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Abstract

The genes encoding nuclear receptors comprise multiple 59untranslated exons, which give rise to several transcripts
encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome
proliferator activated receptor (PPAR) a genes have multiple promoters, although their function is unknown. Here we have
characterised the rat PPARa promoter region and have identified three alternative PPARa transcripts, which have different
transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARa transcripts were
differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2)
transcripts were both induced by dexamethasone, they were differentially regulated by the PPARa agonist, clofibric acid,
and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a
STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but
not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the
alternative PPARa transcripts are in part programmed by early life exposure to leptin leading to persistent change in
adipose tissue fatty acid metabolism through specific activation of a quiescent PPARa promoter. Such complexity in the
regulation of PPARa may allow the expression of PPARa to be finely regulated in response to environmental factors.
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Introduction

PPARa is a ligand-activated transcription factor, which belongs

to the nuclear hormone receptor superfamily [1,2]. PPARa plays a

major role in lipid homeostasis by regulating the transcription of

genes that encode the rate limiting enzymes in b oxidation, namely

carnitine palmitoyl transferase (CPT-1) and acyl CoA oxidase

(AOX)[3–5]. Targeted disruption of the PPARa gene in mice

leads to lipid accumulation in the liver, impaired insulin secretion

during fasting [6], increased adipose tissue mass and an increased

incidence of liver tumours [7,8]. Consistent with these findings,

agonists of PPARa have been used as effective hypolipidemic

drugs [9].

PPARa is mainly expressed in tissues with high rates of fatty

acid b oxidation such as liver, skeletal muscle, brown fat, heart,

and kidneys[10;11]. Its expression is known to be regulated

through the action of glucocorticoids [12], by HNF4, a major

regulator of gluconeogenesis, [13], and by PPARa itself [14,15].

Adenoviral induced hyperleptinemia, which causes a rapid loss of

body fat without a rise in plasma FFA or ketone bodies, has also

been shown to increase the expression of PPARa and its target

genes in white adipose tissue, a tissue where PPARa is not

normally expressed. Conversely, the expression of PPARc2 and its

associated genes involved in lipogenesis were reduced. However,

the effects of hyperleptinemia were transient and two months after

the concentration of leptin returned to normal, levels of PPARa
expression decreased in adipose tissue and fat levels were regained

[16–19]. This transient transformation of adipocytes from fat

storing cells into fat burning cells via the induction of PPARa
expression might suggest a novel approach for the treatment of

obesity and a potential target for weight reduction.

There is also evidence that PPARa gene transcription can be

programmed by environmental factors in early life [20]. For

example the expression of PPARa is increased in the liver of

offspring born to dams fed a protein restricted (PR) diet during

pregnancy. The increase in PPARa expression in the PR offspring

is accompanied by the increased expression of its target gene acyl-

CoA oxidase (AOX) and an increase in levels of fatty acid beta-

oxidation[20 21]. In contrast, a 70% global dietary restriction

during pregnancy induces a persistent decrease in PPARa
expression in the liver of the adult offspring suggesting that

different nutritional challenges during pregnancy induce distinct

long term effects on PPARa expression [22]. In addition, there is

evidence in the rat that PPARa expression is programmed by
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neonatal leptin exposure [22,23]. Neonatal leptin administration

which reverses the phenotypic effects of maternal under nutrition

by slowing neonatal weight gain, normalizing caloric intake and

locomotor activity, induced a persistent increase in hepatic PPARa
expression [22]. This is in contrast to the effects of hyperleptinae-

mia on PPARa expression in adipose tissue of adult rats where the

increase in PPARa expression was not sustained after leptin

administration was discontinued, suggesting that the timing of

leptin exposure may determine the longevity of the response.

To date, little is known about of the molecular factors that

mediate the tissue-specific regulation of PPARa, or its regulation
by perinatal factors or leptin. The genes encoding nuclear

receptors frequently comprise multiple 59untranslated exons giving

rise to transcripts, which are expressed differentially between

tissues. The human [24], mouse [25], and rat [26] PPARa gene

promoters have only been partially characterised. The human

PPARa gene is composed of 12 exons and generates 7 mRNA

variants with different 59UTR exons. The 59UTR of the human

PPARa gene contains 7 exons (exons A, 1A, B, 1B, 2A, 2B and the

59end of exon 3), while the coding exons are derived from the

remainder of exon 3 and exons 4–8[27–29]. The mouse PPARa
gene is composed of 9 exons and generates 3 transcripts. Four

