
Pedigree-Free Estimates of Heritability in the Wild:
Promising Prospects for Selfing Populations
Laurene Gay1*, Mathieu Siol1,2, Joelle Ronfort1

1 Diversity and Adaptation of Mediterranean Species, UMR AGAP 1334, Montpellier, France, 2 Genetics and Ecophysiology of Legume Species, UMR Agroecology 1347,

Dijon, France

Abstract

Estimating the genetic variance available for traits informs us about a population’s ability to evolve in response to novel
selective challenges. In selfing species, theory predicts a loss of genetic diversity that could lead to an evolutionary dead-
end, but empirical support remains scarce. Genetic variability in a trait is estimated by correlating the phenotypic
resemblance with the proportion of the genome that two relatives share identical by descent (‘realized relatedness’). The
latter is traditionally predicted from pedigrees (WA: expected value) but can also be estimated using molecular markers
(average number of alleles shared). Nevertheless, evolutionary biologists, unlike animal breeders, remain cautious about
using marker-based relatedness coefficients to study complex phenotypic traits in populations. In this paper, we review
published results comparing five different pedigree-free methods and use simulations to test individual-based models
(hereafter called animal models) using marker-based relatedness coefficients, with a special focus on the influence of mating
systems. Our literature review confirms that Ritland’s regression method is unreliable, but suggests that animal models with
marker-based estimates of relatedness and genomic selection are promising and that more testing is required. Our
simulations show that using molecular markers instead of pedigrees in animal models seriously worsens the estimation of
heritability in outcrossing populations, unless a very large number of loci is available. In selfing populations the results are
less biased. More generally, populations with high identity disequilibrium (consanguineous or bottlenecked populations)
could be propitious for using marker-based animal models, but are also more likely to deviate from the standard
assumptions of quantitative genetics models (non-additive variance).
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Introduction

The genetic variance available for a trait in a population

informs us about its potential ability to evolve in response to novel

selective challenges [1]. This corresponds to one of Brookfield’s

definitions of the evolvability of a population: ‘‘a description of its

current standing crop of genetic variability, and the consequence

of the extent and nature of this variation for the population’s

ability to respond to current selective pressures’’ [2]. Additive

genetic variance can be estimated from the resemblance between

relatives by relating the phenotypic covariance of a quantitative

trait with the proportion of the genome for which two relatives

share genes identical by descent [1,3]. To achieve this, one would

ideally like to know the actual proportion of loci controlling the

trait that are identical by descent. This ‘realised relatedness’ is the

outcome of a stochastic process (due to Mendelian segregation and

linkage) with a variance that depends on genome size [4–6].

However, because causal loci are unknown, we traditionally use

the expected value of identity by descent given the ancestry [7,8].

It can be deduced from a pedigree (hereafter called WA), either in

an experiment using specific relatedness classes (e.g. full sib-half sib

design) or in a population with pedigree data ranging over several

generations [9]. However, in wild populations, pedigree informa-

tion is generally not available except for a few long term studies

[10–12]. An alternative solution is to estimate the genome-wide

average of the realised relatedness between individuals using

molecular markers [13].

With the ongoing rise of next generation sequencing, high

density SNP panels become available and the realised proportion

of the genome that two individuals share identical by descent can

be estimated with increasing accuracy [14]. Several estimators of

kinship (sometimes called coancestry) and relatedness (or relation-

ship) coefficients have been proposed [14–21] and compared

[16,22–24]. From these reviews, it appears that the relative

performance of each method depends on the set of loci used, on

allele frequency distributions, in particular minor allele frequency

spectrum [25] and on the average relatedness between individuals

in the population. Provided we can estimate it precisely, using the

genome-wide average of the realised relatedness rather than

resorting to its expected value (WA) could improve the estimation of

evolutionarily relevant parameters for quantitative traits (genetic

variance, genetic correlations or selection gradients) [7].

Different methods are available to estimate quantitative genetic

parameters from molecular marker data (hereafter called pedigree-

free methods) [26]. Their respective reliability and suitability

depending on the marker used and/or the population genetic

structure remain unclear. While such methods based on genome-

wide molecular information have received substantial attention by
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animal breeders and human biologists [27,28], evolutionary

biologists remain very cautious about how useful marker-based

relatedness coefficients could be for studying complex phenotypic

traits in populations lacking pedigree information [29].

