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Abstract

IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and
diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on
cartilage, we focus on two questions: (i) what are the key factors influencing IGF-IR complex formation, and (ii) how might
cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving
twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF
signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate
the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that
regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two
critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II
production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative
feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent
failures of single target drug therapies aimed at modifying IGF signaling.
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Introduction

The insulin-like growth factor system is comprised of two

insulin-like growth factors (i.e. IGF-I and –II), type I and II IGF

receptors (i.e. IGF-IR and IGF-IIR), insulin receptor (IR), a family

of IGF binding proteins (here we focus on IGFBP1 through to

IGFBP6) and IGFBP-degrading proteases [1] (see Figure 1 for

schematic). Growth hormone regulates the IGF-I production by

the liver, which is the source of the majority of IGF-I found in

plasma [2]. On the other hand, IGF-II and IGFBPs found in the

serum are most likely sourced from a variety of tissues (e.g. liver,

muscle, brain, kidney being the principal sources) [3,4].

IGF signalling through the type I IGF receptor (IGF-IR) is

involved in cell proliferation, differentiation, apoptosis and general

anabolic cell processes (including the production of extra cellular

matrix) [5]. An absence of IGF leads to growth hormone resistant

growth failure, which may be treated using the synthetic IGF

mecasermin [6]. A low level of IGF-I has also been shown to be

associated with insulin-dependent diabetes in children and

cardiovascular disease in adults [7].

Excessive levels of IGFs in the circulation are linked with an

increased risk of cancer [1,8,9,10], and there is some compelling

evidence that the IGF/IGF-IR system plays a major role in some

types of human neoplasm [11,12]. Intervening in the IGF

signaling system has been identified as an attractive strategy for

the treatment of certain human cancers [13]. For example, the

reduction in IGF-IR activation by the binding of specific

antibodies leads to apoptosis of cancer cells [14,15]. A recent

study using the monoclonal antibody ‘Figitumumab’, supported

the potential therapeutic efficacy of anti-IGF-IR strategies for the

treatment of patients with Ewing’s sarcoma [16]. However several

drug companies have recently stopped development of drugs

designed to block IGF-R signaling, expressing frustration over the

ineffectiveness of drugs that have been developed, blaming the

biological complexity of the IGF system [17]. Based on the hard

won (negative) findings, it is now clearly apparent that a ‘systems

approach’ is needed to understand why a single drug target may

be ineffective for managing IGF-IR signaling. Indeed, it points to

the fact that several drugs acting together may be required to

effectively block a signaling pathway. From a sensitivity analysis

for our model, we find that it is likely that negative feedback

processes act to neutralize the effect of attempting to block a single

target.

It is expected that treatment of patients with a variety of disease

processes in all tissues of the body may be enhanced when there is

an improved understanding of the processes that regulate the cell’s

exposure to IGF within a tissue from a circulating source of IGF.

To contribute towards this goal, this paper is focused developing a

systems model to estimate the free and total IGF concentrations

within a single tissue – articular cartilage. Cartilage was chosen

primarily because we are aware of appropriate data to enable

calibration of the model.
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IGF-I and IGF-II (and insulin in high concentrations) bind to

the IGF-IR receptor, leading to activation of a receptor tyrosine

kinase and subsequent downstream signaling via the AKT

pathway. The strength of activation of the signaling (for a fixed

receptor concentration) depends on the fraction of overall

receptors that have formed a complex with their ligands. However

the downstream pathway activation need not be proportional to

the receptor occupancy. For example, previous studies on cartilage

have shown there is a certain threshold of IGF-I/ IGF-IR

concentration that needs to be exceeded before protein synthesis is

activated [18,19]. In this paper IGF-IR complex formation is

included, but no downstream signaling processes are modeled, so

the IGF-IR complex concentration is adopted here as the primary

biological marker of functional activity due to IGFs in the tissue.

Although IGF-II is widely argued to play an important role in

embryonic and foetal life [1,20], recent studies indicate that IGF-II

is also important in adults for muscle, brain and other tissues by

signaling through the receptor IGF-IR [4,21]. While many tissues

produce IGF-II, most tissues produce little or no IGF-I, with the

majority of IGF-I in tissues originating from production by the

liver [22]. Only IGF-II binds to the IGF-IIR receptor [23].

Formation of IGF-IIR complexes usually has no known down-

stream signaling consequences, although it has been reported that

binding of IGF-II to IGF-IIR may provide a possible mechanism

for the regulation of cardiomyocyte apoptosis [24]. Instead it is

thought that the primary role of the IGF-II-IGF-IIR complex is

the regulation of the IGF-II concentration in the tissue, i.e via

sequestration and removal of the IGF-II-IGF-IIR complex

through lysosomal degradation [25]. In other words, IGF-IIR is

postulated to be a ‘clearance receptor’.

One conceivable mechanism for regulating the IGF-IR receptor

complex concentration in the tissue (and so the IGF signaling

pathway) is to regulate the ratio of IGF-I and –II in the tissue, as

IGF-I and –II ligands competitively bind to IGF-IR. Note the

IGF-II concentration in human plasma is typically three-fold

higher than that of IGF-I [26], and the ratio of IGF-II/IGF-I may

reach over 300 in a tumor [27]. The functional significance of

these observations of IGF-II/IGF-I is yet to be fully appreciated.

A second possible mechanism for regulating the bioavailability

of the two IGFs to IGF-IR is to adjust the type of IGFBPs within

the tissue, e.g. by regulating the production of IGFBPs or the

removal of IGFBPs. Among the ten current known IGFBPs, at

least six of them (i.e. IGFBPs 1–6) bind IGFs with high affinity

[28,29,30,31]. While the full range of functional roles of the

binding proteins remains to be clarified, some of their actions are

known. First, IGFBPs can function as IGF carriers, protecting the

IGFs from degradation while they are being transported through

tissues [3,32]. It is well known that binding proteins can also act as

stores of IGFs within the tissue, which helps to smooth any

fluctuations in IGF production or transport over time [3].

It has been demonstrated theoretically, using a reactive-

diffusion transport model, that reversible binding between IGFs

and diffusible IGFBPs can significantly increase the uptake rate of

free IGF into a tissue) [33]. Most importantly, targeted degrada-

tion of IGF binding proteins can lead to substantial increases in the

free IGF concentration in the tissue, compared to the concentra-

Figure 1. Schematic diagram of the IGF system.
doi:10.1371/journal.pone.0066870.g001
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tion in the plasma, with the rate of degradation of the binding

proteins controlling the free IGF concentration in the tissue [34].

