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Abstract

The chaotic nature of the atmospheric dynamics has stimulated the applications of methods and ideas derived from
statistical dynamics. For instance, ensemble systems are used to make weather predictions recently extensive, which are
designed to sample the phase space around the initial condition. Such an approach has been shown to improve
substantially the usefulness of the forecasts since it allows forecasters to issue probabilistic forecasts. These works have
modified the dominant paradigm of the interpretation of the evolution of atmospheric flows (and oceanic motions to some
extent) attributing more importance to the probability distribution of the variables of interest rather than to a single
representation. The ensemble experiments can be considered as crude attempts to estimate the evolution of the probability
distribution of the climate variables, which turn out to be the only physical quantity relevant to practice. However, little
work has been done on a direct modeling of the probability evolution itself. In this paper it is shown that it is possible to
write the evolution of the probability distribution as a functional integral of the same kind introduced by Feynman in
quantum mechanics, using some of the methods and results developed in statistical physics. The approach allows obtaining
a formal solution to the Fokker-Planck equation corresponding to the Langevin-like equation of motion with noise. The
method is very general and provides a framework generalizable to red noise, as well as to delaying differential equations,
and even field equations, i.e., partial differential equations with noise, for example, general circulation models with noise.
These concepts will be applied to an example taken from a simple ENSO model.
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Introduction

The equations that govern the evolution of the atmosphere and

the ocean have been known for a long time and have been

extensively investigated. To investigate them, several numerical

methods that exploit the first order time derivatives to obtain the

time evolution, have been intensely developed. The equations

showed a strong sensitivity to small perturbations, both in the

initial conditions as well as in the parameters defining them, giving

rise to the entire field of dynamical chaos [1].

The chaotic nature of the dynamics stimulated the application

of methods and ideas derived from statistics and statistical

dynamics. For instance, ensemble systems are used to make

weather predictions which are designed to sample the phase space

around the initial condition. Such an approach has been shown to

substantially improve the usefulness of the forecasts since it allows

forecasters to issue probabilistic forecasts. The implicit assumption

is that the presence of various sources of errors, coupled with the

intrinsic sensitivity of the evolution equations to small errors [1],

makes a single forecast not so useful [2,3].

The concept has gained a large consensus because it has been

shown to be relevant to various dynamical problems. Numerical

experiments driven by external forcing, such as those used with

prescribed SST (Sea Surface Temperature) or even prescribed

concentrations of greenhouses gases in climate change experi-

ments, have shown that the response to external forcing is still

sensitive to errors, either because of uncertainties in the initial

condition or in the model formulation. Ensemble experiments are

now commonly used in these cases [4–6].

These works shifted the dominant paradigm of interpreting the

evolution of atmospheric flows (and the ocean to some extent, see

[7]) attributing an increasing importance to the probability

distribution of the variables of interest rather than to a single

representation. The ensemble experiments can be considered as

crude attempts to estimate the evolution of the probability

distribution of the climate variables, which is the relevant quantity

for practice. Other interesting quantities, as variance and

correlation functions, can be obtained from the Probability

Distribution Function (PDF). The ensemble mean of temperature,

for instance, cannot be considered simply as the average of the

available ensemble members, but as the simplest estimation of the

expectation value.

Finding an equation for the evolution of the PDF is far from

trivial. Hasselmann [8] has shown that a stochastic component is

consistent with the basic principles of the atmospheric/ocean

dynamics and whereas other investigators [9–14] have shown that

some aspects of the atmosphere dynamics can be described by

simple models with a stochastic component. It is also possible to

estimate the stochastic component from observations [15,16].

The addition of stochastic noise to the evolution equation results

in a multidimensional Langevin-like equation that can be shown to

support a Fokker-Planck equation for the evolution of the

probability distribution of the state vector. This result is very

interesting since the Fokker-Planck equation is linear, even if the

corresponding evolution equation may be non-linear. However,

the Fokker-Planck equation is obtained in a phase space with the

dimensions corresponding to the number of degrees of freedom of
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the original equations. Even a very simple general circulation

model can easily have hundreds of degrees of freedom and a

numerical approach is not feasible.

This paper shows that it is possible to write the evolution of the

probability distribution as a functional integral of the same kind

introduced by Feynman [17] in quantum mechanics, using some

of the methods and results developed in statistical physics [18,19].

The approach allows obtaining a formal solution to the Fokker-

Planck equation corresponding to the Langevin-like equation of

motion with noise. The method is very general and it provides a

framework easily generalizable to red noise, as well as to delay

differential equations, and even field equations, i.e. partial

differential equations with noise. The approach has been proved

useful in fields other than physics, such as polymer theory,

chemistry and even financial markets [20–22]. There are also

applications to other relevant problems in geosciences : turbulence

fluids [23–25], Lyapunov exponents [26], data assimilation [27],

or wave propagation in random media [28,29]. The first quantum

field theory formalism describing additive noise was developed by

Martin, Siggia and Rose [30], by using a different kind of

approach, a method similar to the canonical quantization. The

path integral technique, however, is relatively less known in the

field of Climatology.

In this paper, the authors attempt to solve stochastic differential

equations with the Path Integral technique. This method is applied

to solve a linear simple model and a non-linear one, relevant to

climatological problems, to demonstrate the power of this tool.

Although the technique seems involuted, it could be very easily

generalized and could also be the basis for applications to field

equations arising in a field theory. This method has only been used

with simple linear and non-linear ENSO models, which contain

only time depending variables. The aim of this paper is to

stimulate interest in the path integral technique for application in

the investigation of the Global Climate System. The authors’ hope

is to use the formalism of the field variables to face, with this

technique, more complicated models, by applying this method to

study general circulation models with noise.

The remainder of this paper is organized as follows. Section 0

introduces and summarizes the general theoretical foundation and

Section discusses the calculation of the integrals. Section

introduces the concept of Green’s matrix and functions. Section

introduces a discussion of perturbation expansion applied to non-

linear cases. In Section, these concepts are applied to an example

taken from a simple ENSO model and Section concludes.

