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Abstract

The Chinchilla Local Fauna is a diverse assemblage of both terrestrial and aquatic Pliocene vertebrates from the fluviatile
Chinchilla Sand deposits of southeastern Queensland, Australia. It represents one of Australia’s few but exceptionally rich
Pliocene vertebrate localities, and as such is an important source of paleoecological data concerning Pliocene
environmental changes and its effects on ecosystems. Prior inferences about the paleoenvironment of this locality made
on the basis of qualitative observations have ranged from grassland to open woodland to wetland. Examination of the
carbon and oxygen isotopes in the tooth enamel of marsupials from this site represents a quantitative method for inferring
the paleoenvironments and paleoecology of the fossil fauna. Results from Chinchilla show that Protemnodon sp. indet.
consumed both C3 and C4 photosynthesis plant types (mean d13C = 214.562.0%), and therefore probably occupied a
mixed vegetation environment. Macropus sp. indet. from Chinchilla also consumed a mixed diet of both C3 and C4 plants,
with more of a tendency for C4 plant consumption (mean d13C = 210.362.3%). Interestingly, their isotopic dietary
signature is more consistent with tropical and temperate kangaroo communities than the sub-tropical communities found
around Chinchilla today. Other genera sampled in this study include the extinct kangaroo Troposodon sp. indet. and the
fossil diprotodontid Euryzygoma dunense each of which appear to have occupied distinct dietary niches. This study suggests
that southeastern Queensland hosted a mosaic of tropical forests, wetlands and grasslands during the Pliocene and was
much less arid than previously thought.
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Introduction

The Chinchilla Local Fauna of southeastern Queensland

represents one of the few well-studied and diverse Pliocene

vertebrate assemblages in Australia [1,2]. The vertebrate assem-

blage of the Chinchilla Local Fauna, which is derived from the

Chinchilla Sand, is represented by an array of fish, reptiles, birds,

marsupials, and rodents [2]. Paleoenvironmental reconstructions

based on faunal components within the assemblage suggest that a

mosaic of habitats occurred around the area during the Pliocene.

For instance, the presence of tree kangaroos, koalas and forest

wallabies implies the presence of forests [3–6]. Large-bodied

grazing marsupials suggest the presence of widespread, open

grasslands [7]. Numerous aquatic and wetland fossil taxa present

in the assemblage imply the occurrence of extensive and

permanent water bodies [8–11]. Conversely, other information

derived from dasyurids suggests seasonally arid climates [12]. It is

important to note that interpretations of the Chinchilla Local

Fauna’s Pliocene paleohabitats are based on qualitative interpre-

tations of gross morphology or taxonomic-based inferences. For

example, high-crowned molars of macropodids reflect grazing

diets, therefore, paleohabitat interpretations made on the basis of

these marsupials suggest the presence of grasslands [7]; presence of

extinct fossil birds that may be related to modern water birds have

been used to infer the presence of wetlands [11]. Quantitative and

geochemical methods of paleoenvironmental reconstructions

commonly give more precise interpretations of past habitats, but

until now, have not been applied to any Pliocene locality in

Australia.

The Pliocene is a critical period for understanding the origins

and evolution of Australia’s unique modern biota. It is during this

time that the Australian fauna first began to take on its modern

appearance and distinctiveness, with many modern Australian

marsupials, such as the agile wallaby Macropus gracilis, first

appearing in Pliocene fossil deposits [1]. The Pliocene also

documents the first paleobotanical evidence of grasslands [13],

which in turn led to the diversification of many marsupial groups

through increased use of this resource (e.g., vombatimorphian

vombatids (wombats) and macropodids (kangaroos)). Pliocene

localities are rare in Australia [14] and it is vital to determine the
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climate and environment of this time period in order to provide a

basis of comparison with the Quaternary, when humans began

changing the landscape and ecosystems of the continent in a more

direct fashion.