That is, tissue can potentially tune their exposure to IGF by

modifying the rate of degradation of the IGF binding partner.

Different IGFBP proteases may selectively target IGFBPs for

degradation, potentially giving fine control over the total IGF

concentration in the tissue and the ratio of IGF-I/IGF-II. For

example, serine protease is reported to be mainly responsible for

cleavage of IGFBP5 [35], whilst metalloproteinase ADAM 12-S

primarily degrades IGFBP3 and IGFBP5 but not IGFBP1, 22,

24 and 26 [36]. In addition, matrix metalloproteinases (MMPs)

are capable of increasing bioavailability of IGF-I by degrading

IGFBP 1, 23, and 25 [37]. IGFBP6 is an O-linked glycoprotein.

It is known that O-glycosylation inhibits human IGFBP6

degradation by chymotryspin and tryspin [38]. In addition, O-

glycosylation also helps maintain IGFBP6 in soluble form by

inhibiting its binding to glycosaminoglycans and cell membranes

[38]. These targeted mechanisms provide tissue with the means to

adjust their free IGF concentration. That is, cells in tissues can

‘tune’ their IGF exposure, effectively independently to the plasma

concentration, to suit the tissue’s particular needs. It is expected

that these tuning processes would contribute to the maintenance of

tissue homeostasis.

IGFBPs are also capable of blocking IGFs access to IGF

receptors (e.g. IGF-IR) through sequestration. IGFs have a 2–50

fold greater affinity for IGFBPs than that of the IGF-IR receptor

itself [1,39]. It has been theoretically demonstrated that extracel-

lular matrix (ECM) fixed IGFBPs within the tissue have no

influence on the steady-state free IGF-I and –II concentrations in

the tissue if the half-lives of these ECM fixed IGFBPs are

prolonged by ECM proteins [33]. IGF-independent cellular

actions of the IGFBPs have also been reported [3,34].

Among six IGFBPs (i.e. IGFBP1-6), IGFBP1-5 have approxi-

mately similar affinities for IGF-I and –II, but IGFBP6 has a 20–

100 fold higher affinity for IGF-II than for IGF-I [40,41,42].

Because of the similar affinities, as a good approximation for many

purposes, one may simply sum the concentrations of IGFBP1–5,

and treat this as one functional group of BPs, and treat IGFBP6 as

a second functional group. In our previous study [43], we have

theoretically demonstrated that Bhakt et al’s experimental results

for equilibrium competitive binding [44] can be successfully

reproduced using a reversible Langmuir sorption isotherm

involving these two ‘functional groupings’ of IGFBPs. The effect

of this competitive binding on ligand and complex formation will

be included in this study.

A third possible mechanism to regulate the IGF-IR receptor

complex concentration in the tissue is to regulate the IGF-IR

receptor density at the cell surface. Given a constant IGF

concentration, as the receptor density increases, so the total

number of IGF-IR receptor complexes will clearly increase. There

is also the possibility that cells may spatially vary their expression

of cell surface receptors throughout the tissue, which adds another

layer of complexity. This is an important area and will later on be

investigated in a parametric study.

Receptor behavior is complex. IGF-IR has significantly higher

binding preference for IGF-I and –II compared to insulin, whereas

IGF-IIR only preferentially binds IGF-II [23]. In comparison to

IGFBPs 1–6, IGFBP-7 lacks the important ternary structure

Figure 2. Schematic diagram shows the scope of this study.
doi:10.1371/journal.pone.0066870.g002
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required for binding IGFs with high affinity, but has the capability

of binding to insulin and subsequently inhibit insulin binding to

the insulin receptor (IR) [45]. Although IGFBP-7 has been

identified in human biological fluid, its concentration is too small

to detect in human cartilage [46], and so is not explicitly

considered in our model. The insulin receptor primarily regulates

cell metabolic functions [47]. Both IGF-IR and insulin receptors

are usually tyrosine kinase homodimers, but IGF-IR-insulin

heterodimers may form [5]. Hybrid receptors (IGF-IR/IR) formed

by IGF-IR and IR bind to IGF-I with at least 50-folder higher

affinity than insulin irrespective of the splice variant [48]. Homo-

and hetero-dimerisation of receptors is not considered here.

While much is known about the individual components making

up the IGF system, it still remains unclear how these components

act together as an integrated system within a tissue. Indeed, it is

likely that a ‘systems approach’ is required for the development of

more efficacious drug therapies. Our previous studies of cartilage

have been particularly focussed on the IGF-I mediated cartilage

ECM biosynthesis via IGF-IR [18,19,33,43,49,50,51,52,53]. In

this study, to achieve a system level of understanding of how tissues

regulate their exposure to growth factors and so maintain normal

tissue homeostasis and biological functions, we have developed a

computational model of IGF system in cartilage involving IGF-I,

IGF-II, insulin, IGF-IR, IGF-IIR and IR. Our aim is to identify

the critical model variables for potentially controlling IGF

signaling homeostasis based on a sensitivity analysis for the system.

It is expected that the cartilage model developed here could be

generalized further and applied to a range of different tissues in

health and disease.

Methods

The general outline of the IGF system is illustrated in Figure 1,

while the specific IGF system model considered in this paper is

illustrated in Figure 2. As shown in Figure 2, IGF-I and –II exert

their biological actions via competitively binding to IGF-IR,

whereas IGF-IIR mainly functions as an IGF-II ‘decoy’ receptor,

which is cleared by lysosomal degradation. To help demonstrate

the fundamental behaviours exhibited by the IGF system within a

complex tissue like cartilage, a simplification of the real system is

necessary. Here it is assumed that

N The bioavailability of two IGFs is regulated by two functional

groups of IGFBPs [43], that is, one group of binding proteins

has similar binding affinity to both IGF-I and –II (i.e. IGFBP1-

5), whereas the second group has only binding preference for

IGF-II (i.e. IGFBP6).

N Zero initial conditions are assumed within the cartilage for all

components except cells (specifically chondrocytes) which are

assumed to be uniformly distributed throughout the tissue,

however, it is noted that the steady-state solutions reported

here are independent of the initial conditions.

N Given that ECM bound IGFBPs have little influence on

steady-state IGF concentration [33] and the quantities of

IGFBP produced by human cartilage are relatively small in

comparison to the amount supplied from the circulation [54],

ECM fixed IGFBPs and the local expression of IGFBPs are not

explicitly considered in this study.