exons comprise the 59UTR (exon 1a, 1b, 2 and the 59end of exon

3), the coding exons, like the human orthologue, are composed of

the 39end of exon 3 and exons 4–8 [25]. The rat PPARa gene is

comprised of 8 exons with 1 transcript reported to date. Three

exons comprise the 59UTR exons, exon 1, 2 and the 59 portion of

exon 3 [26]. Because of the complexities of the human and mouse

genes, we hypothesised that the rat PPARa gene might also exhibit

heterogeneity in the 59UTR leading to the synthesis of multiple

transcripts. We have, therefore, characterised the promoter

structure of the rat PPARa gene, and determined the pattern of

expression between tissues and the extent to which alternative

transcripts are differentially regulated by leptin. We show that rat

PPARa gene gives rise to three PPARa mRNA variants, which

differ from each other at the 59 end owing to the presence of

unique first exons. The alternative PPARa transcripts were

differentially expressed between adipose tissue and liver. We show

that while the major adipose (P1) and liver (P2) transcripts were

both induced by dexamethasone, they were differentially regulated

by clofibric acid and leptin. Leptin had no effect on the adipose

specific P1 transcript, but induced the liver specific P2 promoter

activity via a STAT3/Sp1 mechanism. Moreover, consistent with

leptin regulation of transcription from the P2 promoter in vitro,

neonatal leptin treatment led to a persistent increase in transcrip-

tion from the P2 promoter and not the P1 promoter in adipose

tissue. Such 59 heterogeneity and complexity of regulation of

PPARa may provide additional layers of control by which PPARa
expression can be intricately regulated in response to hormones

and early life environment in a tissue specific manner.

Materials and Methods

Ethics Statement
All animal work was approved by the Animal Ethics Committee

of the University of Auckland (Approval N856) and complied with

the New Zealand Code of Ethical Conduct for the care and use of

animals for scientific purposes (Animal Welfare Act, 1999).

Animal Methods
A detailed description of the study design has been published

previously [23]. Briefly, virgin Wistar rats (age 10065 days) were

time-mated and fed a standard rat chow fed ad libitum throughout

gestation. Litter size was adjusted to 8 pups at birth to ensure

standardised nutrition until weaning. At postnatal day 3, female

pups were randomized to receive either saline or recombinant rat

leptin (rat leptin from Protein Laboratories, Rehovot, Israel)

(2.5 mg/g/day) for 10 days by subcutaneous injection (n= 16 per

group). Dams were fed ad libitum until offspring were weaned on

day 22. Saline or leptin-treated offspring were weaned onto

standard rat chow. This produced 8 groups of female rats (n = 8

per group). On postnatal day 170, rats were fasted overnight, and

killed by halothane anaesthesia followed by decapitation. Liver

and retroperitoneal adipose tissue was removed immediately,

frozen in liquid nitrogen and stored at 280uC.

Analysis of mRNA Expression
Total PPARa, P1 and P2 PPARa, AOX and carnitine

palmitoyltransferase (CPT)-1 mRNA concentrations were deter-

mined by real time RTPCR [30,31]. Briefly, total RNA was

isolated from cells using TRIZOL reagent (InVitrogen, Paisley,

Scotland, UK), and 1 mg was used as a template to prepare cDNA

using 100 U Moloney-Murine Leukemia Virus reverse transcrip-

tase. cDNA was amplified using real time PCR primers specific to

total PPARa, P1 and P2 transcripts, AOX and CPT-1 (Table 1).

The reaction was performed in a total volume of 25 ml with

SYBRH Green Jumpstart Ready Mix (Sigma, Poole, Dorset, UK)

as described by the manufacturer. Samples were analyzed in

duplicate and Ct values were normalised to ribosomal 18S RNA

using the DDCt method [30].

59 RNA Ligase Mediated Rapid Amplification of cDNA
Ends (59 RLM RACE)
RNA was amplified using a 59 RNA Ligase Mediated Rapid

Amplification of cDNA Ends (RLM RACE) kit (Ambion)

according to manufacturer’s instructions. Briefly, 10 mg of total

RNA from liver and adipose tissue was incubated with calf

intestinal alkaline phosphatase to remove free 59 phosphates, the

59 CAP structure was then removed from the RNA with tobacco

acid pyrophosphatase (TAP) and the TAP treated RNA ligated to

the 59 RACE adapter and reverse transcribed into cDNA using

random hexamers. To amplify the 59 region of PPARa mRNA,

generated from the 59RLM RACE, nested gene specific reverse

primers for PPARa were designed (inner primer 59 TGACT-

GAGGAGGGGCTGGAA 39; outer gene specific primer 59

AGCCTTCACATGCGTGGACT 3) and used with the nested

forward 59 RACE adaptor primers provided by the kit. Cycling

conditions for both outer and nested PCR were initial denatur-

ation of 94uC 3 minutes, followed by 35 cycles of 94uC 30 s,

anneal at 60uC 30 sec, and extension at 72uC 1 minute 30 sec.