Being able to accurately estimate the genetic variance of a trait

is particularly important for inbred or selfing species that have

been described as evolutionary dead ends due to the potential loss

of genetic diversity [30,31]. Self-fertilization is common in

angiosperms [32,33] and also occurs in hermaphrodite animals

at a lower frequency [34]. Reduced genetic variation in highly

selfing populations is frequently observed using molecular markers

[35–37]. It can be explained by reduced effective population sizes

accompanying increased homozygosity [38], enhanced genetic

hitchhiking with selective sweeps and background selection caused

by a reduced effective recombination rate [39,40] and frequent

bottlenecks following the recurrent extinction - recolonisation

events [41]. However, the effect of selfing on the genetic variation

relevant for most adaptive change, i.e. quantitative genetic

variation, is less clear. For a population with constant allelic

frequencies, inbreeding is expected to increase the genetic variance

of a trait to the point that when inbreeding is complete, the genetic

variance in the population as a whole is doubled and appears as

the between-lines component [1]. Simultaneously, inbreeding

should reduce quantitative variation due to the fixation of alleles

and to a reduced efficiency of selection in maintaining variants (see

[42] and [43] for a review of theoretical arguments). Simulations

have shown that if non-additive effects are important (dominance

or epistasis), additive genetic variance increases with inbreeding,

reaching a maximum for intermediate inbreeding coefficients (F)

and then a declining towards zero at F = 1 [44,45]. In agreement

with these theoretical expectations, some evidence for reduced

within population genetic variance in highly inbreeding popula-

tions compared to outcrossing populations has been found [43,46].

More data are needed to compare the level and components of

quantitative genetic variation between selfers and outcrossers and

to further understand the consequences of self-fertilization on the

adaptive potential of natural populations.

Besides direct effects on genetic variability, selfing generates a

correlation in heterozygosity and/or homozygosity across loci,

called identity disequilibrium [47]. This will broadly influence

both the relatedness between individuals and the variance in

relatedness in the population [48,49] and could improve marker-

based estimates of the expected proportion of identity by descent

[48]. Thereby, selfing may provide favourable conditions for

pedigree-free quantitative genetics.

In this paper we review published results comparing several

pedigree-free methods used to estimate quantitative genetics

parameters for complex phenotypic traits in wild populations.

We then report results from simulations aimed at further

comparing the performance of individual-based models (hereafter

called animal models) using pairwise relatedness predicted from

the pedigree versus molecular markers, with a special focus on how

mating systems affects the efficiency of these methods.

Materials and Methods

Review
As a preliminary step, we searched the literature (using

keywords in Web of Science) looking for studies comparing

methods for estimating quantitative genetic parameters using

molecular markers, for example a pedigree-based animal model

and another method, or a simulation study. Our review is based on

the classification published by Garant & Kruuk [26], who

identified three categories of methods that rely on molecular

markers. (1) The ‘Ritland’ method estimates heritability as the

covariance between pairwise phenotypic similarity and pairwise

relatedness [50]. Alternatively (2), using a maximum likelihood

approach, individuals can be classified into known classes of

relatedness (for example sibs vs. unrelated) and analyzed in a

mixture model [51]. Sibling groups can also be identified within

one generation and analyzed in a classic quantitative genetics

framework (analysis of variance) or using a more complex model

(animal model, [52]). Finally (3), parentage assignment methods

can help reconstruct a complete pedigree spanning several

generations [13,53] and quantitative genetics parameters are then

derived from an animal model [54]. We expanded Garant &

Kruuk’s classification to include two additional methods that are

currently available: (4) an animal model method [3,12,55] directly

using the full pairwise relatedness matrix estimated using

molecular markers [56,57] and (5) a multilocus association method

derived from genomic selection [27]. This last method was

originally aimed at predicting individual breeding values using

molecular markers, in order to accelerate and improve the

response to artificial selection. Technically, it relies on multiple

regressions with shrinkage, where the phenotype is explained by a

set of markers (e.g. [58]).

In order to compare additive genetic variances among traits or

taxa, it is common practice to scale it with the total phenotypic

variance (heritability) or with the trait mean (coefficient of additive

genetic variation). As proposed by Houle [59] and recently

confirmed by Hansen et al. [60] the additive genetic coefficient of

variation is a better predictor of a population’s ability to respond to

selection and can be viewed as an accurate measure of evolvability.

Nevertheless, heritability remains the most commonly reported

measure of evolutionary potential (in particular in all studies using

the Ritland method). In our review, we therefore compared

heritabilities rather than coefficients of additive genetic variation.

This can be misleading in the presence of a positive correlation

between the additive variance and other components of pheno-

typic variance [60]. We also used heritabilities in our simulations

in order to remain consistent. We argue that it is not problematic

in our simulations as there is no inherent correlation between

variance components.