Referring to Figure 2 and using the law of mass action

[55,56,57], we obtained the following system of partial differential

equations describing the co-diffusion of the two IGFs, insulin and

the IGFBPs from synovial fluid into the cartilage and interacting

with IGF-IR, IGF-IIR and IR within the tissue, namely.

Figure 3. Comparison of the numerical predictions to the experimental data from Schneiderman et al (1995) [58]. The steady-state free
IGF-I and its small complex concentrations in cartilage superficial zone (S) and middle & deep zone (M & D) are normalized to their synovial fluid
concentrations. It can be seen that the experimental results are described remarkably well by a set of parameters, i.e., free IGF half-life = 20 min, free
IGFBP half-life = 100 min and mass transfer coefficient kBP = kSC = 5.561028 m/s.
doi:10.1371/journal.pone.0066870.g003

Figure 4. Diffusion of free IGF-I and –II, insulin, two functional groups of IGFBPs and their complexes from synovial fluid into
cartilage. The free IGF-I and its complex concentrations are normalized to their respective concentrations in synovial fluid.
doi:10.1371/journal.pone.0066870.g004
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Free IGF-I/-II and insulin
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Where c
f
1 = concentration of free IGF-I, c

f
2 = concentration of

free IGF-II, c
f
3 = concentration of free Insulin, c

f
BP1 = concen-

tration of the first functional group of free IGFBPs (i.e. IGFBPs 1–

5), c
f
BP2 = concentration of the second functional group of free

IGFBPs (i.e. IGFBP-6), c
f
SC11 = concentration of free IGF-I and

IGFBPs 1–5 complex, c
f
SC21 = concentration of free IGF-II and

IGFBPs 1–5 complex, c
f
SC22 = concentration of free IGF-II and

IGFBP-6 complex, cIR1 = concentration of IGF-IR and IGF-I

complex, cIR2 = concentration of IGF-IR and IGF-II complex,

cIR3 = concentration of IGF-IR and Insulin complex, cIIR2 =

concentration of IGF-1IR and IGF-II complex, cR1 = concen-

tration of IR and IGF-I complex, cR3 = concentration of IR and

Insulin complex, DIGF = diffusion coefficient of free IGFs in

tissue, DBP = diffusion coefficient of free IGFBP in tissue,

andDSC = diffusion coefficient of free complex in tissue.
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Figure 5. Steady-state concentrations of ligands (i.e. IGF-I, IGF–II and insulin) and their corresponding receptor (i.e. IGF-IR, IGF-IIR
and IR) complexes within the cartilage. The calculated complex concentrations are normalized to the total receptor concentration (i.e. cRT0 =
0.6 nM).
doi:10.1371/journal.pone.0066870.g005

Table 1. Parameters used for fitting equations (27)–(34) to the data of Schneiderman et al [58].

Parameter References and comments

Diffusion coefficient of IGF-I and –II (7.6 kDa) (DIGF) (2–4)61027 cm2/s [75]

Diffusion coefficient of insulin (5.8 kDa) (DINS) 261027 cm2/s [76]

Diffusion coefficient of IGFBP (DBP) (0.6–1.3)61027 cm2/s [22]

Diffusion coefficient of small complex (DSC) (0.6–1.3)61027 cm2/s [22]

Free IGF-I concentration in human synovial fluid (cf
10) 0.066 nM [19,58]

Free IGF-I small complex concentration in human synovial fluid (cf
SC110) 2.6 nM [58]

Insulin concentration in human synovial fluid (cf
30) 0.2–0.8 nM in serum [61]

Total receptor concentration (cRT) 0.6 nM [22]

Equilibrium dissociation constant for IGF-I and IGFBPs 1–5 (KD11 = k211/k+11) 4.8 nM [43]

Equilibrium dissociation constant for IGF-II and IGFBPs 1-5 (KD21 = k221/k+21) 5.2 nM [43]

Equilibrium dissociation constant for IGF-II and IGFBP6 (KD22 = k222/k+22) 5.7 nM [43]

Association rate constant for IGF-I and –II and IGFBPs (k+11, k+21 and k+22) (0.1–9)6105 M21s21 [43]

Equilibrium dissociation constant for IGF-I and IGF-IR (KD11R = k211R/k+11R) 1.4 nM [71]

Equilibrium dissociation constant for IGF-II and IGF-IR (KD21R = k221R/k+21R) (2,15)6KD11R [32]

Equilibrium dissociation constant for insulin and IGF-IR (KD31R = k231R/k+31R) (50,100)6KD11R [32,77]

Equilibrium dissociation constant for IGF-II and IGF-IIR (KD22R = k222R/k+22R) 0.017,0.7 nM [32]

Equilibrium dissociation constant for insulin and IR (KD33R = k233R/k+33R) 0.1 nM [47]

Equilibrium dissociation constant for IGF-I and IR (KD13R = k213R/k+13R) (50,100)6KD33R [32,77]

Associate rate for IGF and receptors (k+11R, k+21R, k+31R, k+22R and k+11R) (1.8–4.5)6105 M21s21 [22]

Receptor internalization rate (k10, k20, k30) (0.5–3)6 KD11R6k+11R[22]

doi:10.1371/journal.pone.0066870.t001
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Note subscript ‘SC’ refers to the so-called ‘small binary

complex’ formed between IGF and IGFBPs [58].

IGFs and their receptors
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Where cIR = concentration of type I receptors (i.e. IGF-IR), cIIR

= concentration of type II receptors (i.e. IGF-IIR), and cR =

concentration of Insulin receptors (i.e. IR).

By adding Equations (9)–(12), (13)–(14), and (15)–(17) respec-

tively, we obtain
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Thus, cIRzcIR1zcIR2zcIR3~n1, cIIRzcIIR2~n2 and

cRzcR1zcR3~n3, where ni are constants which can be obtained

from the initial condition, that is

cIRzcIR1zcIR2zcIR3~cIR0zcIR10zcIR20zcIR30 ð21Þ

cIIRzcIIR2~cIIR0zcIIR20 ð22Þ
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where
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Substituting equations (21)–(23) into equations (1)–(3) and (9)–(17)

respectively, and by letting
Lci

Lt
~0, we obtain the following set of

steady-state governing equations.

