third approach, statistical factor modelling, is purely data

driven and extracts the factors as well as the exposures from

historical asset time series. Representatives of statistical factor

models are Principal Component Analysis (PCA, [31]), Probabi-

listic Principal Component Analysis (PPCA, [32]), Independent

Component Analysis (ICA, [29,33]), Kernel Principal Component

Analysis (KPCA, [34]) as well as Factor Analysis (FA, see next

section).

Hybridization combines statistical, fundamental and/or macro-

economic factors [4,30,35]. As long as the hybrid models contain

Figure 1. Systematic error in the spectrum of the sample covariance matrix for different ratios of sample size to dimensionality.
doi:10.1371/journal.pone.0067503.g001
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statistical factors, our approach could be adapted to improve

covariance estimation.

(Maximum Likelihood) Factor Analysis
Factor Analysis is a latent variable model which has its roots in

psychology and answers the question for the ‘‘best’’ explanation of

the observed data for a given number of factors (latent variables).

Here, ‘‘best’’ model refers to the model that maximizes the data

likelihood. The application of Factor Analysis to financial data was

first introduced in order to test the Arbitrage Pricing Theory [36].

Factor Analysis models the asset returns as a mixture of

unobserved source signals with additive noise. The signals and the

noise are assumed to be i.i.d., zero-mean normally distributed.

Independence of the noise (? diagonal noise covariance matrix)

and independence of noise and factors (? covariance is a sum of

factor and noise contributions) are assumed (cf. eq. (2)). In

addition, it is assumed that scaling and correlation of the

systematic risk are contained in the mixing matrix (? standard

normally distributed independent factors). Hence, the model reads

as

rt~ft:Xzet, ð4Þ

with ft*N (0,I), t*N (0,D),

where D is a diagonal matrix. The corresponding log-likelihood is

obtained as

L(X,D)~ ln p(R,FDX,D)~
XT
t~1

ln p(rtDft,X,D)z ln p(ft)f g: ð5Þ

Especially in the finance context, normality is a strong assumption.

In order to make the model more appropriate for financial data, it

is possible to extend FA to t-distributions (t-FA, [37]). t-FA has the

same kind of bias as standard FA and our method can be adapted

in a straightforward way by replacing FA by t-FA, but a

comparison of these methods is beyond the scope of this paper.

We obtain estimates of the model parameters by Expectation-

Maximization (EM, see [38], for applications on Factor Analysis

see [39,40]). In this algorithm, the likelihood is maximized

iteratively by alternating between the Expectation and the

Maximization step:

N in the Expectation step, the exposures X and noise variances D
are assumed to be fixed and the expected factors F (latent

variables) can be derived directly.

N in the Maximization step, the expected factors F are assumed

to be fixed and the likelihood is maximized with respect to

exposures X and noise variances D.

These two steps are iterated until convergence. The resulting

covariance matrix estimate of the Factor Analysis model is then

given as

Figure 2. Two dimensional example of a 1-factor model. The arrows show the direction of the single factor and the orthogonal complement.
The covariance matrices of the factor model Cfm (dashed) and the uncorrelated noise

P
e (dotted) are shown as ellipsoids of constant likelihood. The

peanut-shaped solid line shows the directional variances (vTCfmv) of the factor model along all directions v : EvE2~1.
doi:10.1371/journal.pone.0067503.g002
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ĈCfa~X̂XTX̂XzD̂D: ð6Þ

Note that the above equation follows trivially from eq. (3) for

independent and standard normal factors. For Factor Analysis the

number of parameters is reduced from 1
2
N(Nz1) to

df~ M|{z}
entries inX

%hbrace { (M{1)|fflfflfflffl{zfflfflfflffl}
rotational invariance of X

%hbracez

N|{z}
diagonal elements of D

%hbrace

~ (Mz1):(N{1)z2: ð7Þ

Alternative approaches to solving the optimization problem are

proposed in the literature, the best known is the quasi-newton

method by Jöreskog [41]. As that algorithm uses an eigendecom-

position, which is costly to obtain in high dimensions (O(N3)), we

have opted for the EM approach (O(MN2)). Other methods

claiming superior performance suffer from the same drawback

(see, e.g., [42]). Moreover, for the main claim of this paper, the

optimization procedure chosen to obtain the maximimum

likelihood solution is of no importance.