The performance of a statistical inference can be evaluated by

the bias, defined as E(ĥh2 – h2), where ĥh2 is the estimator and h2 the

parameter and the sampling error, E(ĥh2 –E(ĥh2))2. When reviewing

the literature for pedigree- free methods, we would ideally like to

compare the bias and sampling error of heritability estimates

obtained using pedigrees (ĥh2
ped) or one of the marker-based

methods (ĥh2
marker). However, the review of empirical results only

provides us with single estimates ĥh2
ped and ĥh2

marker to compare and

we cannot say anything about the extent to which either or both

are biased and which has smaller sampling error. We therefore

only tested whether ĥh2
ped and ĥh2

marker significantly differed for each

of the marker-based methods using linear models and also

compared their standard errors. Most studies considered several

traits that would be wrongly considered as independent. We took

this into account by adding a random effect for study. For

simulation studies, we report the bias and standard error of the

estimators ĥh2
ped or ĥh2

marker. Again, we tested for an influence of the

method used (pedigree or marker-based methods) on the bias using

linear mixed models with study as a random effect followed by

posthoc tests (with Bonferroni correction) to identify significant

pairwise differences. Studies using genomic selection methods

generally evaluate the accuracy of the model as the correlation

between the estimated breeding value and the real breeding value.

We report these accuracies.

Pedigree-Free Heritability and Selfing
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We tested whether the absolute value of the bias increases with

heritability (measured by pedigree methods or simulated) and

assessed the relationship between the bias and the number of

markers available (or simulated) using a mixed linear model for

each method, with study as a random effect.

Simulations
We simulate a population of constant size N = 500 individuals

evolving for a number of generations. Individuals are diploid and

unrelated at generation 0 (but they can share alleles identical by

state). Generations are non-overlapping. We simulate the genotype

of each individual at LM+LQTL unlinked loci. The LQTL loci are

causal loci whereas the LM loci are biallelic non-coding marker

loci. Initial allele frequencies are drawn from the distribution

expected at mutation – drift equilibrium using a Dirichlet

distribution [61]. The phenotype of each individual is controlled

by 500 loci (LQTL) with five alleles each. Allelic effects are

randomly drawn from a normal distribution for each allele. The

phenotype of an individual is the sum of the two allelic effects at

each of the LQTL loci (ai,j is the allelic effect of allele i at locus j) plus

a random factor (eij) drawn from a normal distribution represent-

ing the environmental effect:

Pij~
X

ai,lzaj,l

� �
zeij ð1Þ

The variances of the distribution of allelic and environmental

effects are adjusted to simulate heritabilities of 0.15, 0.3 and 0.6.

The next generation is built either by random mating of pairs of

individuals or with a set proportion of selfing (S = 0.9) to simulate

inbred populations. The simulation program is written in C++ and

runs in batch using a custom python script, with 20 replicates per

parameter set. The code is available as supplementary material

(Zipfile S1).

Estimation of Genetic Variance Using a Marker-based
Animal Model –influence of Mating Regime and
Manipulations on Relatedness Matrices

We simulated populations evolving for 10 generations and

performed analyses at generation 10, using pedigree and marker-

based animal models (method 4 in the review section). Every

generation, the pedigree information (mother and father of each

individual) was recorded and used to calculate the relatedness

coefficient (WA) between pairs of individuals. Genotypes at the LM

marker loci were used to estimate pairwise relatedness using the

coefficient introduced by Loiselle et al. [20] (thereafter named Ki,j).

It does not assume Hardy-Weinberg equilibrium and performs

well, even in the presence of rare alleles [24,62]. To estimate

heritability, we fitted a very simple linear model to the simulated

phenotype: y = Za+e where y is the phenotype, Z is a design matrix

and a the vector of additive genetic effects; e is the vector of

residual effect. The pedigree or the marker loci information were

then used to specify a variance–covariance structure for the vector

of additive genetic effects a, shaped as 2.WA.sA
2 when using an

animal model including the pedigree or as 2.Ki,j.sA
2 when

replacing the WA matrix by a marker-based relatedness matrix.

For selfing populations, we used 2.WA.sA
2/(1+ F) and 2.Ki,j.sA

2/(1+
F) to account for inbreeding [62], where F was the average

inbreeding coefficient. F was either estimated using pedigrees or

approximated as S/(2–S) [63] for the marker-based method, where

the pedigree is supposed unknown. We preliminarily ascertained

that both values were highly similar (F = 0.82 for S = 0.9). We used

restricted maximum likelihood to estimate the additive genetic

variance and the standard errors with the program ASReml v3.0

[64]. We examined the effect of the number of marker loci by

Figure 1. Accuracy of five different marker-based methods to estimate heritability – review of empirical and simulation studies. The
efficiency was assessed in a review of 24 empirical studies (A) or 15 simulation studies (B), comparing heritability estimates using pedigree or one of
the following methods: 1 - Ritland; 2 - relatedness classes; 3 - reconstructed pedigrees; 4 - marker-based animal model or 5 - genomic selection.
Details of the number of studies for each method are given in Table 1. The bias was measured as ĥh2

marker - ĥh2
pedigree in A and as E(ĥh2 – h2) in B, where

h2 is the simulated parameter. The horizontal line shows the median bias for each method. The bottom and top of the box show the 25th and 75th
percentiles. The vertical dashed lines show the maximum and minimum biases and the circles are outliers.
doi:10.1371/journal.pone.0066983.g001
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letting LM vary between 384, 1500, 3000 or 5000 SNPs. We also

manipulated the marker-based relatedness matrix to summarize

the information and examined how this influenced the bias in

genetic variance estimates. It has become common practice in

association studies (GWAS) to truncate the marker-based related-

ness matrix by replacing any negative value by zero. We

transformed our matrix accordingly.