Stable isotope geochemistry of fossil vertebrate tooth enamel is a

well known method of discerning paleoecology, paleoenviron-

ments, and paleoclimates e.g. [15–17]. The carbon contained in

plants consumed by herbivores is incorporated in tooth enamel

and does not change during the life of the animal once

incorporated [18]. Oxygen incorporated in tooth enamel comes

from an animal’s body water, which in turn is largely reflective of

drinking water composition [19]. Stable isotope geochemistry

methods have been shown to be useful in reconstructing diets and

environments of marsupials from the Quaternary of Australia [20–

22] but have not yet been applied to fossils from the Chinchilla

Local Fauna. Our study represents the first application of

quantitative paleoecological techniques to this region, and will

allow for the reconstruction of the environments present in

southeastern Queensland during the Pliocene. Our analyses will

also allow us to develop better insights into the diets and niche

partioning of Pliocene fossil marsupials. In this study we address

the following questions:

N What is the geochemical evidence for pervasive Pliocene

grasslands within faunal elements derived from the Chinchilla

Sand?

N How does the Pliocene climate of the region compare to

modern times?

N Is there evidence for dietary niche differentiation between

taxa?

Geology and age of formation
The name Chinchilla Sand was originally proposed by Woods

(1960) for the predominantly sandy-clayey sequence of fluviatile

sediments exposed in the Condamine River and nearby gulley

systems. The formation spans a distance of roughly 65 km from

Nangram Lagoon, situated about 20 km northeast of Condamine,

in the west and Warra in the east. The sediments are generally

weakly consolidated, with clasts ranging in size from clay to

pebbles, although the dominant lithology is sandy. Local

lithification occurs as a result of calcium carbonate or iron oxide

[23]. The quartzite material, including silcrete and ferruginous

sandstone, are interpreted to be derived from the Mesozoic Orallo

Formation and its lateritized profiles [24]. The Chinchilla Sand is

thought to reach a maximum thickness of approximately 30 m, on

the basis of pits and wells sunk near Brigalow [23]. It is overlain

unconformably by dark alluvial Quaternary clays and sands [24].

Vertebrate fossils are found throughout the Chinchilla Sand

lithological units. Biocorrelation of the Chinchilla Local Fauna

with the paleomagnetically dated Kanunka and Toolapinna Local

Faunas of central Australia suggests an age of approximately 3.4

Ma [25]. ‘Stage of evolution’ comparisons based on marsupials

suggests that the Chinchilla Local Fauna postdates the Bluff

Downs Local Fauna of northeastern Australia, which itself has

been given a minimum age of 3.6 Ma [26]. Thus, the Chinchilla

Local Fauna mostly likely dates to the early Piacenzian. Direct

dating of this site and more detailed stratigraphic analyses are

currently in preparation.

Spread of grassland in Australia
During much of the first half of the Miocene, forests were

widespread throughout Queensland [27], with more closed habitat

conditions found more generally throughout the continent [13]. It

was not until the late Miocene that enhanced aridity led to the

contraction of forests and expansion of open habitats [13]. Central

Australia became dry with open woodland and chenopod shrub

dominated landscape. Although the Pliocene began with warm,

wet conditions, allowing the re-expansion of Nothofagus and other

rainforest flora [13], it soon began to dry again.

The first paleobotanical evidence of grasslands in Australia

appears in the form of desert chenopod shrub phytoliths in

northwestern Australia during the Pliocene [13]. It has been

thought that this represents the first major spread of grasslands, a

hypothesis supported by the increase in grazing animals at the

same time [28]. Additionally, evidence of phytoliths in oceanic

cores on the Lord Howe Rise off the eastern coast that show there

was a spread of grasslands on the eastern side of the continent at

the same time [29]. Marine and pollen records illustrate a trend

towards open woodland and grassland environments during the

Pliocene, but there was still considerably higher rainfall than today

[13]. Wet sclerophyll forests became common near the eastern,

southeastern and northwestern coastal regions [30,31], with drier

forests and woodlands present further inland [32]. Although

rainforests persisted in eastern Australia during the Pliocene, the

rise of herbaceous taxa during this time is correlated with

increased seasonality [33]. By examining stable isotope geochem-

istry we can determine the proportions of grasslands and forests

that were present during the Pliocene in southeastern Queensland,

and compare those values with modern conditions in both tropical

and subtropical zones to determine the most likely conditions

present during that time.

Stable isotope ecology of mammals
Carbon isotopes. The carbon (d13C) found in the carbonate

phase of bioapatite is related to the d13C of ingested organic

material [15]. The different photosynthetic pathways, C3 (Calvin-

Benson) and C4 (Hatch-Slack), are characterized by different d13C

values and this is in turn reflected in the tooth enamel of

mammalian herbivores. The carbon isotope ratios of plants

change depending on their photosynthetic pathway and environ-

mental conditions [34]. C3 plants have a d13C ranging from

232% in understory canopy conditions to 221% in drier

environments [35]. Generally, the d13C of C3 plants increases as

the climate gets drier. C4 plants, which are mainly grasses, can

range from 215 to 29%. C3 plants dominate cool, moist regimes.