Figure 6. The effects of the ratios of IGF-I, IGF-II and insulin on normalized steady-state IGF-IR complex concentration. The calculated
complex concentrations are normalized to total receptor concentration (i.e. cRT0 = 0.6 nM). Free IGF half-life = 20 min, free IGFBP half-life = 100 min,
mass transfer coefficient kBP = kSC = 5.561028 m/s, and c

f
10 = 0.066 nM.

doi:10.1371/journal.pone.0066870.g006
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Two functional groups of free IGFBP and their complexes
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SC22~0 ð34ÞFigure 7. Steady-state IGF-I/IGF-IR, IGF–II/IGF-IR, insulin/IGF-IR

and total IGF-IR complex concentration in cartilage under
various insulin to IGF-I ratios in synovial fluid. The calculated
complex concentrations are normalized to total receptor concentration

(i.e. cRT0 = 0.6 nM). Free IGF half-life = 20 min, free IGFBP half-life =
100 min, mass transfer coefficient kBP = kSC = 5.561028 m/s, and

c
f
10 = 0.066 nM.

doi:10.1371/journal.pone.0066870.g007
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IGF and their receptors
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Boundary conditions
At the cartilage surface (i.e. x = 0) it is assumed that IGF-I and –

II are in a reversible equilibrium with their binding partners (i.e.

IGFBPs) in synovial fluid. That is:

kz11c
f
10c

f
BP10{k{11c

f
SC110~0 ð41Þ

kz21c
f
20c

f
BP10{k{21c

f
SC210zkz22c

f
20c

f
BP20{k{22c

f
SC220~0 ð42Þ

kz11c
f
10c

f
BP10{k{11c

f
SC110zkz21c

f
20c

f
BP10{k{21c

f
SC210~0 ð43Þ

kz22c
f
20c

f
BP20{k{22c

f
SC220~0 ð44Þ

kz21c
f
20c

f
BP10{k{21c

f
SC210~0 ð45Þ

wherec
f
10, c

f
20, c

f
BP10, c

f
BP20, c

f
SC110,c

f
SC210 and c

f
SC220 are concen-

trations of IGF-I and –II, two functional group IGFBPs and their

complexes in synovial fluid respectively.

At the cartilage surface (i.e. x = 0) we assume that the

concentration of IGF is continuous between the synovial fluid

and the cartilage i.e. c
f
1(0,t)~c

f
10andc

f
2(0,t)~c

f
20. Due to the

relatively large molecular size of IGFBPs and the small complex in

relation to the pore openings at the surface of the cartilage, we

treat IGFBPs differently to IGF. Specifically, the solute flux from

fluid phase (i.e. synovial fluid) to the surface of the porous tissue (i.e.

cartilage) can be characterized by a fluid phase mass transfer

coefficient [59]. That is, here we assume the following mass flux

boundary conditions to describe the relatively large molecules (i.e.

IGFBPs and the small complexes) from the synovial fluid into the

cartilage tissue:
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where kBP and kSC are mass transfer coefficients for IGFBP and

small complex respectively. The mass transfer coefficient controls

the transport of free IGFBP and the small complex between the

synovial fluid and cartilage (porous) tissue.

At the bottom layer of the cartilage (i.e. x = 1.5 mm) (which is

also the surface of subchondral bone), we assume the flux of all

components equals zero (i.e. insulation boundary condition).

In this study, we specifically focus on two questions. First, what

are the key factors (parameters) that govern the IGF-IR complex

concentration within cartilage tissue? Second, how might cells

regulate their IGF-IR complex concentration by the exposure to

the two IGFs and insulin? To achieve these two objectives, we first

calibrate the computational model by using experimental findings

for the IGF system within the body and in articular cartilage.

More specifically, the steady-state governing equations (27)–(40)

were solved numerically using the commercial finite element

software COMSOL stationary nonlinear solver [60] with the aim

of obtaining a set of model parameters that could reproduce the

observed experimental behavior in cartilage. Once calibrated, the

model is then employed to predict interactions between ligands

(e.g. IGF-I and –II, insulin) and their corresponding receptors (e.g.

IGF-IR, IGF-IIR and IR) under various physiological conditions

through parametric and sensitivity studies.

Figure 8. Steady-state IGF-I/IGF-IR, IGF-II/IGF-IR complex and total IGF-IR concentration under various ratios of two functional
IGFBP groupings in synovial fluid. The calculated complex concentrations are normalized to total receptor concentration (i.e. cRT0

= 0.6 nM). Free IGF half-life = 20 min, free IGFBP half-life = 100 min, mass transfer coefficient kBP = kSC = 5.561028 m/s, and c
f
10 = 0.066 nM.

doi:10.1371/journal.pone.0066870.g008
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Results and Discussions

Model calibration
Our computational model involves 23 parameters. Fortunately,

most of these parameters may be obtained from well-documented

experimental and theoretical studies, as detailed in Table I Tables.

Table. However, due to the paucity of direct quantitative

measurements in tissues, we must estimate some of the model

parameters, specifically the half-life of free IGF and IGFBP within

tissue, and the discontinuity in the concentration of macromole-

cules between the synovial fluid and the tissue’s external surface.

Moreover, we make the following assumptions.

N The total receptor concentration (cRT0) in cartilage (with

respect to the whole cartilage volume) is estimated to be

0.6 nM [22], but the greatest uncertainty relates to the

distribution of different types of receptors on the surface of a

tissue cell (i.e. chondrocyte). As a first estimate, we assume IGF-

IR, IGF-IIR and IR are equally distributed on the surface of a

tissue cell (i.e. cIR0 = cIIR0 = cR0), although this assumption will

be examined in a parametric study.

N As IGFBP and SC have similar molecular weights, we assume

thatkBP&kSC .

N The insulin concentration in synovial fluid is assumed to be

similar to that in human plasma (i.e. 0.2–0.8 nM in human

plasma [61]). The effect of varying this insulin concentration

will be tested in a parametric study.

Schneiderman et al [58] experimentally studied the concentra-

tion and molecular size distribution of IGF-I and its complexes in

human synovial fluid and cartilage. Human synovial fluid and

femoral heads were obtained from both male and female patients

(age range 20–90). The concentrations of free IGF-I and its small

binary complex (SC) in synovial fluid, cartilage surface layers

(approximately 0.2 mm thick) and the remainder (‘‘middle and

deep’’ zone of the cartilage) were estimated using ultrafiltration

membranes (20–100 kDa) followed by a radioimmunoassay of

each fraction. The results showed significantly higher concentra-

tions of free IGF-I and its small complex in the ‘superficial zone’

(S) of the tissue, relative to that in the ‘middle and deep’ zone (M &

D) of the tissue (see Figure 3). Most interestingly, it was also

observed that the free IGF-I concentration in the superficial zone

is over 40% higher than that in synovial fluid. It is noted that a

single species diffusion model does not predict this finding

(assuming negligible production of the species within the tissue,

one would expect concentrations in the tissue to be less than or

equal to the synovial fluid concentrations).