Methods

The Path Integral Formulation
Langevin equation and probability. The systems describ-

ing the atmosphere or the ocean can be written as coupled

Langevin equations:

_qqm(t)~fm(q(t))zEm(t), ð1Þ

where q(t)~(q1(t), . . . ,qd (t)) represents a trajectory in Rd and

fm(q) represents a differentiable function of q. It is assumed that

there are d degrees of freedom, and in what follows it will be

considered a Gaussian white noise Em(t). This kind of noise is

characterized by its 1-point correlation functions, the averages,

that are equal to zero, and by the 2-points correlation functions:

SEm(t)n(t0)T~Qdmnd(t{t0): ð2Þ

In the equation above, dmn is the Kronecker delta and Q

measures the strength of the correlation. For simplicity, Q is taken

as a constant, and the variances of different Em(t) noise terms are

equal. The equations above are not the most general stochastic

first order differential equations. Time translation invariance has

been explicitly assumed, and the same variance has been used for

different variables, but those restrictions are not really limiting and

it has been assumed for simplicity [31].

The Langevin equations (1) generate a time-dependent prob-

ability density function for a stochastic vector q(t), given the value

of this vector at initial time, which can be written formally as:

P(q,T jq0,t0)~SPd
m~1d(qm(T){qm)TE with T§t0, ð3Þ

in which q0 and t0 are the initial conditions, and d is the Dirac

delta. This probability is just the ensemble average over the

solutions of the Langevin equations (1); STE denotes an average

with respect to the probability distribution of the realizations of the

stochastic variables Em(t). P(q,T jq0,t0) is the conditional proba-

bility to find the system in q at time T starting from the point q0 at

the time t0. (qm(T){qm) is the difference between a point of the

trajectory obtained with the Langevin equation (1) at the time T ,

and a fixed point in the configurations space. The trajectory

depends on the initial condition q0, at time t0. Although q0 doesn’t

appear in the right-hand side of the equation, that expression

implicitly depends on it by means qm(T).

Using the Gaussian nature of the noise, starting from the

equation above, it is possible to write a Fokker-Planck equation for

P(q,T jq0,t0), see for example [31]:

dP(q,T jq0,t0)

dT

~
Xd

m~1

L
Lqm

1

2
Q

LP(q,T jq0,t0)

Lqm
{fm(q)P(q,T jq0,t0)

� �
:

ð4Þ

The formal solution of this equation can be written as a path

integral [19]

P(q,T jq0,t0)~

ðqT ~q(T)

q0~q(t0)

½Dq(t)� exp ({S(q)), ð5Þ

where ½Dq(t)� means that the integration is done over all paths q(t)
that go from t0 to T . The functional S(q) is the continuous

Onsager-Machlup action which in the white noise case

S(q)~
1

2Q

ðT

0

( _qqm{fm(q))dmn( _qqn{fn(q))zQ
Lfm

Lqm

� �
dt , ð6Þ

for the last equation summed over repeated index it is used. The

extra divergence term in the action is associated with the difficulty

of defining the derivative of a stochastic process. These expressions

are symbolic and, they have to be defined by a discretization rule.

In fact, a functional integral is well-defined only if it is assigned a

formal continuos expression and a discretization rule. The process

paths, which are solutions of the Langevin equation, are

continuous as Dt?0, but they are not differentiable, and the
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ordinary rules of calculus must be modified to come up with a

consistent definition. In the case of a simple additive noise, the

pathologies do not show up, but if there is multiplicative noise, it is

absolutely necessary to choose an interpretation. In the following,

the Stratonovich interpretation will be used as the discretization

rule, which allows treating the fields as differentiable, and

therefore to use them in the ordinary rules of calculus. In the

case of weak additive noise, the divergence term drops simplifying

the action:

Sweak(q)~
1

2Q

ðT

0

( _qqm{fm(q))dmn( _qqn{fn(q))
� �

dt: ð7Þ

Expectation values for a generic quantity F (q(T)) can be obtained

by

vF (q(T))w

~

Ð Ð qT ~q(T)

q0~q(t0) ½Dq(t)�F (q(T)) exp ({S(q))P(q0,t0)dq0Ð Ð qT ~q(T)

q0~q(t0) ½Dq(t)� exp ({S(q))P(q0,t0)dq0

,
ð8Þ

where S T here is just a time average, and P(q0,t0) is the

distribution that describes the system at the initial time t0.

Integrating over the initial conditions using P(q0,t0), the average

depends only on the point q(T). The correlation can be obtained

by using a polynomial expressions of the q components on the

functional F .

Stochastic equations and path integrals have a mathematical

meaning only if it is a discretization is associated to them. One can

apply a discretization, for instance denoting the initial and final

times by t0 and T , respectively,

Dt~(T{t0)=N

tn~t0znt

qn~q(tn)

En~E(tn),

ð9Þ

with n~1, . . . ,N. The probability distribution of the discretized

noise is given by

b(n)~(2pQ){1=2 exp {
E2

n

2Q

� �
:

If the Langevin equation (1) is integrated in an infinitesimal time

interval Dt, the discretized equation becomes

qnz1{qn~Dt f(qn)z
ffiffiffiffiffi
Dt
p

En : ð10Þ

The conditional probability, that the system will be in the state

qnz1 at time tnz1 given that it was in qn at time tn, could be

defined with the following symbol,

p(qnz1,tnz1jqn,tn)~

ð
d(qnz1{qn{Dt f(qn){

ffiffiffiffiffi
Dt
p

En)b(En)dEn

~
1

(2pQDt){1=2
exp {

(qnz1{qn{Dt f(qn))2

2QDt

" #
,

where d is the Dirac delta. On the right-hand side of the equation

above, the only variables which appear are qnz1, qn, Dt, therefore

it is necessary to always use a notation for which the transition

probability depends explicitly on time, for instance tnz1 and tn.

This will be more explicit, as it will soon be shown, when the

summation in the action is transformed into an integral with

extremes depending on the initial and final time of the transition,

see Eq. (6). This means that time is a variable, not an index, and it

is coherent with the fact that the PDF, which satisfies the Fokker-

Planck equation, is time-dependent. In order to obtain the

unconditional probability p(qnz2,tnz2), one would have to use

the Kolmogorov-Chapman equation,

p(qnz2,tnz2jqn,tn)

~

ð
p(qnz2,tnz2jqnz1,tnz1)p(qnz1,tnz1jqn,tn)dqnz1 :

the probability for the entire path can be obtained

p(qN ,T jq0,t0)

~

ðqN ~q(T)

q0~q(t0)

dq1 � � � dqN{1

(2pQDt)N=2
exp {

SN (q0, . . . ,qN )