As in the review section for simulation studies, we measured the

bias in heritability as E(ĥh2 – h2). We estimated the precision of the

estimation using sampling errors, defined as E(ĥh2 – E(ĥh2))2. We

compared the bias and sampling errors in heritability estimators

(pedigree versus molecular markers) using Wilcoxon signed rank

tests. We tested for the effect of the mating regime, trait heritability

and number of markers on the bias in heritability estimates using

linear models.

The identity disequilibrium created by consanguineous matings

could improve marker-based estimates of the expected proportion

of identity by descent [48]. We verified this in our simulations by

estimating the relatedness at the causal variants (500 QTLs) and

examined how accurately it is predicted by the relatedness at the

LM marker loci, in selfing or outcrossing populations, using linear

regressions. A slope close to one would indicate that the set of

observed SNPs accurately predicts the relatedness at causal loci.

Any deviation to one could be caused either by sampling error

(due to the limited number of observed SNPs) or by rare alleles in

the causal variants. All analyses were run in R version 2.15.1.

Results

Review of Published Results
We collected 39 papers comparing heritability estimates based

on molecular data or pedigree information. Among those, 24

reported empirical results (Table 1) while 15 were based on

simulations only (Table 2). Only seven studies reported heritability

estimates for plant species, 16 for animals and one for a protist.

Using linear mixed models, we found a significant difference

between pedigree-based estimates and marker-based estimates for

the Ritland method (x2 = 22.2; p = 2.5610206), the relatedness

classes (x2 = 5.9; p = 0.015) and the reconstructed pedigrees

(x2 = 29.8; p = 4.7610208) but not for the animal model

(x2 = 0.04; p = 0.836) or genomic selection (x2 = 0.001; p = 0.977).

As shown by Figure 1.A, the difference between the heritability

estimated using pedigree or molecular markers was lowest with

method 4 (marker-based animal model, see also Figure S1). When

a dataset was analyzed using Ritland’s method and an animal

model in parallel, the latter gave results closest to the estimates

obtained using the pedigree [65]. In addition, pedigree-free

methods seem to improve the precision of the estimation, except

for the Ritland method and the genomic selection method (with

Ritland: standard error increased by +0.23; p = 0.062 and +0.13

with genomic selection; p = 0.001).

Using the 15 simulation studies, we calculated the bias as E(ĥh2–

h2) (Table 2). The mixed model highlighted a significant effect of

the method on the bias (p = 0.005). Posthoc tests showed a

significantly higher bias for the Ritland method (average 0.30;

n = 10) than for the pedigree method (0.04; n = 13; p,0.001), the

marker-based animal models (0.03; n = 15; p = 0.049) or the

genomic selection (20.11; n = 12; p = 0.015). There was no

significant difference between these three methods (p.0.750).

The number of simulation results testing methods 2 and 3 in the

dataset we collected was insufficient to compare their biases. The

average biases for each method are shown in Figure 1.B. We found

no significant difference in standard error between these methods

(p = 0.129).
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ĥh

2
e

st
im

at
e

d
u

si
n

g
m

e
th

o
d

3
(p

e
d

ig
re

e
re

co
n

st
ru

ct
io

n
),

as
in

d
ic

at
e

d
in

th
e

co
lu

m
n

‘‘N
o

te
’’.

W
h

e
n

se
ve

ra
l

tr
ai

ts
w

e
re

an
al

yz
e

d
(c

o
lu

m
n

‘‘t
ra

it
s’

’),
w

e
p

re
se

n
t

th
e

av
e

ra
g

e
b

ia
s.

5
M

at
in

g
re

g
im

e
:

‘‘O
u

t’
’

st
an

d
s

fo
r

o
u

tc
ro

ss
in

g
,

‘‘M
ix

’’
fo

r
m

ix
e

d
m

at
in

g
,

‘‘S
e

lf
’’

fo
r

p
re

d
o

m
in

an
tl

y
se

lf
in

g
an

d
‘‘C

’’
fo

r
cl

o
n

al
it

y.
6
Si

n
g

le
Lo

cu
s

P
ro

b
e

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

6
6

9
8

3
.t

0
0

1

Pedigree-Free Heritability and Selfing

PLOS ONE | www.plosone.org 5 June 2013 | Volume 8 | Issue 6 | e66983



The average value of the bias in heritability tended to increase

for traits with low heritabilities (Figure S2.A and S2.B, p,0.0001)

and this effect was significant for all methods except the marker-

based animal model (p = 0.743). We detected a significant but

small negative effect of the number of microsatellites or SNP used

on the average value of the bias with the animal model method

(p = 0.012 and p = 0.048) (Figure S2.C and S2.D).