Resulting PCR products were purified, cloned into pGem T-Easy

(Promega) and sequenced. The sequence of the transcripts P1–3

was confirmed by sequencing multiple clones from liver and

adipose tissue.

DNA Cloning
100 ng rat genomic DNA was used as a template for PCR

amplification with primers designed to amplify 1–1.5 Kb of

upstream sequence from the transcription start site of the P1, P2

and P3 promoters (P1 and P2 forward primer: 59ATGAGCT-

CAGCAGCGTCCTGAGGCGTT 39; P1 reverse primer 59

ATAAGCTTACCTGAGGCTGCGCTCCG 39; P2 reverse

primer 59 ATAA.

GCTTGTGCCCTTCCTAGCGTGT 39; P3 forward: 59

ATAAGCTTGGAGTCTTCCTTCTGGTT 39; P3 reverse 59

ATACTCGAGTCTGCGTGGGTGTCTAAT 39). All primers

contained either a SacI or XhoI restriction site at the 59 end of the

Regulation of PPARa by Leptin
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forward primer, and a HindIII restriction site at the 59 end of the

reverse primer to allow cloning of PCR fragments into the pGL3

Basic reporter vector (Promega). Cycling conditions for PCR were

as follows; initial denaturation of 94uC 2 minutes, followed by 40

cycles of 95uC 45 s, anneal at a 60uC 45 sec, and extension at

72uC 5 minutes. Resulting PCR products were gel extracted,

cloned into the pGL3 Basic reporter vector (Promega) and

sequenced to confirm the presence of the insert. The Quik change

method of mutagenesis (Stratagene) was used to create a P2

promoter construct with a mutated Sp1 site. Two complementary

primers were designed using the QuikChangeH Primer Design

Program (Stratagene, Texas, USA) to change the Sp1 consensus

sequence GGGCGG to an EcoR1 restriction site GAATTC

(Forward primer 59 GCCTCAGGTGCCCAGGAATTC-

GAGGGCACGCGCGAGG 39 and reverse complement 59

CCTCGCGCGTGCCCTCGAATTCCTGGGCACCT-

GAGGC 39). The primers (0.4 mM) were then annealed to 30 ng

P2- pGL3 DNA and extended using Pfu polymerase. Cycling

conditions for PCR were as follows; initial denaturation of 95uC 2

minutes, followed by 18 cycles of 95uC 30 s, anneal at a 60uC
1 min, and extension at 72uC 4 minutes, followed by a final

extension at 72uC for 5 minutes. Resulting PCR products were

digested with the restriction enzyme DpnI at 37uC for 1 hour and

the product transformed into DH5a E.Coli. Clones were cut with

EcoR1 and sequenced to confirm the presence of the mutation.

Cell Culture and Transfections
The human hepatoma cell line HepG2 (ECACC- Sigma

Aldrich) was cultured in DMEM supplemented with 10% fetal

bovine serum, 2 mM glutamine, 10 u/ml penicillin and 100 ug/

ml streptomycin. HepG2 cells were transfected using calcium

phosphate [31,32], clofibric acid, dexamethasone, the Stat3

inhibitor PpYLKTK-mts and leptin were added immediately

after transfection at the stated concentrations and luciferase

activity measured 24 hrs later using the Luciferase Assay System

(Promega). All transfections were performed in triplicate and

values are expressed as luciferase activity per mg of protein.

Statistical Analysis
Statistical comparisons of mRNA expression and methylation

levels between treatments relative to the untreated control were

carried out using a Students unpaired t test. Statistical compar-

isons of luciferase activity levels between promoter constructs and

treatments were determined by ANOVA followed by Bonferoni’s

post hoc analysis. All values are plotted as the mean 6SEM.

Results

59RACE Analysis Identifies Distinct Tissue Specific
59leader Sequences in Rat PPARa mRNA
To investigate tissue specific 59heterogeneity of rat PPARa

mRNA, 59RLM RACE PCR analysis was conducted on total

RNA from adipose and liver tissue from adult Wistar rats. 59RLM

RACE revealed 2 different sized PCR products from the liver

(723 bp and 463 bp) but only 1 from adipose tissue (465 bp)

(Figure. 1A). The PCR products were cloned into the pGEM T-

easy vector and the resulting clones sequenced and compared to

the published genomic sequence of rat PPARa (Ensemble gene ID

ENSRNOG00000021463) to identify the genomic location of the

exons. The 3 transcripts differed from each other at the 59 end,

and comparisons to the genomic sequence showed that they had

different transcription start sites owing to the presence of unique

first exons. The PPARa transcripts were subsequently termed P1–

3 and a schematic diagram indicating the genomic location of the

PPARa 59UTR exons and the organisation of the alternative

59UTRs is shown in Figure 1b.