2Q

� �
,

ð11Þ

where it has been defined

SN (q0, . . . ,qN )~
XN{1

n~0

(qnz1{qn{Dtf(qn))2

Dt

 !
: ð12Þ

The SN functional plays the role of the action as in classical

mechanics and it is also known as the Onsager-Machlup

functional. Probability cannot be exactly analytically computed

for a non-linear f, but with a linear f the integral is Gaussian and

can be computed. From the Eq. (11) it is possible to see that

½Dq(t)�& dq1 � � � dqN{1

(2pQDt)N=2
, these quantities always have to be

considered in the limit approximation. There are N{1 integra-

tions over the possible intermediate values of the path, and the end

points q0, qN are fixed. Note that there are N factors in the

denominator of the Eq. (11),
1

(2pQDt)N=2
, and so presumably a

normalization factor will have to be introduced later, since they

can be divergent when N??. The choice of the discretization is

important because the term

(qn{qn{1)f(qn{1)

is ill-defined when the small time step limit is studied, and it must

be treated carefully. It turns out that Feynman’s original choice of

symmetrizing the term [17] as

The Path Integral Formulation of Climate Dynamics
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(qn{qn{1)
f(qn{1)zf(qn)

2

is equivalent to choosing the Stratonovich interpretation. Different

continuous formal expressions exist for the functional integral,

which, with the appropriate discretization rule, define the same

stochastic process. The Stratonovich mean point formulation is

useful to analytically treat problems. In particular it is connected to

the possibility of using the usual techniques of integral calculus.

With this kind of discretization, it is possible to define all the terms

that in the limits become the action seen before Eq. (6). The

discretization, beyond giving meaning to the expressions above,

gives a recipe to explicitly compute those quantities.

The propagator. The probability of reaching qN at T from

any point q0 at t0, obeying the initial distribution P(q0,t0), is then

given by

p(qN ,T)

~

ðqN ~q(T)

q0~q(t0)

dq1 � � � dqN{1

(2pQDt)N=2

exp {
SN (q0, . . . ,qN )

2Q

� �
P(q0,t0)dq0 ,

ð13Þ

which describes the evolution of the probability distribution from

time t0 to time T . It is the solution to the Fokker-Planck equation.

The final integration over q0 resolves the normalization issues

previously mentioned and a final result is obtained. It is also

possible to write Eq. (13) as

p(qN ,T)~

ð
k(qN ,T jq0,t0)P(q0,t0)dq0 , ð14Þ

where a symbol for the kernel has been introduced

k(qN ,T jq0,t0)

~

ðqN ~q(T )

q0~q(t0)

dq1 � � � dqN{1

(2pQDt)N=2
exp {

SN (q0, . . . ,qN )

2Q

� �
,

ð15Þ

that propagates the solution from time t0 to time tN~T ; this

expression is also known as the propagator. This equation is the

analogous of Eq. (5) discretized.

The concept of the path integrals recurring in these formulas is

illustrated in Fig. 1. The probability of reaching qN starting at q0 is

composed by the sum of all paths that may take all possible

intermediate values at intermediate times. Their contribution must

be integrated for all possible values. For further details about the

path integral, refer to [22].

Considering that:

lim
N?z?

p(qN ,T)~P(q,T) and

lim
N?z?

k(qN ,T jq0,t0)~K(q,T jq0,t0) ,

the expression for the probability in the continuous case is given by

P(q,T)~

ð
K(q,T jq0,t0)P(q0,t0)dq0 , ð16Þ

and continuous time propagator from time t0 to T is

K(q,T jq0,t0)~

ðq(T)

q(t0)

½Dq(t)� exp ({S(q)) : ð17Þ

Eq. (16) is the probability of finding the system in the state q at

time T , given the initial distribution P(q0,t0) at time t0.

Calculating the Path Integral
Practically, analytically computable path integrals are rare, and

they are essentially limited to Gaussian integrals, which, as

previously noticed, are obtained when f(q) is linear. They can be

analytically calculated from the discretization previously intro-

duced only in particular cases [22]. It is possible to consider an

approximate method for the computation derived from the

steepest descent method (or saddle point method) [31]. The path

integral is dominated by the minima of the action, which are the

trajectories that minimize the action functional. It can be

approximated by a series of Gaussian integral, one for each

minimum of the action, considering fluctuations around these

Figure 1. Discretization of the path integral. The initial q0 and final qN variable are not integrated over.
doi:10.1371/journal.pone.0067022.g001
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trajectories and computing the approximate integral. In this way

the path integral can be separated into two simpler factors; the first

one contains the stationary conditions, and the second contains a

term that can be transformed, using the projection on eigenfunc-

tions, in Gaussian integrals. If f is considered as non-linear, this

method results useful because it lets us use a simple perturbation

expansion technique.

Let the function f(qn) be a linear operator A. In this case the

action can be written as

S(q)~
1

2Q

ðT

0

(½ _qq{Aq)T ( _qq{Aq)
� �

zQTr(A)dt ð18Þ

and the path integrals become

K(q,T ; q0,t0)

~ exp {
1

2
Tr(A)T

� �ðq(T)

q(0)

½Dq(t)�

exp ({
1

2Q

ðT

0

( _qq{Aq)T ( _qq{Aq)dt) :

ð19Þ

Following the steepest descent method, trajectories that minimize

the action must be found. However, there is a problem associated

with the fact that, for a system of the present form, there are two

solutions to the first order of variations, which correspond to the

equation of motion without noise. The solutions correspond to the

choice q~r, so that

_rr~+Ar r(0)~q0 ,

the unperturbed trajectory corresponds to the plus sign. Obviously

it would be desirable to be able to investigate the perturbation

around this solution, but this is complicated because the particular

value of the action in this case is zero, making a traditional

expansion impossible. However, as pointed out by [32], there is a

method that allows the expansion along the correct solution and

also satisfies both boundary conditions for the integration in the

action. It is necessary to introduce a change of variables quantity

q~rzg, so that the action (18) can be written as

S~{
1

2Q

ðT

0

_rrz_gg{A(rzg)ð ÞT _rrz _gg{A(rzg)ð Þdt

~{
1

2Q

ðT

0

_gg{Agð ÞT _gg{Agð Þdt

ð20Þ

because r satisfies the equation of motion without noise. The

boundary conditions on this expression are given by

g(0)~0 g(T)~qT{r(T) :