In relation to the current study, the experimental observations

reported by Schneiderman et al (1995) can be used to estimate the

unknown model parameters. That is, we will now proceed to

optimize unknown model parameters (specifically optimize the

half-lives of two IGFs and their IGFBPs (the same half-life for both

groups of IGFBPs), and the mass transfer coefficients of IGFBPs

and small complexes between the synovial fluid and cartilage

external surface) so as to achieve a best match to the above-

mentioned experimental observations.

In plasma, the half-life of free IGF is 10–15 minutes [62] while

IGFBP has a longer half-life of about 30–90 minutes [32]. In

addition, previous studies on transport of 14C-mannital across

specific peritoneal tissue surfaces in the rat showed that estimated

mass transfer coefficient in liver, stomach, intestines, colon and

uterus is around (1,40)61028 m/s [63]. This valuable informa-

tion provides a touchstone for our model calibration. Figure 3

presents the results of the experimental data fitting, which is

focused on the half-lives of free IGF and IGFBP and the mass

transfer coefficients of IGFBP and small complex (SC) (i.e. kBPand

kSC ). Also included in Figure 3 for comparison, are the

experimental results of Schneiderman et al. [58]. It is found that

these experimental results can be described by the model using

IGF-I t1/2 = 20 min, IGFBP t1/2 = 100 min for half-lives in

cartilage and a mass transfer coefficient kBP = kSC

= 5.561028 m/s (which is within the range of values reported

above). Note, this single set of parameters can simultaneously

reproduced the experimental observations of depth dependent free

IGF-I and SC distributions.

As shown in Figure 3a, the overall steady-state free IGF-I

uptake is mainly governed by its half-life within the tissue – the

longer the half-life of free IGF, the higher the free IGF-I

concentration throughout the tissue. In contrast, the IGF half-

life appears to have limited influence on free SC uptake. Figure 3b

shows that the steady-state free IGF-I concentration in the tissue

superficial zone is strongly influenced by the half-life of IGFBP.

The faster the degradation of free IGFBP, the greater the release

of free IGF from the small complex. This increases the free IGF in

the tissue superficial zone. A shorter half-life of IGFBP reduces the

distance the free SC is transported into the deeper regions of the

cartilage.

A lower mass transfer coefficient means that less free IGFBP

and SC in the synovial fluid manages to penetrate the surface of

the cartilage tissue per unit time, and will result in a lower IGF and

SC concentrations in the tissue. It can be seen from Figure 3c that

the model results fit the experimental data reasonably well when

kBP = kSC = 5.561028 m/s. The outcome of data fitting is

encouraging, though it is acknowledged that experimental data is

limited, and the model clearly needs to be further reassessed in the

light of additional experimental data sets.

By employing model parameters estimated from data fitting

(Figure 3), the estimated steady-state free IGF-I and SC

concentration profiles throughout the tissue are shown in Figure

4. The calculated concentration of free IGF-I and its complex are

normalized to their respective concentrations in synovial fluid. The

numerical results show that there is a significantly higher

concentration of free IGF-I in the superficial zone (0–0.2 mm) of

the cartilage, which is well above the ‘source concentration’ of free

IGF-I in synovial fluid. This computational result is consistent with

the experimental observations [58]. Maximum free IGF concen-

tration (c
f
1=c

f
10&1:5) occurs at around 0.2 mm from the tissue’s

external surface, but then decreases with increasing depth in the

tissue, reaching about 10% of the synovial fluid IGF concentration

in the deepest regions of the cartilage (i.e. 1.5 mm). The model

predicts that the free SC concentration immediately inside the

tissue surface is around 60% of that in synovial fluid. The results in

Figure 4 are sensible because of the selective degradation of the

IGFBPs by proteases, which results in an internal maximum

normalized free IGF-I ratio inside the cartilage itself. Our recent

study [33] theoretically demonstrated that reversible binding (i.e.

IGF-I and IGFBP3) plus preferential degradation of free IGFBP3

significantly increases of IGF-I uptake into the cartilage tissue. We

Figure 9. Steady-state IGF-I/IGF-IR, IGF-II/IGF-IR and total IGF-IR complex concentration under various ratios of the half-life of two
functional IGFBP groupings. The calculated complex concentrations are normalized to total receptor concentration (i.e. cRT0

= 0.6 nM). Free IGF half-life = 20 min, c
f
BP10~c

f
BP20, mass transfer coefficient kBP = kSC = 5.561028 m/s, and c

f
10 = 0.066 nM.

doi:10.1371/journal.pone.0066870.g009
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note that our results for the complete IGF system, shown in Figure

4, are consistent with our previous findings.

The calibrated model can now be employed to predict the

concentration of ligand/receptor complex distribution throughout

the tissue for a range of perturbations to this system. The focus is

on the ligand/receptor complex as a model output as the binding

of IGF-I, -II and insulin to IGF-IR receptors initiates intracellular

signaling and the subsequent cell response.

Figure 5 shows the steady-state concentrations of ligands (i.e.

IGF-I, IGF–II and insulin) and their corresponding receptor (i.e.

IGF-IR, IGF-IIR and IR) complexes within the cartilage. It can be

seen that the steady-steady ligand/receptor complex concentration

is much higher in the superficial zone compared to that in M & D

zone. The numerical outcomes are consistent with various studies

which postulated that articular cartilage superficial zone represents

an important signaling centre that is involved in regulation of

tissue development and growth [64,65]. For example, the

experimental studies of Hayes et al. indicated that the tissue near

the articular surface may contain a population of progenitor cells

that are responsible for the appositional growth during early

development of the tissue instead of interstitial growth [65]. Figure

5a is also shown that only a small portion of cell surface receptors

are bound to IGFs. The simulation outcomes indicated that most

of the cell surface receptors are inactive in normal conditions.

Indeed, based on the experimentally measured receptor concen-

tration in cartilage and binding affinity of IGF to IGF-IR which

are shown in Table 1, and our model, we can for the first time

confidently predict the what the occupancy for IGF-IR actually is

in the tissue.

Parametric studies
The ratios of IGF-I, IGF-II and insulin. A poorly

understood but apparently important mechanism worthy of

further investigation is the ratio between IGF-I and IGF-II within

tissue. Recent evidence has indicated that high IGF-II concentra-

tion in circulation may lead to an increased risk for developing

breast, prostate, colon and lung cancer [25]. There is reportedly a

4-fold increase of the total IGF-I/IGF-II ratio in OA synovial fluid

[26].