Simulation Results - Heritability Estimation Using a
Marker-based Animal Model

Simulation results confirmed that using pedigree information in

an animal model provides accurate estimates of heritability for

both outcrossing and selfing populations, even with low heritabil-

ities (Figure 2.A). We analysed the bias in heritability estimates

using Wilcoxon signed rank tests and found that replacing the

pedigree-based relatedness matrix by a marker-based relatedness

matrix strongly worsens the estimation of heritability for outcross-

ing populations (average bias = 20.014 with pedigree and 0.174

with markers; VWilcoxon = 9; p = 4.1610210; Figure 2.B) but not for

selfing populations (average bias = 20.016 with pedigree and

20.015 with markers; VWilcoxon = 738; p = 0.270). The bias in

outcrossing populations was reduced when using truncated

marker-based relatedness coefficients (0.072; Figure 2.C). Results

were the same when testing the effect of the method on the bias

using linear models. In addition, if the marker-based method

seemed more biased than the pedigree method, the later had

higher sampling error (0.15 for the pedigree method and 0.08 for

marker-based method) and the difference was significant in

outcrossing populations (0.16 versus 0.01; VWilcoxon = 1422;

p = 4.1610210) but not in selfing populations (0.14 for both

methods; VWilcoxon = 1028; p = 0.408).

In outcrossing populations, the absolute value of the bias with

the marker-based method increased with higher simulated

heritabilities (F53,1 = 155.0; p,10216), but it should be pointed

out that with low heritabilities (0.15) the model sometimes failed to

converge or estimated an additive variance not significantly

different from zero.

Selfing decreased the bias in marker-based heritability esti-

mates. With a heritability of 0.3, for example, the bias was more

than seven times larger in outcrossing compared to selfing

populations (F36,1 = 57.2; p = 6.1029). The distribution of pairwise

relatedness in selfing populations may explain such a better

performance in estimating heritability [48,49]. Indeed, as shown

on Figure 3, pairwise relatedness coefficients have a higher mean

and a larger variance in selfing compared to outcrossing

populations. This effect extends beyond the simple influence of

population size (Figure S3). The higher performance of the marker

Table 2. Summary of simulation studies comparing estimates of quantitative genetics parameters using pedigree-free methods.

Method1 h2 Markers Individuals Kinship coef2 Bias Ref

1 0.25 32 SNP 2000 (sib families) R 0.01 [125]

1 0 to 1 2 to 30 100 to 1000 (sib families) R 0.05 [126]

1 0.1 10 to 100 - 6 alleles 500 R 0.32 [127]

1 0.5 10 to 100 - 6 alleles 500 R 0.43 [127]

2 0 to 1 2 to 30; 5 to 20 alleles 100 to 1000 – 0.03 [126]

3 0.25 11 SSR 1955 CERVUS - COLONY 0 to 013 [128]

4 0.4 or 0.6 400 SNP 240 inbred lines L 0.08 [129]

4 0.5 2000 to 5000 SNP 1000 UAR 20.10 [14]

4 0.33 9000 SNP 1000 SA 0.12 [112]

4 0.33 1000 SNP 1000 SA 0.01 [112]

4 0.1 or 0.3 5 to 100 QTLs 100 (sib families) SA (on QTLs) 0.86 (corr) [130]

4 0.2 20 to 1200 SNP 20 SA 0.63 (corr) [131]

5 0.8 294831 SNP 3925 – 0.01 [25]

5 0.5 1000 SNP 2200 – 0.85 (corr) [132]

5 0.7/0.3/0.1 6000 SNP 5865 – 0.89 (corr) [116]

5 0.2/0.5/0.9 2000 SNP 1000 – 0.58 (corr) [117]

5 0.1 396 SNP 1000 – 20.07 [133]

5 0.5 396 SNP 1000 – 20.20 [133]

5 0.5 5000 SNP 1000 (family structure) – 0.79 (corr) [134]

ped 0.1 500 pedigree 0.05 [127]

ped 0.5 500 pedigree 0.14 [127]

ped 0.4 or 0.6 240 inbred lines pedigree 0.03 [129]

ped 0.33 1000 pedigree 20.11 [112]

ped 0.1 or 0.3 100 (sib families) pedigree 0.52 (corr) [130]

ped 0.2 20 pedigree 0.52 (corr) [131]

1The column ‘‘Method’’ is the same as described for Table 1, with the additional category ‘‘Ped’’ that stands for pedigree-based animal models. Numbers in italics
indicate that we report the correlation with the simulated heritability (corr) rather than the bias.
2Method used to estimate pairwise kinship coefficients using molecular markers: L = Loiselle [20]; UAR = raw unified additive relationship (estimator of the genome-wide
relationship between individuals) [14]; SA = % of shared alleles [135]; pedigree =WA.
doi:10.1371/journal.pone.0066983.t002
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based method under selfing can also be related to the fact that the

relatedness at causal loci is more closely correlated with the

relatedness at a set of marker loci in selfing than in outcrossing

populations (Figure 4). This is in agreement with results by Szulkin

et al. [48] on inbreeding coefficients and is caused by high identity

disequilibrium in selfing populations.