Five exons were found to encode the PPARa 59UTR covering a

genomic region of 42010 bps. Exons were named according to

their genomic location. Exons 1A and 2A were novel, one exon

was a modified version of exon 1 (now termed 1B), and the

remainder were exactly as identified by Ensembl (exons 2 and 3).

The 59UTR of the adipose specific transcript (P1) is encoded by

exons 1A, 2 and 3. The transcription start site for this transcript is

257 bp upstream of the Ensembl published start site (http://www.

ensembl.org/index.html), and gave rise to a distinct unique first

exon of 60 bp termed exon 1A. The liver specific transcripts were

termed P2 and P3. P2 comprises exon 1B, 2 and 3. Exon 1B

(previously exon 1) is 67 bp longer than the original exon 1 at the

59 end resulting in a 318 bp exon. The P3 transcript contains exon

2A which is a 145 bp novel exon located several Kb downstream

from exon 2, and has been termed exon 2A. This exon is spliced

directly onto Ensembl exon 3, and is the only transcript that does

not contain exon 2 (Figure.1c). All these exons conform to the

GT:AG splice site rule (Table 2). Comparison of the rat, mouse

and human PPARa 59UTR’s revealed that the previously

unidentified exon 1A, found in the rat 59UTR was homologous

to the mouse exon 1A and human exon A. The 59 end of this exon

is longer in the human and mouse corresponding exons, but all

share the same 39 exon boundary. Exon 1B in rat is longer at the

59end than previously reported making it more homologous with

the mouse and human corresponding exons. Rat exon 2A

identified by 59RACE had no corresponding exon in the mouse

59UTR but was present in the human 59UTR. (Figure 1d).

Table 1. Primer sequences used in the measurements of mRNA expression by real time RT PCR.

Forward primer Reverse primer

PPARa CGGGTCATACTCGCAGGAAAG TGGCAGCAGTGGAAGAATCG

CPT-1 ACCACTGGCCGAATGTCAAG AGCGAGTAGCGCATGGTCAT

AOX CCAATCACGCAATAGTTCTGG CGCTGTATCGTATGGCGAT

PPARa P1 ATGAGCTCAGCAGCGTCCTGAGGCGTT ATAAGCTTACCTGAGGCTGCGCTCCG

PPARa P2 ATGAGCTCAGCAGCGTCCTGAGGCGTT ATAAGCTTGTGCCCTTCCTAGCGTGT

18S GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGTAGCG

PPARa, peroxisomal proliferator-activated receptor-a; CPT-1, carnitine:palmitoyl transferase-1; AOX, acyl-CoA oxidase;.
doi:10.1371/journal.pone.0067483.t001
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The P2 Promoter has Highest Activity in Liver HepG2
Cells
To investigate whether the alternative PPARa exons are

associated with promoter activity, the 59 region immediately

upstream of the P1, P2 and P3 transcription start sites (from

approx 21.5 kb to +50 bp) were cloned into the reporter vector

pGl3basic and transfected into HepG2 cells. This resulted in two

partially overlapping promoter regions for P1 and P2 and a

distinct downstream promoter for P3 (Figure. 2a). Both P1 and P2

promoters were active in HepG2 cells with P2 having the highest

Figure 1. Tissue specific 59 heterogeneity of PPARa transcripts. A) 59 RLM RACE PCR indicates 2 major PPARa transcripts in liver and one in
adipose. M, DNA ladder; NTC, no template control; +C, RACE positive control; -C, negative control; -C, -TAP control; liver, liver cDNA; adipose, adipose
cDNA; M, DNA ladder. B) A schematic diagram showing the genomic organisation of the rat PPARa gene. Location of PPARa 59UTR exons on the
genomic sequence are shown (non-coding exons, black; coding exons, white and the updated exons, grey). All exon positions are indicated relative
to the Ensembl transcription start site. Ensembl exon 3 which contains the translation ATG start codon is present in all transcripts. C) Diagram
showing the adipose specific transcript (P1) and liver specific transcripts (P2 and P3). D) Comparison of the Rat PPARa 59UTR with the 59UTR of the
human and mouse PPARa genes. Non-coding 59UTR exons are shown in black, coding exons in white and newly identified non coding exons in grey.
doi:10.1371/journal.pone.0067483.g001
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promoter activity. The P3 promoter region showed very low levels

of activity, similar to that of the promoter-less pGL3 Basic vector

(Figure 2b).