In Australia, abundances of C3 plants decline with increasing

temperature and/or decreasing spring rains, while C4 grass is

most abundant in areas where summer is hot and wet [36].

The isotopic fractionation between food (diet) and tissue (tooth

enamel) has been studied in a variety of mammalian test systems.

The fractionation constant between bulk diet and d13C of tooth

enamel in wild herbivores is between +9 and 12% [37–39].

However, in more recent studies of marsupials, a ,12%
fractionation between diet and enamel d13C was found in

kangaroos and wombats [21,40]. This fractionation was used to

examine diets of Pleistocene macropodids in Forbes et al. (2010)

and will be used in this study.

It is also important to take into account the effect of weaning on

the d13C composition of tooth enamel. Early formed molars are
13C depleted compared to late formed molars [22,40], due to the

shift from milk to solid food in the diet of marsupials. This is either

because of a change in internal physiological fractionation in the

animal, or because the milk has more low d13C fat than plant

fodder [40]. Currently, this weaning effect has only been tested in

large macropodids [40].

Oxygen isotopes. Oxygen isotopes in water vary due to

temperature, evaporation, and source of air masses [41].

Australian Paleoenvironments from Stable Isotopes
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Terrestrial vertebrates do not directly ingest precipitation; instead,

their water is primarily ingested from streams, ponds, lakes, and

leaves. Each of those reservoirs typically has different d18O relative

to precipitation, due to preferential incorporation of the 18O

isotope into condensate during evaporation. The d18O of

organisms with body water composed mainly of drinking water

can be used to reconstruct the landscape hydrology in paleoenvir-

onments (e.g. [42]).

Animals such as modern day kangaroos have low drinking water

requirements, so the d18O of their tooth enamel mainly reflects

that of leaf water (from food) and therefore, relative humidity [43].

Plant leaf water is subject to evaporative enrichment of the heavy

isotope 18O at low humidity [44], and this d18O signature is passed

on to the animals that consume these leaves, so it is possible fossil

herbivores can be used as a paleohumidity proxy. Murphy (2007b)

examined sources of d18O variation in kangaroo (Macropus spp.)

tooth enamel. Relative humidity explained a large proportion of

the d18O tooth enamel variance, but they also uncovered a

previously unreported correlation between mean annual temper-

ature and relative humidity. Therefore, they recommended not

using d18O of fossil teeth in herbivores to reconstruct relative

humidity unless there is a reliable estimate of air temperature at

the same locality [45]. Additionally, they also found no effect from

weaning on the d18O of molars within individuals.

Methods

Collection
Fossils were collected from one of the Chinchilla Sand

Formation localities, the Chinchilla Rifle Range, in Chinchilla,

Queensland (Figure 1) by Ces and Doris Wilkinson over a period

of more than 20 years. Such fossils were subsequently donated to

the Queensland Museum. Most were recovered as surface finds

uncovered by erosion of unconsolidated sediments in the main

gully system; however, some were excavated from Dig Site. No

permits were required for the described study, which complied

with all relevant regulations. Permission for sampling of the fossils

was provided by the Queensland Museum. Fossils were loaned

and returned following isotopic analysis. All the fossils examined

herein were recovered from the Chinchilla Sand. In this study, we

chose to perform stable isotope analysis of the tooth enamel of four

sympatric vertebrates: macropodids Protemnodon sp. indet., Tropo-

sodon sp. indet., and Macropus sp. indet. and diprotodontid

Euryzygoma dunense. Not every specimen sampled could be

identified to species level, which could indicate that we sampled

a variety of species within each genus. While this limits our ability

to make dietary attributions to specific species, the conclusions we

can draw from genus-level molar identification reveal important

new information about the range of environments at the locality.

We chose these taxa on the basis of their abundant availability in

the fossil collections. We hypothesize that sampling four large

bodied herbivorous marsupials from the same habitat will give a

clear snapshot of most available consumable plant fodder at a site.