The measure of the integral does not change, since it is a linear

transformation, and ½Dq(t)� is transformed in ½Dg(t)� without the

adjoint of a new factor in front of it. One can now substitute

around an unperturbed trajectory gc(t) so that deviations of orderffiffiffiffi
Q
p

are introduced obeying the boundary conditions

y(0)~y(T)~0

g(t)~gc(t){y(t)
ffiffiffiffi
Q

p
: ð21Þ

Substituting Eq. (21) in the action (20), it is

S~

ðT

0

_ggc{Agcð ÞT _ggc{Agcð Þz2 _yy{Ayð ÞT _ggc{Agcð Þ

z _yy{Ayð ÞT _yy{Ayð Þdt ,

ð22Þ

and integrating by parts the various terms and using the boundary

conditions, it is obtained

S~{
1

2Q
gT

c _ggczgT
c Agc

� �
jT0 {

1

2Q

ðT

0

gT
c {€ggcz(AT{A) _ggczAAT gc

� �
dt{ ð23Þ

1

2Q

ðT

0

yT {€ggcz(AT{A) _ggczAAT gc

� �
dt{

1

2Q

ðT

0

yT {€yyz(AT{A) _yyzAAT y
� �

dt{ :

Therefore, if a gc is chosen, which satisfies the equation with the

given boundary conditions

{€ggcz(AT{A) _ggczAAT gc~0, ð24Þ

the action can be divided into two parts: the explicit terms

depending on the boundary conditions and implicitly on the

unperturbed solution r, and a term that depends only on the

fluctuations y,

S~{
1

2Q
gT

c _ggczgT
c Agc

� �
jT0 {

1

2Q

ðT

0

yT {€yyz(AT{A) _yyzAAT y
� �

dt~S1zS2 :

The term S1 does not depend on the varying path y(t) and

therefore can be taken out from the integration in Eq. (19),

whereas the term S2 will depend only on time T , which is often

called the prefactor. The propagator (19) can then be written as

K(q,T ; q0,t0)~ exp {
1

2
Tr(A)T

� �

The Path Integral Formulation of Climate Dynamics
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exp {
S1

2Q

� �ðy(T)

y(0)

½Dy(t)�

exp ({
1

2Q

ðT

0

yT {€yyz(AT{A) _yyzAAT y
� �

dt)

ð25Þ

with boundary conditions y(0)~y(T)~0. The remaining calcu-

lation can be finished by observing that the action in the paths y is

then equivalent to a Sturm-Liouville boundary problem for the

differential operator L

ðT

0

yT {€yyz(AT{A) _yyzAAT y
� �

dt~

ðT

0

yT Ly
� �

dt ð26Þ

The operator L is self-adjoint and therefore has a complete

orthonormal set of eigenfunctions wli
with real eigenvalues mli

,

l~1, . . . ,?, i~1, . . . ,d . The eigenfunction and eigenvalues are

d-multiple infinities as a consequence of the dimensionality d of

the operator. The variables y can be expanded in a series of the

complete orthonormal eigenfunctions and

1

2Q

ðT

0

yT Lydt

~
1

2Q

ðT

0

X?
l~1

Xd

i~1

cli
wli

X?
l~1

Xd

j~1

mlj
clj

qlj
~

1

2Q

X?
l~1

Xd

i~1

c2
li

mli

ð27Þ

Using this approach, the path integral Eq. (17) can be written as

an infinite set of Gaussian integrals over the coefficients of the

expansion. A change of variables from the qi’s to the ci’s will allow

the execution of the integral. The functional path integral becomes

an integral for the coefficients c2
li
, because in varying them, all

possible paths are obtained. Since L is self-adjoint, it can be

diagonalized by a unitary transformation with a unit Jacobian for

the change of variables, therefore the path integral measure

remains the same, and the boundary conditions are satisfied by the

eigenfunctions. The integral is then formed by an infinite number

of Gaussian integrals, and it can be obtained that,

K(q,T ; q0,t0)

~ lim
L??

exp {
1

2
Tr(A)T

� �

exp ({
1

2Q
S1)

1

(2QpDt)Ld=2
PL{1

l~1 P
d
i~1

2pQ

mli

 !1=2

,

ð28Þ

or

K(q,T ; q0,t0)

~ lim
L??

exp {
1

2
Tr(A)T

� �

exp ({
1

2Q
S1)

1

2Qp(Dt)Ld=2
PL{1

l~1 P
d
i~1

1

mli

 !1=2

:

ð29Þ

The product is reduced to the inverse root of the determinant of L.

This determinant and the constant, which contain the temporal

step, are usually regularized considering the ratio between this

propagator and the propagator for a free evolution.

Generating Functions
The calculation of the n-points correlation functions, that will be

used to compute the correlations in the following examples, is

complicated, but it can be simplified by introducing the moment

generating functional

Z½J�~
Ð
½Dq(t)� exp {S(q)z

Ð
J(t):q(t)dt

� �Ð
½Dq(t)� exp ({S(q))

: ð30Þ

The functional derivative of the expression above

d

dJm(t)
Z½J�

� �
jJ~0~

Ð
½Dq(t)�qm(t) exp ({S(q))Ð
½Dq(t)� exp ({S(q))

~vqm(t)w ð31Þ

provides the expectation value for the mean. Remember that the

functional derivative is defined as follows

d

dJ(x)
J(y)~d(x{y),

where d on the right-hand side is a Dirac delta, while the notation

on the left is the usual notation for the functional derivation. The

higher order correlations can be obtained by repeating the process:

d

dJm(t)

d

dJn(t)
Z½J�

� �
jJ~0

~

Ð
½Dq(t)�qm(t)qn(t) exp ({S(q))Ð
½Dq(t)� exp ({S(q))

~vqm(t)qn(t)w ,

ð32Þ

and for a generic functional F , it is possible to prove that

F ½ d

dJm(t)
�Z½J�

� �
jJ~0~

Ð
½Dq(t)�F ½qm(t)� exp ({S(q))Ð
½Dq(t)� exp ({S(q))

~vF ½qm(t)�w :

ð33Þ

The formalism of the derivation operator, appearing within the

scope of F , means that one has to substitute the functional

derivatives in place of the usual variables on which the operator F
is defined as in the Eq. (32), where qm(t)qn(t) are substituted with

the derivatives
d

dJm(t)

d

dJn(t)
.

The following paragraph shows how it is possible to compute

Z½J� for a general case with non-linear f in the Langevin

equations.

Perturbation Expansions
Feynman diagrams. The path integral formulation adapts

itself very naturally to the definition of perturbation corrections of

various kinds, for example, it can be used to compute corrections

to the probability distribution and to the correlation functions. In

fact, because of the general complexity of the action, it will be

difficult to know the exact distribution computing the integrals.