By fixing free IGF-II and IGFBP concentrations in synovial

fluid (i.e. c
f
20 = 0.66 nM) and varying synovial fluid IGF-I

concentration, the model predicts that in OA condition, the 4-

fold increase of IGF-I significantly increases IGF-I/IGF-IR

complex concentration in the the superficial zone by around

30%, whilst has little impact on IGF-II/IGF-IR complex

concentration (see Figure 6a and Figure 6b). Presumably this

would enhance IGF-I mediated biological activity but have little

influence on IGF-II induced cellular activities. Further, it can be

seen that only very high concentration of insulin can influence

IGF-I/IGF-IR complex concentration (Figure 6c). Most impor-

tantly, it seems only 10% IGF-IR is complexed with ligand with

around 1% with IGF-I.

Turning our attention to the influence of insulin on the IGF-I/

IGF-IR, IGF-II/IGF-IR and insulin/IGF-IR formation, Figure 7

suggests that insulin only has an effect at very high insulin

concentrations (i.e.c30=c10w100, c
f
10 = 0.066 nM) due to its

relatively low binding affinity of insulin for IGF-IR. The

computational model suggests that a higher insulin concentration

(i.e. c30=c10w1000) could potentially decrease IGF-I/IGF-IR and

IGF-II/IGF-IR complex concentration in the cartilage superficial

zone (Figure 7a-b) but significantly increase insulin/IGF-IR

complex formation (Figure 7c) and the total IGF-IR complex

formation throughout the tissue (Figure 7d). The normal range of

concentration of insulin is 0.2–0.8 nM in human plasma [61]. Any

significant difference in unlikely to be seen without at least an

order of magnitude increase in plasma concentration of insulin.

Although IGF-IR is highly specific to IGF-I and –II, insulin can

still activate IGF-IR at higher tissue concentrations (i.e. .10 nM

Figure 10. Normalized steady-state total IGF-IR complex concentration under various distribution of IGF-IR, IGF-IIR and IR
receptors. The calculated complex concentration is compared to total receptor concentration. Free IGF-I half-life = 20 min, free IGFBP half-life
= 100 min, mass transfer coefficient kBP = kSC = 5.561028 m/s.
doi:10.1371/journal.pone.0066870.g010

Figure 11. Normalized steady-state total IGF-IR complex concentration under various ligand/receptor half-lives. The calculated IGF-IR
complex concentration is compared to total receptor concentration. Free IGF-I half-life = 20 min, free IGFBP half-life = 100 min, mass transfer
coefficient kBP = kSC = 5.561028 m/s.
doi:10.1371/journal.pone.0066870.g011
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or c30=c10w100) [66]. A recent study on the effect of insulin on

proteoglycan synthesis in porcine articular cartilage explants

showed that insulin at 10 nM increased proteoglycan synthesis

by 240% and inhibited the IL-1 induced proteoglycan catabolism

[67].

The ratios of two functional IGFBP groupings. Research

on IGFBP-6 is relatively limited compared to research on IGFBPs

1–5. As far as known, IGFBP6 preferentially binds IGF-II

compared with IGF-I [40,41,42]. The IGFBP6 content within a

tissue varies between species, e.g., IGFBP6 is one of the major

IGFBPs in bovine cartilage [44], and yet its concentration is too

small to be detected in normal human cartilage [26]. While the

knowledge of IGFBP6 is relatively limited, using the computa-

tional model we can explore the functional role of IGFBP6 in

modulating IGF bioavailability in tissue. Figure 8 shows the effect

on the steady-state total IGF-IR complex concentration in the

cartilage of varying the ratio of the two IGFBP functional groups

in the synovial fluid (i.e. c
f
BP20

.
c

f
BP10). As IGF-I and –II, and the

two functional groups of IGFBPs and their complex are in

reversible equilibrium in synovial fluid, a higher c
f
BP20

.
c

f
BP10 ratio

(e.g.c
f
BP20

.
c

f
BP10~10) indicates that much more IGF-II is trans-

ported into the cartilage, in comparison to IGF-I. Ultimately this

leads to a decrease in the steady-state IGF-I/IGF-IR complex

concentration throughout the tissue (Figure 8a) but a very

significant increase of the IGF-II/IGF-IR and total IGF-IR

complex concentration (Figure 8b–c).

The degradation of two functional IGFBP

groupings. IGFBP6 regulates the biological action of IGF-II

[68]. Studies have also shown that different proteases preferentially

target different IGFBPs for degradation. For example ADAM 12-S

degrades only IGFBP3, leaving IGFBP6 [34]. By fixing the half-

life of the first functional group of IGFBP (i.e. IGFBPs 1–5) and

varying the half-life of the second functional group of IGFBP (i.e.

IGFBP6), the model results shown in Figure 9 demonstrate that

IGFBP6 is capable of regulating the total IGF-IR complex

concentration via proteases mediated degradation of IGFBP6.

There is little data for humans, but during ‘reposition loading’ on

rabbit mandibular cartilage to adjust a occlusional defect, IGFBP6

expression underwent a 3-fold change in expression over the

35 day load period [69].

Most interestingly, although the half-life of IGFB6 has little

influence on IGF-I/IGF-IIR complex formation, the IGFBP6

degradation has a spatial dependent effect on the IGF-II/IGF-IR

and the total IGF-IR complex concentrations, i.e., a higher

degradation rate of IGFBP6 has obviously positive effect on IGF-

II/IGF-IR and total IGF-IR complex formation in the superficial

zone but some negative effects in the M & D zone.

The ratio of IGF-IR, IGF-IIR and IR on the surface of a

tissue cell. The kinetics of competition of ligands (e.g. IGF-I and

–II, insulin) for cell surface receptors (e.g. IGF-IR, IGF-IIR and IR)

has been intensively studied for several decades [33,56–58]. Using

cartilage tissue from human knee joints as an example, experi-

mental studies showed that there are approximately 18,000

chondrocytes /mm2 per 350 mm (thick) on average [70], and

about 20,000 receptors per cell [71].However, there is little

experimental information about the actual distribution between

IGF-IR, IGF-IIR and IR on the surface of a cell. Furthermore,

this distribution is likely to differ from species to species as well as

from tissue to tissue.

Thus, a series of parametric studies are carried out here to

investigate the effect of this receptor distribution and receptor

density on IGF-IR complex formation. By varying different types

of receptor distribution, while fixing the total number of cells

within a tissue, it can be seen (in Figure 10) that receptor

distribution has little influence on total IGF-IR complex concen-

tration when the number of receptors per cell is relatively low (e.g.