To determine whether the individual PPARa promoters are

differentially regulated, the PPARa promoter-pGL3 luciferase

reporter constructs (P1, P2 and P3) were transfected into HepG2

cells and treated for 24 hrs with clofibric acid and dexamethasone

at a range of concentrations which have previously been reported

to induce PPARa expression [12,15]. Clofibric acid treatment

repressed P1 promoter activity at 60 mM (2.8 fold p= 0.001), but

induced P2 promoter activity at 80 mM (3.19 fold p= 0.001) and

100 mM (5.7 fold p= 0.001)(Figure. 2C). Both P1 and P2 promoter

activity was increased in the presence of dexamethasone. A

significant increase in P1 promoter activity at both 1 mM
dexamethasone (2.2 fold p= 0.01) and 10 mM dexamethasone

(3.22 fold p= 0.001) was observed. With P2 a significant rise in

promoter activity was observed with 10 mM dexamethasone (2

fold p= 0.001)(Figure. 2D). There was no effect of either

dexamethasone or clofibric acid on P3 promoter activity.

Leptin Treatment Induces Transcription from the P2 but
not the P1 or P3 Promoter
To determine whether leptin could induce transcription from

the alternative PPARa promoters, HepG2 cells were transfected

with the P1, P2 and P3 promoter constructs and treated with

increasing concentrations of leptin for 24 hrs. We found that P2

promoter activity was significantly increased in the presence of

500 ng/ml and 1000 ng/ml leptin. In contrast, leptin had no

effect on either P1 or P3 promoter activity (Figure. 3a). As leptin

has been shown to modulate transcription through a STAT3

signalling pathway [33] we used the highly selective STAT3

inhibitor (PpYLKTK-mts) [34] to test the role of STAT3 in the

induction of P2 transcription by leptin. We found that while the

STAT3 inhibitor had no effect on P1 promoter activity, the

STAT3 inhibitor blocked leptin activation of P2 promoter activity

at 10 nM (Figure. 3b).

Leptin modulation of transcription via STAT3 has been shown

to occur either directly through the binding of STAT3 to its

response element in the promoter of a gene or indirectly through a

STAT3/Sp1 co-operative mechanism [35]. As the PPARa P2

promoter lacks a STAT3 binding site but contains a Sp1 site which

is located within the region unique to the P2 promoter, we next

investigated whether this Sp1 site was essential for leptin induction

of P2 transcription. The Sp1 site was mutated from GGCGGG to

the EcoR1 recognition site GAATTC. The wild type and mutated

promoter constructs were then transfected into HepG2 cells and

treated with 1000 ng/ml of leptin for 24 hrs. We found that the P2

promoter containing the mutated Sp1 site no longer responded to

leptin, suggesting that this Sp1 site is essential for leptin activation

of PPARa transcription (Figure.3C).

Differential Regulation of Alternative PPARa Transcripts
by Neonatal Leptin
As there is evidence that hepatic PPARa gene transcription can

be programmed by environmental factors in early life including

leptin, we next investigated whether neonatal leptin treatment

induced a persistent increase in PPARa expression in adipose

tissue and whether the P1 and P2 transcripts were differentially

affected. The expression of PPARa together with its target genes

AOX and CPT-1 were examined in adipose tissue from PN170

rats treated with either saline or leptin (2.5 mg/g/day) by

subcutaneous injection for 10 days from PN3-13. This dosage of

leptin was used, as similar levels have been reported previously to

induce leptin receptor signaling, alter neuropeptide expression

[36,37] and reverse the metabolic features induced by maternal

under nutrition. To analyze PPARa expression, primers were

designed to anneal to the coding region of PPARa, a region

common to all isoforms of PPARa, in order to measure total

PPARa transcript levels, and to the specific P1 and P2 transcripts.

Neonatal leptin administration led to an increase in total PPARa,
AOX and CPT-1 mRNA in adipose tissue from D170 old rats

compared to saline treated controls. However there was no effect

of leptin treatment on the expression of the P1 transcript

(Figure. 4b), while neonatal leptin treatment significantly increased

P2 specific transcripts in adipose tissue.

To determine whether this persistent increase in transcription

from the P2 promoter in response to neonatal leptin treatment was

due to altered DNA methylation, sodium bisulfite pyrosequencing

was performed using genomic DNA extracted from adipose tissue

from neonatal saline and leptin treated adult female rats. The

analysis of the region (2336 to2117 bp) immediately upstream of

the PPARa P2 transcription start site (TSS) which contains the

Sp1 response element in the P2 unique region showed that all

CpGs within this region had a methylation level of below 10%

regardless of treatment (Figure 5.), although differences in

methylation were observed between the leptin and saline treated

offspring at CpGs 7,11,12 and 17 (CpG 7 (2.6% to 1.2%,), CpG

11 (1.6% to 0.2% ), CpG 12 (2.85% to 0.73%) and CpG 17 (4.3%

to 1.8%,).