Although the technique seems involuted, it can be very easily
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generalized and can be the basis for applications to field equations

arising in a field theory.

Consider the propagator for a non-linear evolution,

_qq{Aq{mf(q)~0, where m is a parameter that measures the

strength of the non-linear terms,

K(q,T ; q0,t0)

~

ðqT

q0

½Dq(t)�

exp ({
1

2Q

ðT

0

_qq{Aq{mfð ÞT _qq{Aq{mf(q)ð Þdt) ,

ð34Þ

that is an extension of (19). The same coordinate transformation

described in Sect. (), q~rzg, can be introduced so that the action

can be written as an extension of Eq. (20)

S~{
1

2Q

ðT

0

_gg{Ag{mf(rzg)ð ÞT _gg{Ag{mf(rzg)ð Þ: ð35Þ

Clearly the new measure ½Dg(t)� also has to be considered.

The quadratic nature of the action creates a potential problem

because the expansion of the terms, according to powers of the

coupling constant m, generate terms of the form _ggf(g) that couples

state variables with derivatives. It is possible to overcome this

problem using the Hubbard-Stratonovich transformation [33,34]

extended to the multidimensional case, that is a generalization of

the identity

exp {
x2

2a

� �
~

ffiffiffiffiffiffi
a

2p

r ð?
{?

exp {
ay2

2
{ixy

� �
dy ,

for the functional integrals. If the propagator is considered in its

discretized form Eq.(15), and for each integral that appears the

identity above is used when the continuos limit is restored, the

propagator becomes

K(g,T ; g0,0)~

ð
D½y(t)�

ðgT

g0

D½g(t)�

exp ({

ðT

0

QyT y

2
{iyT _gg{Ag{mf(gzr)ð Þ

z
m

2
Lifi(gzr)zTr(A)dt :

ð36Þ

The auxiliary functions y(t) are defined over the entire time

axis. This transformation introduces new integrations that can be

summarized as D½y(t)�. The field f(t)~{iy(t) can be introduced

and the trace of the linear part can be taken from the functional

integrals, as it does not depend on the paths, yielding

K(g,T ; g0,0)~ exp {

ðT

0

Tr(A)dt

� �

ð
D½w(t)�

ðgT

g0

D½g(t)� exp {

ðT

0

Qw�w

2
zw�( _gg{Ag)dt

� �
|

exp

ðT

0

mw�f(gzr){
m

2
Lif(gzr))

� �
dt , ð37Þ

or

KV (g,T ; g0,0)

~

ð
D½w(t)�

ðgT

g0

D½g(t)� exp ({S0) exp (

ðT

0

V (g(t),w(t))dt) :
ð38Þ

The subscript V has been added to underscore the dependence of

this propagator on the non-linear terms in the second exponential

exp (V ), whereas the quadratic terms are contained in S0. The

term V (t) contains higher order terms in q(t) (hence in g(t) and

w(t)) that reflect the impact of the non-linear interactions. The

propagator corresponding to the quadratic part describes the

evolution of the system without interaction and therefore can be

described as the free evolution of the system. Usually it can be

computed exactly:

K0(g,T ; g0,0)~

ð
D½q�

ðgT

g0

D½g(t)� exp ({S0) , ð39Þ

whereas, in the presence of interactions, it is

KV (g,T ; g0,0)~ð
D½w�

ðgT

g0

D½g(t)� exp ({S0) exp (

ðT

0

V (g,w)dt)~

v exp (
1

2Q

ðT

0

V (g,w)dt)w0 : ð40Þ

In other words, the propagator for the problem is the expected

value of the interaction with respect to the probability distribution

of the unperturbed, usually linear, problem. In the presence of a

small coupling constant m, the exponential for the interaction can

be expanded in series, yielding successive corrections to the free

propagator

KV (g,T ; g0,0)~K0 1z
1

2Q
v

ðT

0

V(g,w)dt)w0z

�

1

4Q2
v

1

2

ðT

0

ðT

0

V (g(t),w(t))V(g(t0),w(t0))dtdt0)w0z . . .

�
: ð41Þ

These expectation values can be computed using the generating

functional Eq.(33).

Perturbation expansion for the correlation functions. It

is useful, for the following computations, to define a scalar product
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as (x,y)~x�:y, where the asterisk indicates Hermitian conjuga-

tion, (:�)~�((:)T . The generating function can also be written for

the non-linear case using the transformed action (37). It is

convenient to write it using the real vector J~(j,k)~(j1,j2,k3,k4)
as the source term, so that

Z(J)~Ð
D½w(t)�

Ð gT
g0
D½g(t)� exp {

ÐT

0
1
2

Qw�wzw�( _gg{Ag){g�j{w�k dt
	 


exp
Ð T

0
V (g,r,w)dt)

	 

Ð
D½w(t)�

Ð gT
g0
D½g(t)� exp {

Ð T

0
1
2

Qw�wzw�( _gg{Ag)dt
	 
 ,

ð42Þ

where

exp (

ðT

0

V (g,r,w)dt)~ exp

ðT

0

mwT f(gzr){
m

2
Lif(gzr))dt

� �
:

For a small coupling constant m, the exponential in a Taylor

series can be expanded to obtain

exp (

ð
V (t)dt)~1zm

ð
V(t)dtz

m2

2

ð ð
V (t)V (t0)dtdt0 : ð43Þ

When the function of the path V is a polynomial, every term is

the expectation value of the terms of the series expansion of the

exponential, and each one can be obtained by differentiating the

generating function of the free evolution. The series can be

formally exponentiated and written for the generating function of

the non-linear case

Z(J)~ exp V (
d

dJ
)

� �
Z0(J) , ð44Þ

analogously to Eq. (33), that must be normalized by Z(0). The

expression for the quadratic generating function can be written as

Z0(J)

~

Ð
D½w�

Ð gT
g0
D½g� exp {

Ð T

0
1
2

Qw�wzw�( _gg{Ag){g�q{f�k dt
	 


Ð
D½w�

Ð gT
g0
D½g(t)� exp {

Ð T

0
1
2

Qw�wzw�( _gg{Ag)dt
	 
 ,

ð45Þ

where a zero subscript has been added to indicate that it is the

generating function for the linear evolution. Introducing the vector

u~(g,w), it is possible to write

Z0(J)~

Ð uT
u0
D½u(t)� exp {

Ð T

0
1
2

u�D{1u{u�J dt
	 


Ð uT
u0
D½u(t)� exp { 1

2

Ð T

0
u�D{1u dt

	 
 , ð46Þ

where D{1 is the Hermitian operator

D{1~
0 {LtzA�

LtzA Q

� �
: ð47Þ

It is possible to obtain an explicit form for Z0½J� by inserting

u~uczw, with which the numerator becomes:

Z0½J�~
ðwT

w0

D½w(t)� exp ({

ðT

0

1

2
u�cD{1ucz

1

2
w�D{1uc

z
1

2
u�cD{1wz

1

2
w�D{1w{u�cJ{w�J dt) : ð48Þ

We can find uc so that D{1uc{J~0, and then

Z0½J�~ðwT

w0

D½w(t)� exp {

ðT

0

1

2
u�cJzw�Jz

1

2
w�D{1w{u�cJ{w�J dt

� �

~

ðuT

u0

D½w(t)� exp

ðT

0

1

2
u�cJ dt

� �
exp {

1

2
w�D{1w dt

� �
: ð49Þ

The remaining path integral over w(t) is eliminated by the

normalization, therefore the generating function is given by

Z0½J�~ exp

ðT

0

1

2
u�cJ dt

� �
: ð50Þ

The solution uc can be expressed in terms of the Green’s

function of the operator D{1,

uc(t)~

ðT

0

G(t,t0)J(t0) dt0 ð51Þ

and the final form of the generating function is

Z0½J�~ exp
1

2

ðT

0

ðT

0

J�(t)G�(t,t0) J(t0) dtdt0
� �

: ð52Þ

This is a general expression; in fact, in the linear case a relation

formally identical to the one above is obtained.

Results and Discussion

The Case of the ENSO
A simple model of the ENSO system based on the recharge

theory was proposed years ago [35]. Following this model, ENSO

can be described by a simple linear system

dh

dt
~{rh{amb0h

dh

dt
~(cmb0{c)hzch ,

where h is the SST anomaly (Sea Surface Temperature) in the

West Pacific and h is the depth anomaly of the thermocline in the

East Pacific. The parameter m measures the strength of the

(42)
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interaction between the SST and the wind stress. Introducing the

vector q~(h,h), it can be written as

d

dt

h

h

� �
~

{r {amb0

c cmb0{c

� �
h

h

� �

A coordinate transformation of the vector (h,h) allows

transforming the matrix to the standard form

d

dt

z1

z2

� �
~

b {w

w b

� �
z1

z2

� �
ð53Þ

The matrix in the equation above is indicated with L.

The action for this system is given by

S~
1

2Q

ðT

0

( _zz{Az)T ( _zz{Az)zTr(A)dt :

The solution without noise

r(t)~
ebt z10 cos twð Þ{z20 sin twð Þð Þ
ebt z20 cos twð Þzz10 sin twð Þð Þ

 !
,

around which the action must be expanded, is represented by an

exponentially modulated oscillation. The period of the oscillation

is w and the time scale of its exponential growth/decay is given by

1=b. The oscillations are damped if bv0, neutral oscillations

occur for b~0 and unbounded oscillations occur in case of bw0.

The solution of the stationarity equation (24), satisfying the

boundary conditions that allow the calculation of the fluctuation

prefactor, is given by the function

gc~

sinh btð Þ z20 sin tw{2Twð ÞebT zz10 cos w 2T{tð Þð ÞebT {2z1T cos w T{tð Þð Þzz2T sin w T{tð Þð Þ
� �

sinh (bT)

{
sinh btð Þ 2z10 sin tw{2Twð ÞebT {z20 cos w 2T{tð Þð ÞebT zz2T cos w T{tð Þð Þzz1T sin w T{tð Þð Þ

� �
sinh (bT)

0
B@

1
CA

and therefore the propagator can be written, based on Eq. (25), as

Figure 2. The probability distribution for the subcritical case (m~2=3) from the propagator (a) and from 2000 numerical experiment
(b). The solid line corresponds to T = 1, the dashed line to T = 2 and the dot-dashed line to T = 8.
doi:10.1371/journal.pone.0067022.g002
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K0(z1T ,z2T ,T jz10,z20,0)~
bebT

2pQ sinh (bT)

exp {
b

2Q sinh (bT)
e{bT (z2

10zz2
20)zebT (z2

1Tzz2
2T )

��

z2 sin (wT)(z1T z20{z10z2T ){2 cos (wT)(z10z1Tzz20z2T )�) : ð54Þ

With the choice of parameters proposed in [35],

c~1,c~0:75,r~0:25,a~0:125,b0~2:5,m~2=3, the system un-

dergoes stable oscillations, and the entries of the corresponding

matrix L are b~0 and w~
ffiffiffiffiffiffiffiffiffiffi
3=32

p
. The corresponding propaga-

tor can be written as

Kc~
1

2pQT
exp {

1

2QT
z2

10zz2
1Tzz2

2Tzz2
20

��

{2 cos Twð Þ(z10z1Tzz20z2T )z2 sin (wT)(z1T z20{z10z2T )Þ) ð55Þ

Fig. 2 shows the probability distribution, obtained for a

propagator for an initial probability distribution, that is, a delta

function at the origin. It is a Gaussian (the figure shows only the

section for z2T~0), whose standard deviation increases with time.

The system is analogous to a Brownian motion with the particle

diffusing in the entire space. The period of the oscillation is close to

20 months and the separate members of the ensemble deviate

rapidly as the system evolves. Fig. 3a shows the evolution of the

individual members of the ensemble as the oscillation gains larger

amplitude. The basic linear oscillation is neutral, so the stochastic

fluctuations create the amplification effect, which later will result

in the flattening of the probability distribution. For values of m
smaller than the critical value, the oscillation is damped, but the

stochastic forcing can counterbalance it, permitting a statistical

equilibrium. Fig. 3b shows the time evolution for the damped case,

and it is possible to see how the divergence is considerably slowed

down. Depending on the magnitude of the stochastic force Q, a

different value of m is necessary for equilibrium.