Systematic Error in Factor Analysis
Unlike for the sample covariance, there are no analytical results

for the spectrum of the Factor Analysis covariance matrix.

Therefore, we run a simulation to study systematic errors in

Factor Analysis. To this end, we generate N~30 dimensional

return data according to an underlying three factor model as in eq.

(4). The noise covariance matrix D was defined with equally

spaced values from the interval ½0:5,1:5� on the diagonal. The

three rows of the mixing matrix X were generated as randomly

oriented vectors with a length of 10, 3 and 1, respectively. In order

to study the small sample size properties of Factor Analysis for this

setting, we set the ratio T=N to 0.7, 1 and 5, corresponding to 21,

30, and 150 thirty-dimensional observations. As X and D are

known for the simulation, the true covariance matrix Ctrue can be

calculated by the population counterpart of eq. (6).

In Figure 1 we studied the systematic error of the eigenspectrum

of the sample covariance matrix, where the variance in the i-th

eigendirection vi corresponds to the size of the i-th eigenvalue li:

vTi Cvi~vTi livi~li:

In the following we will study systematic errors in terms of

misspecification of directional variances. More precisely, we will

investigate systematic errors in the factor subspace and its

complementary orthogonal space separately. To this end we first

calculate an orthonormal basis P0
fs (N|M ) of the M-dimensional

subspace in which the estimated factors X̂X lie (the Factor Subspace)

and another orthonormal basis P0
oc (N|(N{M)) of the

(N{M)-dimensional orthogonal complement. Correspondingly,

we can confine the covariance matrix to the two subspaces,

yielding a factor space related part and its orthogonal counterpart

as

C
fa
fs : ~ P0

fsP
0
fsTC

faP0
fsP

0
fsT and

Cfa
oc : ~ P0

ocP
0
ocTC

faP0
ocP

0
ocT:

For each subspace, we obtain a new basis (Pfs and Poc) as the

corresponding eigenbasis of C
fa
fs and Cfa

oc, respectively. Combining

these subspace bases to P= [Pfs,Poc] yields an orthonormal basis

of the entire space in which we assue the eigenvectors sorted in

decreasing order with respect to the eigenvalues.

Along these directions pi we measure the directional variances

s2i for the true and the estimated Factor Analysis model and

calculate the systematic error as

S
fa
i ~E

s
2fa
i

s2truei

" #
, s2 truei ~pTi C

truepi , s2fai ~pTi C
fapi: ð8Þ

Here, values S
fa
i w1 and S

fa
i v1 correspond to an over- and

underestimation of the directional variances, respectively. More-

over, the basis P explicitly takes the factor structure into account.

Hence, this particularly chosen basis enables us to study the

specific systematic estimation errors in the factor subspace and

noise subspace separately. Note that the directions pi are solely

derived from the estimated parameters of the factor model and do

not rely on information about the true covariance matrix.

Figure 3 depicts the estimated systematic error S
fa
i of Factor

Analysis as defined in eq. (8) by means of the simulated data.

Clearly, Factor Analysis tends to overestimate the variance in the

3-dimensional Factor Subspace, while the variance in the

orthogonal complement is on average underestimated. This is

not surprising, as the Factor Analysis model attributes strong

covariances in the sample to the factors. Consequently, factors

with low Signal-to-Noise-ratio (SNR) are hard to identify and

directions of spurious covariance are likely to be misrepresented as

factors, yielding an overestimating of the variance along these

directions: In the simulations, the strongest (first) factor, which has

a high Signal-to-Noise-Ratio can be estimated with very high

accuracy even for small sample sizes and the variance estimate

does not have a significant systematic error. The weaker factors

with a lower SNR in contrast tend to yield overestimated variances

along the estimated factor directions. This effect is highly

pronounced for small sample sizes and persists for relatively large

sample sizes.

On the other hand, the noise subspace spectrum shows a similar

-albeit weaker- behaviour as the spectrum of the sample

covariance matrix, i.e., variances corresponding to large eigenval-

ues are overestimated, while variances corresponding to small

eigenvalues are underestimated (compare Figure 1 and Figure 3).