Discussion

The genomic organisation of the human and mouse PPARa
genes indicate that PPARa, like other nuclear receptors, contains

Table 2. Alternative PPARa 59UTR exon/intron junctions conform to the GT-AG splice site rule.

Transcript Exon (bp)
59 Donor Splice Site Consensus
59-gtaagt-39

39 Acceptor Splice Site Consensus
59-PyPyPyPyPyPyncag-39 Exon (bp)

Adipose P1 1A (60) CCTCAGgtgccc cgttctatagCCAAGA 2 (87)

2 (87) TCACAGgtaaga cctcctacagATTGGT 3 (247)

Liver P2 1B (318) GGCGAGgtaact cgttctatagCCAAGA 2 (87)

2 (87) TCACAGgtaaga cctcctacagATTGGT 3 (247)

Liver P3 2A (145) CTTCTGgtaggt cctcctacagATTGGT 3 (247)

59 (donor) and 39 (acceptor) intron splice site consensus sequences are indicated. The sequences at P1, P2 and P3 transcript exon/intron boundaries are shown. Splice
site sequences within introns are shown in lowercase; Exons are shown in capitals, and sizes of exons are given. All transcript exon boundaries conform to the GT-AG
splice site rule.
doi:10.1371/journal.pone.0067483.t002
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multiple 59UTR variants and promoter regions [27]. Previously

rat PPARa was not known to have any mRNA variants and only

three exons (exons 1, 2 and 3) were found to encode the 59 UTR.

In this study, 59 RACE analysis revealed three PPARa mRNA

variants, with 2 transcripts identified in liver (P2 and P3) and one

in adipose (P1). These transcripts differed from each other at the 59

end, and comparisons to the genomic sequence showed that they

had different transcription start sites owing to the presence of

unique first exons. Five exons were found to encode the PPARa
59UTR, Exons 1A and 2A were novel, one exon was a modified

version of exon 1 (now termed 1B), and the remainder were

exactly as identified previously [26]. The identification of the

additional 59UTR first exons in the rat PPARa promoter increases

the homology between the rat, mouse and human PPARa
promoter structures. For example, the 59 extended exon 1B in

the rat P2 transcript and the novel exon 1A in the rat P1 transcript

are both present in the human and mouse 59UTR. In addition, the

rat P1 and P2 PPARa transcripts are very similar with those

identified in the mouse, the rat P2 transcript being equivalent to

the mouse variant 1 and the newly identified rat P1 transcript

being similar to the mouse variant 2.

Since the 59 UTR can modulate RNA stability[38–40],

translation efficiencies [41,42] as well as subcellular localisation

[43,44], the use of alternative promoters to regulate the expression

of untranslated first exons may add a further layer of control to the

regulation of PPARa expression. For example, the presence of a

long 59UTR, high GC content, secondary structure, uATGs and

uORFs are all associated with reduced translational efficiency of

the main ORF [45]. The relatively high GC content of the 59UTR

was fairly consistent between the three PPARa alternative

transcripts, but the length of the 59UTR varied from 184 bp for

P3, to 444 bp for P2. This difference in length was reflected by

differences in the minimum free energies of the transcripts

calculated using Zucker RNA mfold 2.3 software which ranged

from 274.65 Kcal/mol for P1, 2169.75 Kcal/mol for P2 and

256.15 Kcal/mol for P3 [46]. Secondary structures within the

59UTR with values of less than 30 Kcal/mol can be melted by the

ribosome during the normal scanning process [47]. However, all

three PPARa transcripts contain hairpins with stabilities of greater

than this, indicating these transcripts may impede ribosomal

movement and may be subjected to translational regulation.

The P1 and P2 transcripts did not contain ATG initiation

codons in the sequence upstream of the previously reported ATG

codon suggesting that they possess the same open reading frame as

the previously reported transcript. The P3 transcript, however,

contains four uATGs, 3 have adequate Kozak consensus

sequences [47], but are followed by a termination codon.

However, one ATG is in frame with the downstream ATG, and

thus has the potential to produce a protein with a 30aa extended N

terminal. PPARc2 has an extended N terminal of 30aa and 28aa

in mice and humans, respectively, compared to the predominant

PPARc1 protein. Experiments have shown that the PPARc2 N

terminal extension comprises an N terminal ligand independent

activation domain that mediates 5–6 times the activation of

PPARc1 under ligand depleted conditions [48]. However, further

studies are needed to determine whether the PPARa P3 transcripts

contain a functional extended protein.