Stable isotopes
Bulk samples of enamel were obtained by using a Dremel drill to

remove a flake of enamel, which was subsequently ground into fine

powder using a ceramic mortar and pestle. For bioapatite samples,

over 1000 mg was used to obtain an accurate result. Powdered

samples of bioapatite were subsequently treated using 30% H2O2

and 0.1 N acetic acid to remove organic material and surficial

carbonates [46]. Analyses were run on a Thermo Electron

Corporation Finnegan Delta plus XP mass spectrometer in

continuous-flow mode via the Thermo Electron Gas Bench

peripheral and a GC-PAL autosampler housed at the University

of Rochester. Carbon and oxygen isotopic results are reported in

per mil (%) relative to VPDB (Vienna Pee-Dee Belemnite) with an

allowable 2-sigma uncertainty of 0.12% and 0.20% for carbon

and oxygen respectively. Statistical analyses, ANOVA and Tukey

HSD, were all performed on Microsoft Excel 2011 and PAST ver.

2.14.

Isotopic ratios of carbon are expressed using the permil

notation, such as: d13C (permil, %) = ((Rsample/Rstandard-

1)61000), where R = ratio of 13C/12C of an unknown sample

relative to a known standard VPDB [45]. Oxygen isotopes are

expressed similarly to carbon isotopes: d18O (permil, %) = ((Rsam-

ple/Rstandard-1)61000), where R = ratio of 18O/16O of an un-

known sample relative to a known standard, either VPDB or V-

SMOW [47]. In this paper, oxygen isotopes are reported with

respect to VPDB.

It was previously mentioned that d13C of enamel can change

due to weaning in marsupials. Such ontogenetic changes must be

taken into account when performing a study on fossil marsupials,

so in our study we used only the third or fourth molars (the last

erupting teeth) in our analysis wherever possible, so the d13C signal

we interpreted was most likely from plant diet, not milk diet [40].

Modern stable isotope data from Macropus spp. from around

Australia was obtained from Murphy et al. (2007a). Isotopic data

from Macropus species sampled in Murphy et al. (2007a) and

included in this study were M. giganteus, M. rufus, M. fuliginosis, M.

robustus, M. rufogriseus, M. agilis, M.antilopinus, and M. bernardus. It is

vital to note that there is a ,1.2 % depletion in d13C in modern

samples compared to pre-industrial d13C CO2 of atmosphere due

to the burning of fossil fuels (known as the Suess Effect) [48,49].

We therefore corrected for this enrichment by applying a

correction of 21.2% to all Pliocene samples in order to allow

for comparisons between carbon isotopes of modern and fossil

marsupial tooth enamel [50]. We used specimens of Macropus spp.

from Murphy et al. (2007a) that came from the following

biogeographic regions noted in their supplementary information:

CYP (Cape York Peninsula), ARP (Arnhem Plateau), BBS

(Brigalow Belt South), and SEQ (South East Queensland), SEH

(South Eastern Highlands) and MGD (Miller Grass Downs). We

chose kangaroos from these regions because they encompass major

modern climates we wish to compare to Chinchilla Sand. CYP

and ARP are classified as tropical, BBS and SEQ are subtropical,

SEH is temperate, and MGD is grassland/desert. Regions are

defined on the basis of Interim Biogeographic Regionalisation for

Australia version 7 [51]. Climates of Australia are based on a

Koppen classification system from the Australian Bureau of

Meterology [52].

Results

Carbon isotopes
Means and standard deviation of isotopes in each taxon group

are presented in Table 1. The overall range of d13C means over all

taxa is 214.5 to 210.3%, which corresponds to a diet of 226.5 to

222.3% when the ,12% enrichment is accounted for. The range

of modern Macropus spp. d13C of enamel in the same region as

Chinchilla, taken from Murphy et al. (2007a), is 214.1 to 22.2%,

corresponding to a diet of 226.1 to 215.7%. ANOVA shows

significant differences in d13C between the four fossil taxa analyzed

at Chinchilla (p,0.001). For the comparisons between modern

and fossil kangaroo Macropus spp. samples, d13C was different

between the six tropical, subtropical, temperate, and desert zones

and the fossil Chinchilla locality (p,0.001). ANOVA results are

summarized in Table 2.

Australian Paleoenvironments from Stable Isotopes
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The results of Tukey’s HSD test from the carbon isotope

ANOVAs are in Table 3. Protemnodon sp. indet. d13C is significantly

different than that of Macropus sp. indet., but is not differentiated

from the d13C of Troposodon sp. indet. or Euryzygoma dunense.