As for the sample covariance matrix, this effect is especially

pronounced for small sample sizes.

Directional Variance Adjustment: Correcting the
Systematic Error

The systematic error of the spectrum of a sample covariance

matrix with respect to the true spectrum can be estimated

analytically: from the distribution of the entries in the covariance

matrix, one can derive the distribution of the eigenvalues (see, e.g.,

[9]). The minimization of the Factor Analysis cost function on the

DVA: Bias Reduction in Factor Analysis
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other hand does not have a closed form solution, an iterative

method has to be used. Hence it does not facilitate an analytical

approach to obtain the distribution of the eigenvalues. Conse-

quently, we will deploy a method that is based on Monte-Carlo-

sampling.

To this end, suppose we have estimated the parameters F of a

Factor Analysis model and want to correct the corresponding

covariance matrix CF for the systematic error. Then we estimate

the systematic error in the following manner: using F for a

generative model, we generate K synthetic data sets of the same

size as the original sample. For each data set we estimate a

corresponding Factor Analysis parameter set F 1, . . . ,FK . Note

that for these parameter sets the true set of parameters (i.e., F ) is

known and with it the true covariance matrix. This enables us to

quantify the amount by which the directional variances along the

eigendirections of CF k

fs (factor subspace) and CF k

oc (orthogonal

complement) are over- and underestimated, respectively. The

estimated systematic errors, can then directly be turned into

multiplicative correction factors for the adjustment of the

directional variances of F . Applying these corrections to the

eigendirections of the factor space and its orthogonal complement

yields to what we refer as the directional variance adjusted covariance

matrix CDVA of F (see Figure 4).

Note that the algorithm does not correct the parameters of the

factor model itself. Instead, only the resulting covariance matrix is

adjusted. In particular, the factor directions, i.e., the exposures, are

kept unchanged. Figure 5 illustrates the adjusted covariance

matrix. The figure shows in blue/solid and red/dashed the

covariances of the true and the estimated factor model,

respectively. The arrows indicate the factor directions of the true

and estimated factor model and the direction of the orthogonal

complement, respectively. Clearly, the factor direction has been

misestimated and its strength is overestimated. In the orthogonal

direction the variance is underestimated. Our proposed DVA

method corrects the systematic error of the directional variance

along those directions, without adjusting the directions themselves.

This leads to the directional variance adjusted covariance matrix

(depicted in green/dash-dotted): In the aforementioned directions,

the systematic error is reduced.

One has to keep in mind that the resampling - and with it the

estimate of the systematic error of the covariance matrix - is based

on the estimated parameters F . Therefore, large errors in F
adversely affect the DVA covariance estimate.

In order to reduce the impact of the error in F , it could be

advantageous to iterate the DVA procedure. From the DVA

covariance matrix, which more closely reflects the true covariance

matrix, we could estimate the parameters of a new factor model

and restart the DVA procedure, obtaining more precise estimates

of correction factors in each iteration. Though a compelling idea,

there is no guarantee that iterating the DVA method will give a

better solution, converge to a sensible one or even converge at all.

In this paper, we therefore concentrate on the non-iterated DVA

procedure.

Simulation Results
Before we present results from daily return data, we will first

illustrate the effectiveness of the proposed DVA method in a

simulation study. For this, we generate toy data according to the

scheme presented in the last sections, first apply standard Factor

Analysis and then use our proposed DVA method to reduce the

bias.

The performances of the two estimation methods with respect to

the systematic error S
fa
i (eq. (8)) are contrasted in Figure 6. To the

left, it is shown that the DVA method clearly reduces the

systematic error of the Factor Analysis model, even for relatively

large ratios T=N . In the direction of the third factor, which has the

lowest SNR, the reduction is most prominent. In the orthogonal

Figure 3. Average ratio between Factor Analysis and true variances in the factor subspace and the orthogonal complement. Ratios
of sample size to dimensionality T=N~0:7, 1 and 5. N~30. Average over 150 datasets.
doi:10.1371/journal.pone.0067503.g003

DVA: Bias Reduction in Factor Analysis
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complement of the factor subspace, the adjusted spectrum

resembles the true variances very well. Nevertheless, there remains

a small systematic error, which is due to to using the estimated

parameter set in order to infer the directional variance correction

factors. The right panel of Figure 6 illustrates that the DVA

method does not incur a significant increase in variance of the

estimate.