Figure 5 highlights that when a larger number of loci is used

to estimate the matrix of pairwise relatedness, heritability

estimates become more accurate, most probably because the

prediction of WA is improved. The linear model showed that the

absolute value of the bias decreases significantly with the

number of markers (F78,1 = 11.9; p = 0.001). If marker-based

relatedness coefficients are truncated, the effect becomes non-

significant (F78,1 = 0.7; p = 0.389) and a lower number of

markers is required to get an accurate estimate of heritability.

In selfing populations, there is no relationship between the bias

and the number of marker used (F78,1 = 0.8; p = 0.371). 384

markers seem already sufficient to estimate heritability reason-

ably well. Surprisingly, the sampling error of the estimates did

not decrease with the number of loci.

Discussion

Pedigree-free Methods to Estimate Quantitative Genetics
Parameters in the Wild: What have we Learnt in Nearly 20
Years?

Reviewing empirical and simulation studies of quantitative

genetics in wild populations using marker-based estimates of

relatedness confirms that it is extremely difficult to derive

reliable estimates for quantitative genetic parameters in wild

populations using Ritland’s pairwise regression model, as

suggested by several authors [26,65,66]. Nevertheless, being a

pioneer, the Ritland method played a significant role in

stimulating the development of further marker-based methods

to estimate quantitative genetics parameters in wild populations.

Despite performing slightly better than the Ritland method, the

relationship classes method (method 2) requires a known family

structure with only two classes of relatedness and is therefore of

restricted use [52]. Methods 3 and 4 both use the statistical

machinery of the animal model (mixed model) after using

molecular markers to reconstruct the pedigree (method 3) or the

Figure 2. Simulation results testing the accuracy of pedigree or marker-based methods to estimate heritability. This figure shows the
correlation between the heritability simulated and heritability estimates obtained using pedigree-based animal models (A), marker-based animal
models (B) or marker-based relatedness coefficients truncated before the analysis (C). Each dot stands for a simulated population, with 90% selfing (in
grey) or complete outcrossing (in black). Circles stand for means across 20 replicates and solid lines show the 95% confidence intervals, as estimated
by Asreml (and averaged across replicates). The dashed lines represent y = x.
doi:10.1371/journal.pone.0066983.g002

Figure 3. Higher mean and larger variance in pairwise relatedness coefficients in selfing compared to outcrossing populations.
Regression between pairwise Loiselle coefficients estimated using 1500 SNP and WA. The population comprised 500 individuals with 90% selfing (grey
crosses) or complete outcrossing (black circles). The legend indicates the slope of the regression of WA against Loiselle and the correlation coefficient
r. The variance in relatedness was 0.0026 in the outcrossing population and 0.0108 in the selfing population (within the range of variances observed
in wild populations, see Table 1 and [23]).
doi:10.1371/journal.pone.0066983.g003
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relatedness matrix (method 4). But empirical and simulation

results suggest that method 4 performs best. Finally, genomic

selection (method 5) has become extremely popular among

breeders, and even though their main purpose is to predict

breeding values with the highest accuracy, some of these studies

report estimates for additive genetic variance [27]. Nevertheless,

the lowest biases are found in studies using samples with family

structure [67,68] and simulation studies seem more encouraging

than actual empirical results (Tables 1 and 2). Besides, despite

using a colossal number of SNPs for genomic selection (and not

only those showing significant association with the phenotype –

GWAS [69]), the SNPs still often explain only a small

proportion of heritability (missing heritability) [25,70,71].

Insufficient linkage disequilibrium between causal variants and

genotyped SNPs and low minor allele frequency of causal

variants might be involved [25]. Currently, models combining

pedigree and molecular markers are being developed to

partition the additive genetic variance into genomic and

‘‘remaining polygenic’’ components [68,72,73]. These results

highlight that for traits with highly polygenic determinism, the

classic infinitesimal model [74,75], as implemented in the

animal model, might still perform best [27].

Promising Prospects for Marker-based Animal Models?
Our review showed that animal models including marker-based

relatedness matrices (method 4) offer promising prospects.

Nevertheless, our simulations show that using molecular markers

instead of pedigrees seriously worsens the estimation of quantita-

tive genetics parameters in outcrossing populations, even if an

increased number of loci and truncated relatedness coefficients

improved the result. Conversely, our simulations in selfing

populations suggest that pedigree-free methods are successful.

We discuss several arguments that could help explain this contrast,

in the light of our simulation results and the literature available

about inbreeding.

Firstly, we sampled individuals from a single generation in our

simulations (non-overlapping generations, i.e. annual populations).