20,000 receptors per chondrocyte in human cartilage). However,

this distribution has some effect for a tissue with much higher

receptors per cell (i.e. .200,000 receptors per cell). It is thought

that the inhibitory effects of IGFBPs on IGF-I and –II are largely

due to the higher affinity of the two IGFs for IGFBPs than that of

IGF-IR [1,35]. Our simulation results show that this ‘‘blocking’’

capability of IGFBPs gradually deteriorates with the increase in

the receptor concentration (relative to the IGFBP concentration).

By fixing the fraction of IGF-IR (i.e. 33% of total receptor types

per cell), it can be seen from Figure 10b–c that the total IGF-IR

complex concentration changes inversely with the IGF-IIR

fraction. The results presented here demonstrate that IGF-IIR

Figure 12. Steady-state total IGF-IR complex concentration under various IGF-IIR concentrations. The calculated IGF-IR complex
concentration is compared to total receptor concentration. Free IGF-I half-life = 20 min, and mass transfer coefficient kBP = kSC = 5.561028 m/s.
doi:10.1371/journal.pone.0066870.g012
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could influence the complex formation between IGF-II and IGF-

IR e.g. by functioning as an IGF-II clearance receptor.

Finally, Figure 10c indicates that at very high receptor

concentration, most of the IGFs and insulin are consumed within

the tissue superficial zone, and thereby have little chance of

reaching into the deep region of the tissue.

Ligand / receptor half-life. IGF signaling depends on the

conversion of the interaction between ligand (IGF-I, IGF-II and

insulin) and IGF-IR into changes in cell biology. As shown in

Figure 11, in this study, we theoretically studied the effects of

ligand / IGF-IR complex half-lives (i.e. the receptor internaliza-

tion rate following the binding of ligand to IGF-IR) on total

steady-state IGF-IR complex concentration. By fixing the half-life

of free IGF (i.e. t1/2 = 20 min), it is demonstrated that

chondrocytes can regulate their own exposure to free IGF by

controlling the ligand internalization rate, k0. These simulation

results are consistent to other relevant research studies [72,73].

IGF-IIR concentration. Figure 12 shows a strong connection

between IGF-IIR concentration and IGF-IR signaling through

modifying total IGF-IR complex concentration. The results

demonstrate that IGF-IIR could function as a ‘‘clearance

receptor’’ by removing IGF-II from the matrix environment.

These observations are consistent to the research studies on the

roles of the IGF system in cancer growth and metastasis which

indicate that IGF-IIR are negative effectors that mediate the IGF-

IR signaling and function [14].

Sensitivity analysis. A sensitivity analysis can be used to

identify the dominant parameters in the IGF system affecting a

state variable of interest. In our case the state variable of interest is

the total IGF-IR complex concentration as it is this concentration

regulating the subsequent intra-cellular signaling. Identifying the

parameters to which the system is most sensitive helps focus future

experiments, as reducing the uncertainty in these parameters has

most impact on reducing model uncertainty. Further, the tissue (or

clinician through the administration of drugs) may target the

parameters identified by a sensitivity analysis to efficiently control

the system. Indeed, if there are several parameters that strongly

influence the system, then all these parameters may need to be

controlled simultaneously to control the system. We return to this

point later in the discussion.

The basis of a sensitivity analysis is systematically varying one

parameter at a time and observing the corresponding change in

the system output of interest. This implies performing the

sensitivity analysis about a ‘base’ set of model parameters that

represents the operating point of the system. For the operating

point, here we use the model parameters optimised to reproduce

the cartilage experimental data of Schneiderman et al (1995) [58]

(i.e. free IGF-I half-life = 20 min, free IGFBP half-life = 100 min,

mass transfer coefficients kBP = kSC = 5.561028 m/s). As for the

insulin, its concentration in normal human plasma (i.e. 0.5 nM)

[61] is treated as the base value for this sensitivity analysis.

However, it is important to note that due to system non-linearities,

the set of parameters to which a system is most sensitive may

change if a new system operating point (and set of base

parameters) were to be chosen.

We start with the calculation of the ‘base’ amount of total IGF-

IR complex within the cartilage using COMSOL sub-domain

integration (i.e. IIGF-IR complex_base). Then, the value of each

parameter is systematically varied ranging over six orders of

magnitude (from 0.001,1000) of its base value to explore the

change of total IGF-IR complex concentration (i.e. IIGF-IR complex)

with respect to IIGF-IR complex_base in the superficial zone, M & D

zone and the overall tissue respectively.

Figure 13. Sensitivity analysis of model parameters on steady-state total IGF-IR complex concentration integrated over cartilage
superficial zone, middle & deep zone and overall tissue respectively. The calculated sub-domain integration (i.e. IIGF-IR complex) is compared
to its base value (i.e. IIGF-IR complex-base). The base values of model parameters (i.e. half-life of free IGF, IGFBP and ligand/receptor, mass transfer
coefficient and insulin) are obtained from model calibration using the experimental data from Schneiderman et al (1995) [58] (i.e. free IGF-I half-life
= 20 min, free IGFBP half-life = 100 min, IGF-IIR concentration = 20 nM, mass transfer coefficient kBP = kSC = 5.561028 m/s) while the base value of
insulin concentration = 0.5 nM reported in normal human serum [61].
doi:10.1371/journal.pone.0066870.g013

Figure 14. Normalized steady-state total IGF-IR complex concentration when free IGFBP half-life is equal to 10% of its base value
(i.e. 10 min). The calculated IGF-IR complex concentration is compared to total receptor concentration. Free IGF-I half-life = 20 min, and mass
transfer coefficient kBP = kSC = 5.561028 m/s.
doi:10.1371/journal.pone.0066870.g014
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In this study, we mainly focus on some of the model parameters