By reducing the systematic error without an increase in

variance, the DVA method reduces the average estimation error.

To account for different magnitudes of true directional variances,

Figure 7 displays the error of the estimator in terms of the mean

absolute relative error

Figure 4. DVA algorithm.
doi:10.1371/journal.pone.0067503.g004

Figure 5. Illustration of the DVA algorithm. Depicted are directional variances for the estimated (red/dashed) and true Factor model covariance
matrix (blue/solid). The blue squares indicate true variances along the estimated factor direction and the direction of the orthogonal complement.
The DVA method (green/dash-dotted) aims at stretching and compressing the estimated covariance peanut such that the variances in these
directions correspond to the true ones.
doi:10.1371/journal.pone.0067503.g005

DVA: Bias Reduction in Factor Analysis
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A
fa=DVA
i ~E

Ds2fa=DVA
i {s2 truei D

s2 truei

" #
: ð9Þ

Note that this error is more than halved for the direction of the

low SNR-factor and considerably decreased in the orthogonal

complement. Here, DVA has the strongest effects on the directions

corresponding to the largest and smallest non-zero eigenvalues of

Cfa
oc. For the direction of the smallest eigenvalue, the error is again

approximately halved.

While the ratio T=N determines most properties of the sample

covariance, this is not true for regularized estimators and factor

models. For larger values of T , at a constant ratio T=N, the

idiosyncratic variances of Factor Analysis are estimated more

precisely, while the estimation of the factors remains difficult. This

is shown in Figure 8, where the dimensionality has been set to 500

and the generative model has seven factors of strength 10, 5, 4, 3,

2.5, 2, 1.5, and 1. One can see that while there is little room for

improvement in the orthogonal complement, in the factor

subspace the performance gain by DVA FA remains on the same

level.

Figure 6. Comparison of the systematic error in standard Factor Analysis and DVA Factor Analysis. Left: systematic error. Right:
normalized standard deviation of the error. Simulations for different ratios of sample size to dimensionality (T=N~0:7, 1 and 5). N~30. Correction
factors estimated on K~100 generated data sets. Mean over 150 simulations.
doi:10.1371/journal.pone.0067503.g006

Figure 7. Comparison of the mean absolute relative error for standard Factor Analysis and the DVA Factor Analysis for different
ratios of sample size to dimensionality (T=N~0:7, 1 and 5). N~30. Correction factors estimated on K~100 generated data sets. Mean over
150 simulations.
doi:10.1371/journal.pone.0067503.g007
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Results

Portfolio Simulation
In order to evaluate the proposed methods, we applied the DVA

Factor Analysis to financial daily return time series. In the

experiments, we estimate covariance matrices of stock returns and

use the covariance estimates for portfolio optimization. The

realized risks of the portfolios are compared for the different

covariance estimates. In particular, we will compare the DVA

Factor Analysis to equal weights portfolios [43], the sample

covariance matrix, Resampling Efficiency (does not yield a

covariance estimate) [17], the Fama-French Three-Factor model

[14,22], Ledoit-Wolf Shrinkage to a one-factor model [12] and

standard Factor Analysis. For DVA and standard Factor Analysis

we use seven factors. Though on the higher dimensional US and

EU data sets we could extract more meaningful factors while fewer

factors would be favorable on the smaller HK data set, we opted

for the same intermediate model complexity on all data sets to

keep the setting simpler.

The Data Sets
The data set was aggregated from Reuters tick data. It consists

of daily returns of about 1300 US stocks (3.1.2001–2.11.2009),

about 600 European stocks (3.1.2001–20.4.2009) and a set of 200

stocks from the Hong Kong stock exchange (3.1.2001–26.9.2008).

Removing stocks which do not have data for the whole time

horizon covered by the data set, the Hong Kong data set reduces

to 100 assets.

Design of Portfolio Simulations
There are different applications of covariance matrices in

portfolio optimization. Covariance matrices are needed for index

tracking, hedging and the search for minimum variance portfolios.