Such a sampling design constrains the variance in pairwise

relatedness in outcrossing populations (no parent-offspring relat-

edness and a probability of 1/N to be full-sibs) but not so much in

selfing populations (full-sibs from selfing events have WA .0.5).

More generally, the variance in relatedness in a population is

strongly affected by its size and mating system (see Figure 3, Figure

S3 and [49]). Variances in relatedness are generally low in large

outcrossing populations (see [23] and the column ‘‘variance in

relatedness’’ in Table 1) but this constrains pedigree methods just

as much as marker-based methods, and require collecting data

over a large number of generations.

A more serious issue is that uncertainty in relatedness estimates

is ignored when estimating heritability using this pedigree-free

method and this could be a problem if uncertainty is high.

Previous studies have shown that marker-based estimates of

Figure 4. Relatednesses at causal and marker loci are more closely correlated in selfing than in outcrossing populations. Regression
between pairwise Loiselle coefficients estimated using 1500 SNPs and pairwise Loiselle coefficients estimated using the allele frequency at QTLs
determining the phenotypic trait. Outcrossing populations are shown in black and selfing populations (selfing rate 90%) in grey. The legend indicates
the slope of the regression and the correlation coefficient r. The slope is expected to be close to one if the relatedness at causal loci is accurately
predicted by the relatedness at observed SNPs.
doi:10.1371/journal.pone.0066983.g004
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Figure 5. Heritability estimates become more accurate with the number of marker loci used to estimate relatedness. Influence of the
number of loci used to estimate pairwise relatedness coefficients (Loiselle coefficients) on the bias in heritability estimates, when using a marker-
based animal model. Each dot stands for a simulated population of 500 individuals, with complete outcrossing (panel A, in black) or 90% selfing
(panel B, in grey). Panel C shows the results when marker-based relatedness coefficients are truncated before the analysis. Large circles stands for the
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inbreeding coefficients are improved by non-random mating

because it generates identity disequilibrium [48]. We observe the

same thing here for pairwise relatednesses (i.e. the inbreeding

coefficient of a hypothetical offspring) (Figure 3 and 4). In

outcrossing populations, it remains that a very large set of markers

is required to estimate the ‘realised relatedness’ without too much

uncertainty [16,22] and to capture the variance within relatedness

classes more accurately than when using the pedigree (WA)

[4,5,28,69].

It is worth pointing out that in our simulations, we used the

complete pedigree (no missing individual), exempt from errors.

Even in domestic animals, pedigree errors have been estimated to

range between 1% and 10% [76]. In wild populations, the

requirement of large sampling efforts and the occurrence of extra-

pair paternity will inevitably scale down the pedigree information

available for the analysis and might favour the use of alternative

methods for a wide range of populations.

Finally, our simulations do not consider non-genetic sources of

resemblance between relatives (common environment, maternal

effects…). Such non-genetic effects are expected to overestimate

heritability quite markedly [77]. Nevertheless, without transplan-

tation or cross-fostering experiment, these effects are difficult to

account for with any of the methods currently available (including

pedigree methods, see [78]), in particular if there are few different

classes of relatedness in the dataset [79].

Promising Prospects for Selfing Populations
Stebbins [30] suggested that extreme selfing is an ‘‘evolutionary

dead-end’’, because it reduces genetic diversity within populations

and may thereby lower their adaptive potential compared to

outcrossing populations. Until recently, accurate comparisons of

the levels of additive variance between selfers and outcossers were

impaired by methodology because most studies on quantitative

genetic variation in plants involved analyses of variance between

and within families [80], and the pollinations required to derive

paternal families were rarely performed (e.g. in 13 out of 37 studies

reported by Charlesworth & Charlesworth, [43]), particularly in

selfing species. Animal models coupled with marker-based related-

ness information offer an inclusive, conceptually simple and flexible

framework to quantify additive variance in plant and animal

populations by taking advantage of the recombined genotypes

produced by rare outcrossing events in their wild environment [69].

Yet, in selfing populations, inbreeding generates additional

variance components specifically associated with dominance

effects of alleles when autozygous (identical by descent) (detailed

in equation (4) in Shaw et al. [81]). The covariance between the

genotypic values of two individuals X and Y becomes [80,82]:

Cov GX ,GYð Þ~2WAVAz2d €XXz €YY VDz2 c €XXY zcX €YY

� �

cov(A,D)zd €XX €YY VDI

z D €XX : €YY {FX FY

� �
H �z 2WAð Þ2VAA

ð2Þ

where VA and VD are the additive and dominance variances,

cov(A,D) is the covariance between the additive effect of alleles and

their autozygous dominance deviation, VDI is the total variance

due to autozygous dominance effects, H* is the inbreeding

depression and VAA the variance due to additive-additive epistatic

effects (other epistatic variances are neglected here). Each variance

component is preceded by a probability measure

(2WA, 2d €XXz €YY . . .), a function of the identity of alleles by descent

(described in further details by Cockerham [83] and Harris [82]).