The analysis of the sequence upstream of the transcription start

sites of the P1, P2 and P3 sites revealed that the P1/P2 promoters

possess the characteristics of typical GC rich promoters common

to nuclear hormone receptors such as the absence of TATA

elements and the presence of CpG islands containing multiple Sp1

response elements. The P3 promoter, in contrast, did not contain

any CpG islands or Sp1 response elements. Moreover, unlike the

sequences upstream of the P1 and P2 TSS, which gave rise to high

levels of promoter activity in HepG2 cells, the sequence upstream

of the P3 start site was not active in HepG2 cells. This low activity

may indicate that important regulatory elements outside the region

cloned in this study are required for P3 expression or that the

promoter is inactive in the absence of stimulatory factors that are

not present in liver cell line HepG2.

It has been reported previously that PPARa transcription is

induced by CFA [15], dexamethasone [12] and leptin [49].

Interestingly, the response of the adipose specific (P1) and liver

specific (P2) promoters to these treatments differed. Both P1 and

P2 promoters were up-regulated by dexamethasone, suggesting

that glucocorticoids modulate PPARa expression through a

sequence shared by the P1 and P2 promoters. Previous

experiments have shown that GR can directly regulate PPARa
expression [50] although the precise sequence was not identified.

Matinspector analysis (www.genomatix.de) of the promoter region

of PPARa did not reveal any glucocorticoid response elements,

but a putative NF-1 binding site was identified in the sequence

shared by both P1 and P2. NF-1 is a transcription factor that has

been shown to mediate GR responsiveness [51]. In contrast, P1

and P2 promoters were differentially regulated by clofibric acid, a

PPARa agonist and leptin, suggesting that leptin and clofibric acid

mediate their effects through a sequence(s) that are unique to the

P2 promoter. Autoregulation of gene expression is commonly

found in nuclear receptors and ligands of PPARa have previously

been reported to activate PPARa expression at the transcriptional

level by binding to either a PPRE or DR1 motif [24], the latter of

which is present within the unique region of the P2 promoter.

Leptin has been suggested to regulate gene expression through the

activation of Stat3 via a JAK signalling pathway [52–54], or in a

promoter which lack a STAT3 response element, through a Stat3-

Sp1 co-operative mechanism whereby Stat3 phosphorylates Sp1

which, in turn, facilitates Sp1 binding to its response elements

[55]. The mechanism of leptin induction of P2 transcription

involved both Stat3 and an Sp1 response element present in the

sequence that is unique to the P2 promoter.

Leptin plays a critical role in maintaining energy balance

[56,57] and also has an emerging role in growth and development

[58]. Adipogenesis is associated with a marked elevation in serum

leptin concentration which occurs between 4 to 10 days after birth

in mice [59], while in rats, peak leptin concentration occurs at

about 10 days after birth [60]. This increase in leptin has been

shown to play a crucial neurotrophic role in the development of

projections from the arcuate nucleus of the hypothalamus, which

regulates food intake and adiposity [36,61]. Several reports

indicate that the neonatal leptin surge is disturbed in its timing

Figure 2. P1 and P2 promoters are active in HepG2 cells. A) Schematic diagram showing the relative locations of PPARa P1, P2 and P3 cloned
promoter regions and their positioning relative to Ensembl transcription start site and 59UTR exons. B) PPARa P1, P2 and P3 promoter constructs (P1,
P2 and P3 Prom 1 mg) and an empty control vector (pGL3Basic 1 mg) were transfected into HepG2 cells and promoter activity assessed 24 hrs later. C
and D) Regulation of PPARa promoter activity by clofibric acid and dexamethasone. P2 and P3 promoter constructs were transfected into HepG2 cells
and treated for 24 hrs with vehicle control or an increasing concentration of dexamethasone (0, 0.1, 1 or 10 mM) or clofibric acid (60, 80, 100 mM). All
values represent the mean of 6 independent experiments 6SEM.). Statistical comparisons of luciferase activity between treatments relative to the
untreated control were determined by ANOVA followed by Bonferroni post hoc analysis. (* p,0.05, ** p,0.001, *** p,0.001).
doi:10.1371/journal.pone.0067483.g002
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and/or magnitude by maternal undernutrition [61,62]. Moreover

neonatal leptin administration from PN3–13 has been shown to

reverse many of the features of metabolic programming induced

by maternal undernutrition by slowing neonatal weight gain,

normalizing caloric intake, locomotor activity, body weight and fat

mass in adult offspring of undernourished mothers fed a HF diet

[23]. The mechanism by which neonatal leptin treatment induces

persistent changes in the regulation of fat mass was presumed to

involve an effect on hypothalamic neurogenesis. Our findings

however show that neonatal leptin administration induces a

persistent increase in PPARa mRNA expression and its target

genes AOX and CPT-1 in adipose tissue, suggesting that leptin

may also have peripheral metabolic effects on adipose tissue. The

increase in PPARa mRNA is consistent with the previous reports

that hyperleptineamia induces PPARa expression in adipose

tissue. Although interestingly while a transient increase in PPARa
expression was observed in response to hyperleptinemia which