In the following, we will focus on minimum variance portfolios,

w�~argmin
w

wTĈC w, ð10Þ

where w is the vector of portfolio weights and ĈC is the covariance

matrix estimate.

Depending on the particular application, additional constraints

are incorporated into the optimization. Commonly applied

constraints include:

N P
i wi~1: the sum of all portfolio weights is restricted to one.

N wTr̂r~r�: the estimated portfolio return is restricted to r�, r̂r is

the vector of expected/predicted asset returns.

N wi§0: only positive portfolio weights, no short-selling.

Note that the application of constraints tremendously prunes the

set of feasible portfolios and hence diminishes the influence of the

covariance estimate [44]. Consequently, the observed differences

between the performances of portfolios obtained from different

covariance estimation methods get smaller. Thus, in order to

unveil the leverage of the various covariance estimation methods,

we opted for not constraining the magnitude of the weights or

enforcing their positivity. We only applied the constraint that

scales the sum of the portfolio weights to one. This optimization is

independent of the return estimates and is equivalent to optimizing

portfolio returns under the assumption of equal expected returns

for all assets.

In the case of small sample sizes, this approach will tend to

overfit the directions of smallest variance and is hence expected to

favour the restricted covariance estimators. Therefore, we will also

investigate the performances of portfolios obtained from a

regularized optimization problem of eq. (10), where the additional

regularization enforces diversified portfolios.

In order to evaluate the performance of the different covariance

estimator we use the realized (out-of-sample) variance of the

Figure 8. Comparison of the mean absolute relative error for standard Factor Analysis and the DVA Factor Analysis for different
ratios of sample size to dimensionality (T=N~0:7, 1 and 5). Note that the y-axis has different scaling for the factor subspace and the
orthogonal complement. N~500. Correction factors estimated on K~100 generated data sets. Mean over 150 simulations.
doi:10.1371/journal.pone.0067503.g008
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estimated portfolios:

s2real~
1

T

XT
t~1

wT
t{1(rt{r̂rt{1)

� �2
, ð11Þ

and, of more financial interest, the realized mean absolute

deviation

MADreal~
1

T

XT
t~1

DwT
t{1(rt{r̂rt{1)D: ð12Þ

In addition, we calculate the Sharpe-Ratio and the turnover. Note

that (11) and (12) are rolling out-of-sample estimates, as wt{1 and

r̂rt{1 are the portfolio weights and expected returns estimated on

the information available until time t{1. More precisely, for the

estimation of the covariance matrix ĈCt{1 and the averaged return

r̂rt{1 we choose a strictly causal window of 150 trading days. This

size balances out two error sources: on the one hand, estimation

gets more precise with additional data points. On the other hand,

nonstationarity of the return distribution limits the usefulness of

older data [4]. We use slightly more observations than in most

studies with monthly data [12,44], but less than e.g. Bouchaud

et al. use for daily data [45]. In our experience, larger windows

reduce performance.

In order to reduce the variance of the performance evaluation

and to thoroughly explore the estimated covariance structure,

J~1000 subsets, each confined to 40 (HK) or 100 (US and EU)

assets, are chosen and the optimal (confined) portfolio w
j
t is

constructed from the given covariance matrix estimate ĈC
j
t . The

realized variance and realized absolute deviation are then

determined based on the average performance across the different

confined portfolios, i.e.,

s2real~
1

T

XT
t~1

1

J

XJ
j~1

(w
j
t{1)

T(rt{r̂rt{1)
h i2( )

,

MADreal~
1

T

XT
t~1

1

J

XJ
j~1

D(wj
t{1)

T(rt{r̂rt{1)D

( )
:

Results and Discussion of Portfolio Simulations

In this section we will provide portfolio simulation results for

different covariance estimation approaches, namely the sample

covariance matrix, Resampling Efficiency, the Fama-French

three-factor model, shrinkage to a one-factor Model, a Factor

Analysis model with seven factors, and a directional variance

adjusted Factor Analysis (DVA FA). The results for the different

markets are summarized in Table 1.

First note that the equal weights portfolio has very high risk, a

result which is also reported by Kourtis et al. [25].