The probability distribution is correctly estimated by the

propagator as it can be seen in Fig. 4. The zeroth order

generating function can be obtained from the Green’s function as

in Eq. (55). The 2-point correlation function is given by the second

functional derivative of Z0(J),

vz1(t)z1(t)w~(
d

dJ1(t)

d

dJ1(t)
Z0½J�)jJ~0~

1

2

d

dJ1(t)
(

ðT

0

ðT

0

d(t{t0)G11(t0,t00)J1(t00)dt0dt00z

ðT

0

ðT

0

J1(t0)G11(t0,t00)d(t{t00)dt0dt00)Z0½J�jJ~0~

1

2

ðT

0

d(t{t00)G11(t,t00)dt00

z
1

2

ðT

0

G11(t0,t)d(t{t0)dt0~
1

2
G11(t,t)zG11(t,t)ð Þ : ð56Þ

Considering more derivatives, one might also investigate higher

order statistics such as the skewness. The Green’s function G11 for

the ENSO model in the transformed coordinates is given by

G11(t,t)~

{

Q cos tw{wtð Þ sinh btð Þ sinh btð Þ
eb T

{
sinh bTð Þ sinh btð Þ

eb t

� �
b sinh bTð Þ

H t{tð Þ

{

Q cos tw{wtð Þ sinh b tð Þ sinh btð Þ
eb T

{
sinh bTð Þ sinh btð Þ

eb t

� �
b sinh bTð Þ

H t{tð Þ ,

ð57Þ

where H here is the sign function. In this way the standard

deviation is given by equal time correlations (t~t)

vz1(t)z1(t)w~{
Q cosh bT{2btð Þ{Q cosh bTð Þ

2b sinh bTð Þ :

Considering the evolution for a semi-infinite domain, when T
becomes very large, it will be obtained

vz1(t)z1(t)w~{
Q e{2bt{1
� �

2b

the equilibrium value

vz1(t)z1(t)weq~
Q

2b
:

It is interesting to note that the same time correlation does not

depend on the oscillating part of the solution and the frequency w
does not appear anywhere. The autocorrelation for positive lags

t0~t{t is given by

vz1(t)z1(tzt0)w~
Q cos t0wð Þ 1{e{2bt

� �
2bebt0 ,

and at the equilibrium value, when t??,

vz1(t)z1(tzt0)weq~
Qe{bt0 cos t0wð Þ

2b
:
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Figure 3. The time evolution of 10 members for the critical case m~2=3(a) and the subcritical case m~1=2 (b).
doi:10.1371/journal.pone.0067022.g003
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The cross-correlations in these coordinates are identically zero,

but, going back to the (h,h) coordinates, they will recover the

correlations shown in [35].

In the same paper [35], a non-linear extension of the standard

model is proposed. The non-linear terms represent the negative

feedback of the thermocline, and involve the strength of the

coupling between the wind stress and the SST; they are cubic in h

and h. The extra term appears only in the equation for the

temperature as

{E(bhzh)3

This expression can be used to get the non-linear terms in the

action (36) to obtain the perturbation expansion in power of the

interaction coefficient E, which corrects the free (linear) propagator

in the presence of non-linear terms. The expansion is rather

Figure 4. The probability distribution for the subcritical case (m~1=2) from the propagator (a) and from 2000 numerical experiment
(b). The solid line correspond to T = 1, the dashed line to T = 2 and the dot-dashed line to T = 8.
doi:10.1371/journal.pone.0067022.g004

Figure 5. The propagators of the system: (a) the propagator for
the variables (z2,z2) (b) the propagator for the variables (z2,w2).
A corresponding propagator can be obtained exchanging 2 and 4.
doi:10.1371/journal.pone.0067022.g005

Figure 6. The internal vertex t. (a) for the quadratic term z2
2 , (b) for

the the quartic term z3
2w2 .

doi:10.1371/journal.pone.0067022.g006
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tedious and, to illustrate the point, the system will be somewhat

simplified reducing the non-linear term to a simple form, obtaining

a simplified version of the cubic non-linear term in the system (53)

that will result in

d

dt

z1

z2

� �
~

b {w

w b

� �
z1

z2

� �
z

0

{z3
2

� �
, ð58Þ

where e, function of b, measures the strength of the non-linearity.

The action for this system is given by Eq. (37), where z plays the

role of g. The relevant terms in the action are those deriving from

wT f(zzr) which, in this case, reduce to the interaction terms

between w2 and z2, {ebw2g3
2. There are also terms deriving from

the divergence in the action. The interaction terms are therefore

given by:

VI (w,z)~eb
3z2

2

2
{w2z3

2

� �
:

The generating function for these terms is then given by Eq. (44)

ZV (J)~ exp VI (
d

dJ
)

� �
Z0(J) ,

that can be expanded in power of e,

ZV (J)

~ 1z

ðT

0

VI

d

dj1(t)
,

d

dj2(t)
,

d

dk3(t)
,

d

dk4(t)

� �
dtz . . .

� �
Z0(J)jJ~0 ,

where for convenience the numbering j~(j1,j2) and k~(k3,k4)
have been introduced. As one can see from Eq. (33), the functional

derivatives have to be evaluated at the same time point, t, and

they correspond to the powers of the dynamical variables.

As an example, the correction of the temporal covariance of z1

will be computed to demonstrate the approach. This covariance is

given by the 2-point correlation function, as in Sect. (4),

Sz1(t1)z1(t2)T~
1

ZV ½J�
d

dJ1(t1)

d

dJ1(t2)
ZV ½J�

� �
jJ~0 :

The basic rules of the functional derivation are given by

df (t)

dg(t)
~0

df (t)

df (t)
~d(t{t)

and therefore the two derivatives in ZV (J) will eliminate all terms

with less than two j,k, whereas the terms with a larger number of

(j,k) will be eliminated by the evaluation at J~(j,k)~0. Due to

these mechanisms, the derivative only selects quadratic terms in

the expansion of ZV (J). The other term in the first order

expansion will be obtained by taking four derivatives, three with

respect to j2, and one with respect to k4. There are two terms of

this kind

j2G24k4j2G22j2, k4G42j2j2G22j2

Figure 7. The graphical representation for the expressions (59) and (60).
doi:10.1371/journal.pone.0067022.g007

Figure 8. The terms of the perturbation expansion for the 2-point correlation, the variance. The full contribution can be obtained by
using symmetry over all the vertices and adding the graphs obtained exchanging 2 with 4: (a) disconnected graph, corresponding to (61), (b) graph
with G24 integrated over the internal vertex t, corresponding to (62), (c) graph with G24 into an external point corresponding to (63).
doi:10.1371/journal.pone.0067022.g008
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The denominator is given by the following expression

ZV ½J�jJ~0~

1ze
3

2

ðT

0

G22(t,t)dtz
4!