Macropus sp. indet. only shows differences from Protemnodon sp.

indet.; there is no statistical difference between Macropus sp. indet.

and E. dunense or Macropus sp. indet. and Troposodon sp. indet..

When fossil Chinchilla Macropus sp. indet. are compared to

modern Macropus spp. from six different biogeographic regions of

Australia using ANOVA, d13C is significantly different (Table 2).

The Macropus spp. from the modern region that contains the

Chinchilla locality and the surrounding area, BBS and SEQ, have

d13C values significantly higher than fossil Macropus sp. indet. when

examined with Tukey’s HSD test (Table 4). Macropus spp. from

MGD are similar to Macropus spp. from all regions, including

Chinchilla. On the other hand, there was no significant difference

between fossil Macropus sp. indet. d13C from Chinchilla and

modern Macropus spp. from tropical regions CYP and ARP.

Figure 1. Map of Chinchilla Sand Formation fossil locality. Chinchilla is marked on this map, along with the shaded areas representing the
biogeographic zones where modern kangaroo tooth enamel stable isotope values were taken from Murphy et al. 2007a to compare to fossil values.
Abbreviations for biogeographic zones are in the methods section.
doi:10.1371/journal.pone.0066221.g001

Table 1. Stable isotope general statistics.

Taxon n d13C

d13C
Suess
effect stdev d18O stdev

Euryzygoma dunense 12 211.1 212.3 2.8 20.2 1.4

Macropus sp. indet. 24 29.1 210.3 2.3 21.5 1.9

Protemnodon sp. indet. 8 213.3 214.5 2.0 22.6 2.4

Troposodon sp. indet. 6 211.6 212.8 2.5 21.5 1.0

Mean, n, and standard deviation (stdev) for both carbon and oxygen isotope
values for all materials sampled. d13C Suess effect is the raw carbon isotope
value with 1.2 per mil subtracted to account for the modern depletion in
atmospheric d13C. Isotope values are presented in per mil (%).
doi:10.1371/journal.pone.0066221.t001

Table 2. Summary of ANOVA results.

Variable dF F p significant

d13C fossils only 3 6.919 0.0006099 yes

d13C modern and Chinchilla
Macropus spp.

6 54.5 1.72E-33 yes

d18O fossils only 3 2.788 0.05108 no

d18O modern and Chinchilla
Macropus spp.

6 52.12 1.37E-32 yes

Summary of the test statistics for each ANOVA, including degrees of freedom
(dF), F-statistic, p (probability), and significance.
doi:10.1371/journal.pone.0066221.t002

Australian Paleoenvironments from Stable Isotopes
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Oxygen isotopes
Means and standard deviations of d18O from sample fossil taxa

are in Table 1. The values of fossil taxa sampled range from 22.6

to 20.2%. Modern Macropus spp. from the BBS region containing

Chinchilla have an enamel d18O range from 22.8 to 4.2%. There

is not a wide variation in the d18O between taxa; ANOVA of d18O

values shows no significant differences between the four fossil

genera (p = 0.051). The ANOVA between d18O of modern

Macropus spp. from the six biogeographic zones compared with

d18O from fossil Chinchilla Macropus sp. indet. show a significant

difference. ANOVA results are summarized in Table 2.

The results of Tukey’s HSD test from the oxygen ANOVAs are

contained in Table 3. There is a significant difference in the

pairwise comparisons between Protemnodon sp. indet. and E. dunense.

When Chinchilla fossil Macropus sp. indet. d18O are compared to

d18O of Macropus spp. from subtropical (BBS, SEQ), tropical (ARP,

CYP), temperate (SEH), and grassland (MGD) regions, Chinchilla

fossil Macropus sp. indet. are only different from values from BBS

and MGD; BBS is the region that contains modern-day Chinchilla

(Table 4).

Discussion

Dietary niches
Between the four fossil taxa sampled here, we observe clear

indications of unique dietary niche separation (Figure 2). E.

dunense, Macropus sp. indet., and Troposodon sp. indet. consumed a

mixed C3 and C4 diet, with average d13Cdiet = 224.3%, 222.3%
and 224.8% respectively (Table 5). These three taxa consumed a

mixed diet, but the majority of it was comprised of C3 plants; the

percentage of C3 plants in the diet was calculated using equation

(1) in Johnson et al. (1997) [53]. E. dunense had a d13Cdiet that

indicates it primarily fed on C3 plants, which is in concordance

with a previous estimate of diet from another diprotodontid,

Diprotodon [54]. Protemnodon sp. indet., thought to be a forest-

dwelling marsupial based on morphological evidence [4], unmis-

takably occupied a different niche than the other three taxa, based

on the fact it has the most negative mean d13C out of all four taxa

sampled (214.5%). Our results indicate that Protemnodon could

have subsisted primarily on C3 browse, such as would be found in

a sclerophyll forest. Overall, there is evidence of a C4 grass

signature in the diets of these animals, but C3 plants comprise the

majority.