As expected, the sample covariance matrix is not the most

suitable tool for portfolio optimization. Across all data sets, the

portfolios derived from the different factor based models and

Shrinkage clearly outperform the sample covariance matrix based

portfolios in terms of realized risk. A direct comparison of these

models reveals that the DVA method always significantly

outperforms Fama-French, standard Factor Analysis and Shrink-

age with respect to realized variance and realized absolute

deviation. On our data sets, Resampling Efficiency does not give

an advantage over the sample covariance matrix.

The Sharpe-Ratios do not give a clear picture: Fama-French,

Statistical Factor Modelling and Shrinkage each perform best in

one market. This is not suprising, as we did not optimize for high

returns.

The turnovers on the other hand show an additional advantage

of DVA Factor Analysis over standard Factor Analysis: covariance

estimates are more stable.

Results and Discussion of Portfolio Simulations -
Additional Regularization

Without knowledge of the covariance structure of the assets, the

best portfolio allocation would have weights inverse to the variance

of the assets and hence be highly diversified. Minimization of eq.

(10), on the other hand, gives the optimal portfolio only for the

true covariance matrix. Therefore, for a given covariance matrix

estimate, it should in principle be possible to additionally reduce

the realized risk of a portfolio by increasing its diversification, e.g.,

by regularization of eq. (10).

Consequently, the aim of the following analysis is twofold. First

of all and from a theoretical perspective, we want to investigate if

Table 1. Portfolio risk.

MAD MSE Sharpe turnover

US

1/N - eq. weights 10.63{ 246.8{ 0.61 0.00{

Sample Cov. 8.56{ 156.1{ 0.51{ 6.49{

Resampling Eff. 8.83{ 165.6{ 0.50{ 6.81{

Fama-French 5.65{ 73.5{ 0.77 2.06{

LW Shrinkage 5.56{ 69.6{ 0.74{ 2.69{

Factor Analysis 5.47{ 67.8{ 0.73{ 2.53{

DVA 5.40 66.7 0.72 2.33

Europe

1/N - eq. weights 8.10{ 154.8{ 0.65{ 0.00{

Sample Cov. 5.93{ 78.9{ 0.91 5.09{

Resampling Eff. 6.11{ 83.4{ 0.89 5.32{

Fama-French 3.97{ 38.6{ 1.16{ 1.71{

LW Shrinkage 4.00{ 39.1{ 1.26 2.24{

Factor Analysis 3.88{ 36.5{ 1.30{ 2.06{

DVA 3.84 36.0 1.29 1.91

Hong Kong

1/N - eq. weights 10.21{ 209.5{ 1.17{ 0.00{

Sample Cov. 6.57{ 81.2{ 1.22 2.06{

Resampling Eff. 6.64{ 82.7{ 1.21 2.13{

Fama-French 6.20{ 73.5{ 1.37 1.46{

LW Shrinkage 6.17{ 72.9{ 1.37 1.62{

Factor Analysis 6.17{ 73.0{ 1.37 1.64{

DVA 6.12 71.7 1.37 1.52

Mean absolute deviations:103 , mean squared deviations:106 , Sharpe-Ratio and
turnover of the resulting portfolios for the different covariance estimators and

the different markets. { : ~ DVA mean significantly better/worse than this
model at the 5% level, tested by a randomization test.
doi:10.1371/journal.pone.0067503.t001
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the superior performance of the DVA method can be simply

explained away by a higher degree of diversification or if the true

covariance structure is indeed better captured. Secondly, with

respect to practical considerations, we are interested in the best

achievable performance.

In order to analyze these aspects, for each of the covariance

matrix estimates ĈC we enforce additional portfolio diversification

by including a ridge penalty in the objective function eq. (10), i.e.,

w�(l)~argmin
w

wTĈC wzlwTL w: ð13Þ

In particular, we set the metric L to a diagonal matrix which has

the single asset variances on its diagonal. This metric implies that

each asset gets penalized by its variance and in the limit l?? we

obtain the portfolio of assets weighted by the inverse of their

variances.