which are not well understood in the cartilage so far (i.e. half-lives

of free IGF and IGFBP within the tissue, mass transfer coefficient

of IGFBP, IGF-IR concentration, IGF-IIR concentration and its

consumption rate, and concentration of insulin). The results

appear in Figure 13. IGF-IR concentration apparently is the most

sensitive parameter. It indicates that the most effective way of

controlling the IGF system is through activating and deactiving of

IGF-IR. The half-life of IGF is also shown to be one of the most

critical parameters governing the concentration of IGF-IR

complex within the tissue and its effect appears to be strongly

depth dependent. For example, a 10-fold increase of the base value

of free IGF half-life could potentially increase total IGF-IR

complex formation by around 36% in the superficial zone, 450%

in M & D zone and 300% throughout the tissue. Further, our

results suggest that an optimal IGFBP degradation rate may be

different in the superficial zone and M & D zone if the goal is to

maximize IGF-IR complex formation. That is a trade-off exists

between maximizing superficial versus M & D zone receptor

complex formation. Interestingly, the calibrated model (and

presumably the cartilage) is operating with an IGFBP degradation

rate that gives the optimal overall (tissue averaged) receptor

complex concentration. That is, the magnitude and direction of

IGFBP degradation gradient offers the control over the system. As

shown in Figure 13a, one tenth of the base value of IGFBP half-life

appears to be the optimal half-life of IGFBP in superficial zone

(increase IGF-IR complex by 52% in superficial zone) whilst the

base value of IGFBP half-life appears to be the optimal value in M

& D zone. The depth dependent total IGF-IR complex

concentration profile under the optimal half-life of free IGFBP

in superficial zone (i.e. 10 min which is 10% of its base value) is

shown in Figure 14. It can been seen that this optimal half-life of

free IGFBP leads to an significant increase of total IGF-IR

complex concentration in superficial zone but a relatively lower

complex concentration in M & D zone. The implication of these

results is that cartilage could optimize the exposure of IGF-IR to

IGF in different regions of the tissue by spatially adjusting the rate

of IGFBP degradation (i.e. the chondrocytes could ‘tune’ their

exposure to IGF by adjusting the rate of IGFBP protein

degradation). Further, a balance between IGF signaling and

controlling this signaling is of importance for chondrocytes to

maintain tissue homeostasis. Figure 13 shows that there is a

generally positive correlation between the mass transfer coefficient

and the total IGF-IR complex concentration. A mass transfer

coefficient less than the base value (i.e. 5.561028 m/s) could

potentially decrease total IGF-IR complex concentration but has

little influence once the value is greater than its base value. That is,

the mass transfer coefficient is not one of the major parts of the

control system used by chondrocytes to tune their exposure to

IGF.

Further, it demonstrates that, in comparison to other param-

eters, IGF-IIR concentration and its rate of consumption are two

critical parameters which could significantly influence the total

IGF-IR complex concentration. Previous studies have suggested

that IGF-IIR functions as a tumor suppressor, while the mutation

or loss of IGF-IIR in some human tumors is frequently observed

[74]. However, the actual suppressive mechanism of IGF-IIR has

not been well understood. Here we demonstrate the ability of IGF-

IIR to mediatie the IGF-IR signaling by regulating IGF-IIR

concentration or its turnover.

Indeed, our observations gain additional significance following

recent findings that new drugs designed to block the IGF-1R

receptor have been ineffective in blocking IGF signaling [17].

Allison’s suggestion that to block IGF signaling requires a ‘cocktail’

of drugs is consistent with our findings that there are several

systems that may independently control the level of IGF-IR

complexation. Potential homeostatic feedback systems exerting

strong control over IGF-1R signaling are the IGF-IIR concentra-

tion and its turnover, and the protease composition in the

extracellular environment surrounding the cell, which controls the

rate of degradation of IGF and its binding proteins.

Finally, the sensitivity analysis suggests that the formation of

IGF-IR complex is generally insensitive to insulin due to its

relatively low binding affinity to IGF-IR in comparison to IGFs.

However, a significant effect can be seen once the concentration of

insulin is over 10 times of the base value in superficial zone where

most of the IGFs and IGF-IR complexes in tissue are formed.

Conclusion

In this study, we have developed a comprehensive mathematical

model of the IGF system that may be applied to all tissues (Figure

2). The model is applied here to articular cartilage as appropriate

data is available for this tissue to calibrate the model. For this

tissue, our main findings are as follows:

N Calibrating the model to reproduce the available experimental

data by optimizing over a small subset of model parameters,

we have obtained an estimate for the half-lives of IGFs and

IGFBPs, mass transfer coefficients of IGFBPs and small

complexes within the tissue. Specifically we estimate in

cartilage IGF-I t1/2 = 20 min, IGFBP t1/2 = 100 min and a

mass transfer coefficient kBP = kSC = 5.561028 m/s.

N The model predicts that the distribution of the steady-state

concentrations of free IGF-I and -II and their binary

complexes are strongly depth-dependent in cartilage, with

significantly higher free IGF-I concentration occurring in the

tissue superficial zone (0,0.2 mm), which is well above the

free IGF-I concentration in synovial fluid (by around 50%). It

is noted that this finding is cannot be reproduced by a simple

diffusion model, which predicts all concentrations within the

tissue are less than or equal to the concentration in the synovial

fluid.

N The half-life of free IGFs govern the steady-state free IGF

uptake throughout the tissue, whilst steady-state free IGF

concentration in the tissue superficial zone is largely dominat-

ed by the half-life of the free IGFBP.

N The majority of IGF molecules from the synovial fluid bind to

IGF receptors located in the superficial zone, which leads to

the spatial dependent free IGF distribution in cartilage.

N The occupancy of IGF-1R receptors throughout cartilage is

low, with more than 95% of these receptors unbound.

N The formation of IGF-IR complex is generally insensitive to

insulin in normal conditions. However, insulin concentrations

more than 10 times that normal human plasma could

significantly enhance overall IGF-IR complex concentration

in cartilage.

N Our sensitivity analysis shows that at the normal operating

point for cartilage, the receptor occupancy of the IGF-1R

receptor is most strongly influenced by the following variables:

the half-life of IGFBP, the half-life of free IGF, the IGF-IIR

concentration, the IGF-IIR receptor turnover and the mass

transport of IGF into the cartilage from the synovial fluid.

N It is likely that the chondrocytes can adjust their expression of

proteases to control the half-life of free IGF and its binding

proteins in their extracellular environment, and adjust their

concentration of IGF-1R and IGF-IIR receptors in the cell
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membrane, and adjust the rates of receptor turnover. By these

means, it is possible for chondrocytes to have some control

over their own IGF signalling level within the tissue.

Recent drugs developed to block IGF signaling through its

receptor have been disappointing in their therapeutic efficacy.

Consequently Allison [17] suggests that a cocktail of drugs is

required to block IGF signaling. Our analysis of IGF system is

consistent with this view. Potential homeostatic feedback systems

exerting strong control over IGF-1R signaling are the IGF-IIR

concentration and its turnover, and the protease composition in

the extracellular environment surrounding the cell, which controls

the rate of degradation of IGF and its binding proteins. We

conclude that a systems model of IGF in tissues can assist in

developing an understanding of the IGF system that is not possible

using experimental methods alone, and that this approach may be

useful in assessing the likely efficacy of proposed IGF drug

treatments that involve multiple targets.
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