Table 3. Summary of results from Tukey’s HSD test from the d13C and d18O fossil ANOVAs.

d13C Macropus sp. indet. Protemnodon sp. indet. Troposodon sp. indet.

Euryzygoma dunense 0.2551 0.236 0.9759

Macropus sp. indet. 0.002533 0.1168

Protemnodon sp. indet. 0.4451

d18O .

Euryzygoma dunense 0.4172 0.03481 0.4397

Macropus sp. indet. 0.5884 1

Protemnodon sp. indet. 0.5641

Comparisons are pairwise and p values are in bold if significant (p = 0.05).
doi:10.1371/journal.pone.0066221.t003

Table 4. Summary of results from Tukey’s HSD test from the d13C and d18O ANOVAs of modern Macropus spp. and fossil Macropus
sp. indet. from Chinchilla.

d13C BBS CYP ARP MGD SEH Chinchilla

SEQ 0.5603 3.89E-05 9.06E-05 0.202 2.57E-05 2.57E-05

BBS 0.02532 0.06355 0.9965 2.57E-05 2.60E-05

CYP 0.9999 0.1371 2.57E-05 0.1927

ARP 0.2668 2.57E-05 0.09244

MGD 2.57E-05 3.74E-05

SEH 0.0004263

d18O

SEQ 0.0008475 0.9964 0.06652 2.57E-05 0.001761 0.1508

BBS 7.36E-05 2.57E-05 0.4295 2.57E-05 2.57E-05

CYP 0.277 2.57E-05 0.01669 0.4729

ARP 2.57E-05 0.9375 0.9999

MGD 2.57E-05 2.57E-05

SEH 0.8069

Comparisons are pairwise and p values are bolded if significant (p = 0.05). Regional abbreviations: CYP (Cape York Peninsula), ARP (Arnhem Plateau), BBS (Brigalow Belt
South), and SEQ (South East Queensland), SEH (South Eastern Highlands) and MGD (Miller Grass Downs).
doi:10.1371/journal.pone.0066221.t004

Australian Paleoenvironments from Stable Isotopes
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Due to the d18O of the fossil Chinchilla taxa not being high due

to enrichment in 18O, the environment was most likely mesic. This

not only indicates an environment with moderate to high rainfall,

but when combined with the carbon isotope data, also indicates

that C3 plants were more likely present in forests rather than

grasslands, as grasses are prevalent in drier environments. Other

evidence, such as the relatedness of taxa sampled like Protemnodon

sp. indet. to other forest wallaby browsers, indicates the C3 plants

consumed in this environment were most likely trees in an open

forest [4]. It appears that, although C4 grasslands had spread to

this region, grass was not the primarily dietary intake for any of

these four taxa. Oxygen isotopes between the four taxa show no

statistical differences, and we hypothesize that this is a result of

drinking water from frequently replenished water sources that

were connected without much evaporation.

Paleoenvironment of the Chinchilla Sand Formation
To better understand the paleoenvironment of the Chinchilla

Sand fossil locality, it is useful to compare our results to modern

day signatures found in Macropus spp., which show how d13C and

d18O naturally vary in a known landscape. The diet of Macropus

spp. in the modern region of Queensland around Chinchilla is

statistically different from all of the d13C signatures in the tooth

enamel of the Pliocene marsupials. It is apparent that the diets of

kangaroos in this region today are dominated by C4 grasses with

highly positive d13C values (Table 6). This suggests that the

proportion of C4 grasses in the landscape today is far greater in

this region than they were during the Pliocene.

When examining d18O in addition to d13C, there is a significant

difference between the oxygen isotopes of fossil Chinchilla

marsupials and modern day Macropus spp. from the BBS region.