Figures 9, 10, and 11 depict the realized (out-of-sample)

variance and MAD (see eq. (11) and eq. (12)) of the resulting

portfolios as a function of the regularization parameter l for the

three different market samples. Equal weights portfolios have been

omitted in the figures because they incur far higher risk. n unison,

the different models benefit from additional regularization, as can

be seen from a reduction of the realized risk of the resulting

portfolios (cmp. Tables 1 and 2). Although, this effect is most

pronounced for the sample covariance matrix, it merely reaches

the performance of the (unregularized) Factor Analysis models.

Note that the regularized optimization based on the sample

covariance matrix is equivalent to unregularized optimization

using a shrinkage covariance estimator, that employs Ctarget~L as

the shrinkage target (cf. eq. (1)). Again, Resampling Efficiency does

not prove to be superior to the sample covariance matrix.

Shrinkage to the one-factor model profits as well from

additional shrinkage to L. This indicates that the optimization of

the expected mean squared error the analytic shrinkage formula

yields a too small shrinkage parameter for the optimization of

portfolios.

Surprisingly, the Fama-French Three-Factor model benefits less

from regularization than Shrinkage, although the unregularized

performance is similar. This implies that the performance gain of

the unregularized Fama-French model over the sample covariance

matrix is mainly due to a strong imposed prior towards highly

diversified portfolios. Compared to the statistical factor models FA

Figure 9. Regularization dependency of the realized portfolio risk in the US market. Left: mean absolute deviation. Right: variance.
doi:10.1371/journal.pone.0067503.g009

Figure 10. Regularization dependency of the realized portfolio risk in the EU market. Left: mean absolute deviation. Right: variance.
doi:10.1371/journal.pone.0067503.g010
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and DVA FA, the performance difference remains on the same

level as without additional regularization. This means that the

covariance structure is better captured by the statistical Factor

models than by the Fama-French model. These effects are

strongest for the US and EU markets.

The risk of the portfolios obtained from the Factor Analysis

model as well as from its DVA version also improve considerably.

At the optimal degree of regularization, the DVA FA model

significantly outperforms the optimally regularized sample covari-

ance matrix based model for all markets. Regarding eq. (13) as

being a shrinkage towards L, this statement is equivalent to:

shrinkage of the DVA Factor Analysis covariance matrix towards

L yields better portfolios with respect to the achieved portfolio

risks than shrinkage of the sample covariance matrix towards L.

The comparison of DVA FA with Fama-French shows a

significantly better performance for all markets as well. The

performance gain over Shrinkage is, however, only significant for

US and EU markets.

At the optimal degree of regularization the difference in

performance between the standard Factor Analysis and the

DVA Factor Analysis is reduced. In general, this was to be

expected as regularization can equivalently be achieved either by

adding a penalty term to the objective function or by additionally

constraining the feasible set. In this respect, it was shown that the

actual influence of the covariance matrix estimate on the

minimum variance portfolio diminishes when additionally con-

straining the set of feasible portfolios [44]. Thus, as a matter of

fact, regularization partly compensates for the influence of the

systematic error of the Factor Analysis covariance matrix estimate.

Nevertheless, in the US and EU market, the peformance gain in

MAD of DVA over standard Factor Analysis remains significant at

the 5% level. In Hong Kong the difference is -for optimal

regularization- not significant.

Comparing the different markets, it turns out that the Hong

Kong market shows a slightly different behavior than the

American and European. At the Hong Kong market, all methods

likewise benefit from additional diversification. One possible

explanation is that the HK data set contains quite a few outliers

and missing data as opposed to the US and EU data. Thus

covariance estimates as well as least square estimates of factor

exposures are hampered in general. Hence and in contrast to the

other markets, the Fama-French model also clearly profits from

the additional regularization, although its overall performance

remains inferior to DVA Factor Analysis.

Figure 11. Regularization dependency of the realized portfolio risk in the HK market. Left: mean absolute deviation. Right: variance.
doi:10.1371/journal.pone.0067503.g011

Table 2. Portfolio risk under regularization.