disappeared when levels of leptin returned to normal, neonatal

leptin treatment induced a stable increase in PPARa expression in

adipose tissue which persisted into adulthood. This difference in

the duration of the response to leptin may reflect the timing of the

exposure during the life-course, as there is now growing evidence

that early life exposures can induce long term effects on the

metabolism and physiology of the offspring via epigenetic

processes [63]. Consistent with the induction of P2, but not P1,

promoter activity in cell culture experiments, neonatal leptin

treatment differentially-regulated transcription from the PPARa
P1 and P2 promoters in adipose tissue by persistently inducing P2,

but not P1, transcription. A decrease in methylation at four CpGs

within the P2 promoter was seen in the neonatal leptin treated

compared to the saline treated animals. However given the low

levels of methylation in this region, it is unclear whether such

differences in methylation would mediate a switch in promoter

usage although there is precedent for differences in methylation at

low levels altering gene function [64].

In conclusion we show that the rat PPARa gene has multiple

transcripts, which are expressed in a tissue specific manner and are

differentially regulated by leptin. Moreover neonatal leptin

exposure induces a persistent change in adipose tissue gene

expression through specific activation of an otherwise quiescent

PPARa promoter. It is possible that leptin may have similar effects

in other species. For example, human PPARa also has multiple

promoters and hence it is possible that long term modulation of

PPARa activity, and hence lipid metabolism, by promoter

switching as a result of leptin exposure in early life may also

occur in humans. If the changes to gene expression in adipose

tissue reported in the present study were to occur in humans, it

may be expected that those who experience higher leptin exposure

Figure 3. Leptin activates the PPARa P2 Promoter in HepG2 Cells P1, P2 and P3 promoter constructs were transfected into HepG2
cells and treated for 24 hrs with a vehicle control or an increasing concentration of leptin (0,50, 500, 1000 ng/ml). B) P1 and P2
promoter constructs were transfected into HepG2 cells and treated for 24 hrs with leptin (1000 ng/ml) and an increasing concentration of the STAT3
inhibitor PpYLKTK-mts (0,1,10 nM). C) Mutation of the Sp1 site blocks leptin activation of P2 promoter activity. P2 (P2-pGL3) and P2 promoter
construct containing the mutated Sp1 response element (SP1M EcoRI-pGL3) was transfected into HepG2 cells and treated with leptin (1000 ng/ml)
for 24 hrs. All values represent the mean of 6 independent experiments 6SEM. Statistical comparisons of luciferase activity between treatments
relative to the untreated control were determined by ANOVA followed by Bonferroni post hoc analysis. (* p,0.05, ** p,0.001, *** p,0.001).
doi:10.1371/journal.pone.0067483.g003

Figure 4. Neonatal leptin treatment leads to a persistent increase in PPARa P2 transcription. A) Neonatal leptin treatment induces a
persistent increase in total PPARa transcripts, AOX and CPT-1 mRNA expression in retroperitoneal adipose. Values represent the mean6 SEM relative
to the saline treated control group. Statistical comparisons between the control (Con) and neonatal leptin treated (Leptin) groups were made using a
Students unpaired t test. B) The expression of the P2 but not the P1 PPARa transcript is significantly altered by neonatal leptin treatment. Values
represent the mean 6S EM relative to the saline treated control group. Statistical comparisons between the control (Con) and leptin treated (Leptin)
groups were made using Students unpaired t test. (* p,0.05, ** p,0.001, *** p,0.001).
doi:10.1371/journal.pone.0067483.g004
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in early life would have greater capacity to meet the metabolic

challenge of a high calorie diet after weaning, while a lower leptin

exposure would result in a reduced capacity to regulate fatty acid

deposition in adipose tissue. This may explain, at least in part, the

observation that low umbilical cord blood leptin levels are

associated with rapid postnatal weight gain [65]. One implication

is that leptin exposure during specific periods in development may

influence future risk of obesity.
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Figure 5. Pyrosequencing analysis of the PPARa promoter in adipose tissue of saline or leptin treated adult female rats. A) Schematic
diagram showing the location of the CpGs sequenced. All exon positions are indicated relative to the Ensembl transcription start site B)
Pyrosequencing analysis of CpGs within the PPARa promoter. Values represent mean methylation levels 6SEM (n= 8/group).Only CpG sites where a
significant difference in methylation between the saline and leptin treated groups are shown. Saline treated, black bars (C), leptin treated white bars
(L). Significant differences in DNA methylation between saline and leptin treated groups was determined using a Students unpaired t-test where
*p,0.05.
doi:10.1371/journal.pone.0067483.g005
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