This equation highlights the complexity of quantitative genetics in

partially inbred populations. In our simulations, we only focused

on VA and neglected the effect of directional dominance because

we were interested in methods providing comparable estimates of

additive variance in selfing and outcrossing populations. These

additional variance components could be included in the mixed

model (y = Za +…+ e), keeping in mind that their estimation is not

straightforward without a complex experimental design [84].

Besides, dominance effects due to heterozygote effects (dij in Harris

[82]) are expected to contribute little to genetic variance in highly

selfing populations where homozygosity is very high [80].

Therefore, neglecting VD in selfing populations is not as inaccurate

as in outcrossing populations, where it is rarely examined.

Theoretical models also predict that inbreeding depression

resulting from deleterious recessive alleles should be purged with

selfing [85,86]. Some empirical data support this prediction

[87,88], but the opposite has also been reported [89], in agreement

with the prediction that mildly deleterious mutations could

accumulate in selfing populations [90]. Finally, with partial selfing

the estimate of VA using the animal model can be inflated by

variance due to additive-additive epistasis, directly proportional to

WA
2. Importantly, this is also true for outcrossing species, even if

we expect lower effects [91]. We are therefore confident that

additive variance estimated using marker-based animal models in

selfing populations should be comparable with estimates in

outcrossing populations, in spite of inbreeding.

It remains that such estimates of additive variance may not be

sufficient to predict the response to selection (R) when there is

directional dominance and epistasis. Simulations suggest that

evolution in partially selfing populations can strongly differ from

the predictions obtained using the breeders’ equation (R = h2 S

where S is the selection differential), even if the later accounts for

inbreeding depression [81]. Methods have been suggested to

extend the breeder’s equation to selfing populations [92–96], but

predictions are difficult when all individuals do not share the same

level of inbreeding, as expected in most natural populations.

Conclusion
Our literature review highlighted that more testing is required

for the most promising marker-based methods: animal models

including a marker-based matrix of relatedness and genomic

selection. Our simulations of the animal model showed that

estimates in selfing populations are as accurate when using

molecular markers or pedigrees, thanks to their high identity

disequilibrium. It is undeniable that a very large set of molecular

markers is required in large random mating populations, but

recent advances in next generation sequencing technologies

provide encouraging prospects, even for non-model species

[97,98]. More generally, populations with high identity disequi-

librium (consanguineous or bottlenecked populations) could

promote the use of marker-based animal models, but at the same

time are more likely to deviate from the standard assumptions of

quantitative genetics models (e.g. non-additive variance).

average heritability over the 20 replicated simulations. The confidence intervals estimated in Asreml for each replicate were averaged over the 20
replicates and are shown as solid lines. The dashed line stands for the simulated heritability.
doi:10.1371/journal.pone.0066983.g005
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Supporting Information

Figure S1 Correlation between heritability estimates
obtained using pedigree-based animal models or one of
the five marker-based method. Each dot stands for an

empirical result and the colour indicates the method (Ritland in

black; relatedness classes in grey; pedigree reconstruction in pink;

animal model in green and genomic selection in blue). The dashed

lines represent y = x.

(DOC)

Figure S2 Slight increase in the bias with lower
heritabilities or lower number of markers. The panels A

and B show the relationship between the bias in heritability

estimate and the value of heritability for the empirical data (in A –

bias expressed as ĥh2
marker - ĥh2

pedigree) or the simulation data (in B –

bias expressed as E(ĥh2 – h2)). The panels C and D show the

relationship between the bias in heritability estimate and the

number of microsatellites or SNPs used. As explained in the text,

the bias did not systematically increase for traits with low

heritabilities but was more variable. Surprisingly, we found no

overall relationship between the bias and the number of markers

used in empirical data.

(DOC)

Figure S3 Influence of population size and mating
regime on the variance in pairwise relatedness in a
population. Selfing could improve marker-based estimation of

heritability because it affects the structure and the variance of

pairwise relatedness, as has been shown for the inbreeding

coefficient. We assessed the effect of the reduced effective

population size in selfing populations (Ne = N/(1+ F)) by simulating

populations with varying census size (N = 50, 100, 250, 500) and

different mating regimes (outcrossing in black and 90% selfing in

grey). Error bars stand for the standard error estimated from 10

replicated simulations. This figure confirms that pairwise related-

ness coefficients have a higher mean and a larger variance in

selfing compared to outcrossing populations and that this effect

extends beyond the simple influence of population size (e.g. large

excess of variance in a selfed population of N = 50 compared to an

outcrossed population of N = 100). The identity disequilibrium

created by selfing might explain such higher variance in

relatedness.

(DOC)

Table S1 Full data literature review.

(XLS)

Zipfile S1 Simulation program in C++.

(ZIP)
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