MAD MSE Sharpe turnover

US

1/N - eq. weights 9.78{ 212.9{ 0.61 0.00{

Sample Cov. 5.45{ 67.3{ 0.76 1.90

Resampling Eff. 5.48{ 67.7 0.76 1.81

Fama-French 5.55{ 70.0{ 0.77 1.61

LW Shrinkage 5.39{ 65.8 0.75 1.73

Factor Analysis 5.38{ 66.0 0.74 1.75

DVA 5.35 65.6 0.72 1.65

Europe

1/N - eq. weights 7.50{ 133.6{ 0.66{ 0.00{

Sample Cov. 3.91{ 37.0 1.26{ 1.69

Resampling Eff. 3.93{ 37.2 1.26 1.61

Fama-French 3.93{ 37.7 1.17 1.44

LW Shrinkage 3.86{ 36.3 1.28 1.53

Factor Analysis 3.82{ 35.6 1.30 1.56

DVA 3.81 35.5 1.29 1.50

Hong Kong

1/N - eq. weights 9.50{ 181.7{ 1.19 0.00{

Sample Cov. 6.14{ 72.9{ 1.48 1.10

Resampling Eff. 6.16{ 73.4{ 1.48 1.09

Fama-French 6.11 71.7 1.50 1.02

LW Shrinkage 6.10 71.8 1.51 1.06

Factor Analysis 6.09 71.7 1.50 1.07

DVA 6.09 71.3 1.49 1.03

Mean absolute deviations:103 , mean squared deviations:106 , Sharpe-Ratio and
turnover of the resulting portfolios for the different regularized covariance

estimators for optimal regularization strength and the different markets. { : ~
DVA mean significantly better/worse than this model at the 5% level, tested by
a randomization test.
doi:10.1371/journal.pone.0067503.t002
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Conclusions
The fundamental issue in portfolio allocation is the accurate and

precise estimation of the covariance matrix of asset returns from

historical data. Among many challenges, the data is typically high

dimensional, noisy, contaminated with outliers and nonstationarity

interferes with the use of long estimation windows. Thus, reliable

statistical parameter estimation is impeded. Our work has

contributed to alleviate this problem in theoretical and practical

aspects: we (1) demonstrated that the data driven statistical Factor

Analysis model has a systematic estimation error (2) proposed the

algorithmic Directional Variance Adjustment (DVA) framework,

which alleviates this bias, and finally (3) provided extensive

simulations of minimum variance portfolios of EU, US and Hong

Kong markets, underpinning the usefulness of the DVA approach

in terms of significant gains in realized variance and realized mean

absolute deviation. Compared to standard Factor Analysis,

covariance estimates are more stable and turnover is reduced. or

each covariance estimator, we additionally studied the effect of

regularizing the minimum variance portfolios towards a higher

degree of diversification. As expected, diversification improved

portfolio performance across the different estimators. Our

empirical study showed that while regularization slightly decreases

the overall advantage gained by DVA, the remaining difference in

the minimum stayed significant for the US and EU data sets, here

the DVA Factor Analysis method is superior to standard Factor

Analysis.

A second interesting finding of the regularization experiments

was that the advantage of the Fama-French model over the sample

covariance matrix estimator appears rather due to an imposed

strong diversification prior than to an improved estimation of the

underlying covariance structure. Here, clearly the combination of

regularization and statistical factor models like standard FA and in

particular DVA FA led to better model performance.

Note, however, that down-weighting/regularizing away the

estimated correlations may not always be a valid option. In an

application where the covariance structure is of higher importance

- e.g. because an index needs to be tracked with a reduced number

of assets - increased diversification would clearly be no option.

Therefore, both scenarios, the one with and the one without

regularization, yield interesting insight and provide clear evidence

for the superiority of DVA FA.

Whilst we have studied and modeled daily returns, the DVA

method is of course equally capable of being employed to derive

covariances for intraday returns. Intraday covariance matrices are

particularly relevant when dealing with portfolios with significant

(intraday) churn. Examples of such portfolios include internaliza-

tion portfolios at most major brokerages, and those used for

market making. Using DVA FA, a covariance matrix may be

tuned for the typical period a position remains in a portfolio,

allowing, potentially, better risk management and asset allocation.

We do not consider serial correlation, as it is common for

covariance estimation methods like Shrinkage [12,24] and

statistical factor models (see, e.g., [4]). Nevertheless, it would be

interesting to do further research on an autoregressive Factor

Analysis model.
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