8

ðT

0

(G24(t,t)zG42(t,t))G22 ,(t,t)dt

� �
:

Propagators and interactions can be graphically seen in Fig. 5

and Fig. 6. The numerator is more complicated because now there

are two more derivatives. The same arguments used before now

lead to the conclusion that only the terms with three Green’s

functions will survive. The problem is combinatorial and is well

known in quantum field theory. It is essentially the same as finding

all possible combinations of six points in time: the "external"

points, t1,t2, and the "internal" points t that are going to be

integrated over. Depending on which of the six j or k the

derivatives will operate, different kinds of integrals will be

generated. The zero order in e is simply G22(t1,t2), but for the

first order we need to count the contribution from VI . The

quadratic term in z2 will result in

M1
1

8

3

2

ðT

0

G22(t1,t)G22(t,t2)dt ð59Þ

M2
1

8

3

2

ðT

0

G22(t1,t2)G22(t,t)dt: ð60Þ

The combinatorial analysis indicates that in all there are 4 4!
terms given by the four time points; (t1,t2,t,t) are treated,

organized in such a way that M1~16 and M2~8. More

complicated expressions are obtained from the quartic terms. In

this case there are three Green’s functions involved: G22, G24 and

G42. Firstly considering the combination with G24, it can be seen

that there are 5! � 3~360 terms,

M3
1

3!

1

8

ðT

0

G22(t1,t2)G22(t,t)G24(t,t)dt ð61Þ

M4
1

3!

1

8

ðT

0

G22(t1,t)G24(t,t)G22(t,t2)dt ð62Þ

M5
1

3!

1

8

ðT

0

G22(t1,t)G22(t,t)G24(t,t2)dt: ð63Þ

with M3~144, M4~144, M5~72. Another 360 terms will come

from the symmetric terms containing G42. However some

Figure 9. The evolution of the equal time variance Sz2,z2T for an ensemble of 2000 simulations for the test system. The averaged
variance computed after equilibration and its standard deviation is shown to the right of the figure. The solid line represents the linear system, the
dashed line is the non-linear system with e~0:01 and the dotted line is the non-linear system with e~0:03.
doi:10.1371/journal.pone.0067022.g009
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simplifications can be obtained because the numerator can be

factored to the first order in e so that the normalization can be

completely canceled at the denominator. The G22(t1,t2) can be

collected to obtain for the numerator,

G22(t1,t2)(1ze

ðT

0

3

2
G22(t,t)dtz3e

ðT

0

G22(t,t)G24(t,t)dt

z3e

ðT

0

G22(t,t)G42(t,t)dt)zother terms in e , ð64Þ

or at the first order in e

1ze
Ð T

0
3
2

G22(t,t)dtz3e
Ð T

0
G22(t,t)G24(t,t)dt

z3e
Ð T

0
G22(t,t)G42(t,t)dt

 !
|

G22(t1,t2)zother terms in eð Þ : ð65Þ

The first parenthesis cancels with the numerator and the final

expression for the variance is obtained

vz1(t1)z1(t2)w~G22(t1,t2)zother terms in e :

This is the unperturbed variance corrected by the non-linear

terms.

The terms in the perturbation expansion can be expressed with

a graphical representation via Feynman diagrams like those in Fig.

5. In this problem there are three kinds of propagators,

corresponding to the matrix entries of the Green’s matrix. The

diagonal entries generate the propagator of the state variable z,

and the off diagonal terms, which turn out to be symmetric,

generating the propagator connecting the state variable to the

auxiliary variables w. The Green’s function G22(t1,t2) can be

graphically expressed with a straight line. On the other hand, the

G24 propagator can be seen as a dashed-continuos line. The points

t1 and t2 are the external lines of the graph, the time point t is

recurring twice and is therefore special, because it has two lines

that must be connected with the other point.

The quadratic terms Eq. (60) can be graphically written as in

Fig. 7. The (b) graph in the figure represents the integral where the

G22(t1,t2) propagator can be factored out. It is an example of the

fact that these kinds of terms show up graphically since they are

made up of separate parts. The so-called ‘‘disconnected’’ graph, in

this example it is the product of G22(t1,t2) and
Ð T

0
G22(t,t)dt.

The terms corresponding to z3
2w2 are more complicated. The

internal vertex is of order four and has four lines, which must be

connected with two external points. A four line vertex corresponds

to the product of two Green’s functions, in this case a G22 and a

G24, because there are only two external lines. The other two lines

must be closed on themselves. The graphs are shown in Fig. 8,

without showing all the possible symmetries and exchanges that

produce all the 720 terms.

The disconnected graphs are the product of the component

graphs, therefore the final correction to the variance or 2-point

correlation can be written in the form

vz1(t1)z1(t2)w~G22(t1,t2)zM2
e

8

3

2

ðT

0

G22(t1,t2)G22(t,t)dtz

eM4
1

3!

1

8

ðT

0

G22(t1,t)G24(t,t)G22(t,t2)dt

zeM5
1

3!

1

8

ðT

0

G22(t1,t)G22(t,t)G24(t,t2)dt

ð66Þ

The results are shown in Fig. 9. The figure shows the time

evolution of the variance at equal times t1~t2 of an ensemble of

2000 numerical simulations. The solid line for the linear case

concurs with the theoretical value at equilibrium, Q=2b~8, within

the errors. The first order estimate of the non-linear equilibration

gives 7.35 and 6.50 for e~0:1 and e~0:3 which are also in

concordance with the results.

Conclusions
This paper has shown that the path integral formulation and

functional methods can be used for stochastic equations derived

from the type of equation of motion that are used to describe the

atmosphere and the ocean. These equations pose special

complications because the evolution equations are first order in

time causing an action that introduces coupling terms between the

velocity terms and the forcing function.

This problem prevents a straightforward application of the

method as in quantum physics, however, it can be treated by a

careful consideration of the boundary conditions. Complications

in higher than one dimensions can be treated using the

Stratonovich-Hubbard transformation. A perturbation expansion

can then be designed for non-linear cases based on the calculation

of the generating function for the n-points correlation functions

and Feynman diagrams can be introduced.

In this paper the path integral technique is applied to solve a

linear simple model and a non-linear one, related to the Climate

System, to demonstrate of the power of this tool. Although the

technique seems involuted, it could be very easily generalized and

could also be the basis for applications to field equations arising in

a field theory. This method has only been used with linear and

non-linear simple ENSO models, which contain only depending

on time variables. The aim of this paper is to stimulate interest in

the path integral technique to study the Global Climate System.

The authors’ hope is to use the formalism of the field variables to

face, with this technique, more complicated models, such as

applying this method to study general circulation models with

noise.
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