It appears that, out of the two biogeographic zones in this area of

Queensland, Pliocene fossil Chinchilla taxa are more similar to

that of the modern SEQ zone than the BBS zone. When

comparing the d13C of Macropus spp. found in tropical biogeo-

graphic zones ARP and CYP, the Chinchilla fossil Macropus sp.

indet. are indistinguishable. The same pattern holds with the

d18O; at Chinchilla the d18O of Macropus sp. indet. tooth enamel is

most similar to that in the tropical regions, SEQ and the temperate

SEH. The fact that fossil Chinchilla Macropus sp. indet. are so

similar to Macropus spp. from SEH in d18O could indicate a similar

hydrologic regime, and therefore a similar plant structure of C3

forests. It can be useful to compare areas of modern average

rainfall with fossil values to get an indication of what paleorainfall

could have been [20]. Average rainfall in Chinchilla (BBS) region

today is 600–800 mm, while SEQ has a range from 600 up to

1200 mm in small patches near the coast. The Miller Grass

Downs (MGD) has 200–500 mm of rainfall per year. In contrast,

the CYP and ARP regions receive 1000–2000 mm of rain per

year. SEH in southeastern Australia can have mean annual

precipitation ranging from 500 up to 1600 mm per year. It is clear

that fossil Chinchilla Macropus sp. indet. group with those from

CYP and ARP, tropical regions of Australia, in both carbon and

oxygen values (Figure 2). This suggests that rainfall at the Pliocene

Chinchilla was much higher than it is today, and that it was

possibly closer to a tropical level of rainfall (over 1000 mm). It also

suggests the environment at the locality was significantly more

Figure 2. Bivariate plot of carbon and oxygen for fossil and
modern teeth. A. d18O vs. d13C values for Macropus spp. from six
modern localities, grouped by their climatic region. Labels on axes
indicate the boundary between a C3 dominated and a C3/C4 mixed
environment. B. d18O vs. d13C values for Troposodon sp. indet.,
Protemnodon sp. indet., Euryzygoma dunense, and Macropus sp. indet.
from Chinchilla Sand. Each taxon is marked by a symbol as seen in the
legend.
doi:10.1371/journal.pone.0066221.g002

Table 5. d13C diet and %C3 diet of fossil and modern
marsupials.

Taxon Locality d13C diet % C3 diet

Euryzygoma sp. indet. Chinchilla 224.3 84.3

Macropus sp. indet. Fossil Chinchilla 222.3 70.0

Protemnodon sp. indet. Chinchilla 226.5 100.0

Troposodon sp. indet. Chinchilla 224.8 87.9

Macropus spp. Modern SEQ 215.7 22.8

Macropus spp. Modern BBS 217.3 34.2

Macropus spp. Modern CYP 220.1 54.4

Macropus spp. Modern ARP 219.8 52.4

Macropus spp. Modern MGD 217.8 38.1

Macropus spp. Modern SEH 226.1 96.9

d13C diet is obtained by taking the average d13C of enamel and subtracting the
diet-enamel enrichment factor of 12% (Fraser et al. 2008). %C3 diet is
calculated using equation 1 in Johnson et al. (1997) with 26.5% and 12.5%
used as the average for C3 and C4 plants in the landscape.
doi:10.1371/journal.pone.0066221.t005
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forested due to its dissimilarity from grassland environments

sampled (MGD). It is important to remember these are only

qualitative indications of paleorainfall and are merely loose

estimates based on comparison with modern values; more

quantitative work is needed for more precise estimates.

It is difficult to determine the precise mean annual rainfall

during the Pliocene based on these results because there is a

possibility that the d18O of precipitation was significantly different

than it is today. But, using our combined evidence, it appears that

Chinchilla in the Pliocene represented a mosaic environment that

included mostly forest but also mixed C3/C4 grassland. There is

no specific isotopic evidence of a closed canopy, but the dietary

signature of the browser Protemnodon sp. indet. and the presence of

three species of phascolarctids [6] indicates that this could have

been present. The presence of many aquatic taxa, such as ducks,

pelicans, turtles, lungfish and crocodiles, indicates the presence of

extensive long-term water bodies in the region, while the thick

fluviatile deposits indicate extensive river systems [2]. Also, our

results do not preclude the reconstruction of the Chinchilla

paleoenvironment as riparian forests surrounded by tropical

grasslands. Our results suggest that tropical conditions, that today

are restricted only to northern Queensland and the Northern

Territory, could have extended significantly southwards through

Queensland during the Pliocene, but further isotopic sampling on

a greater range of taxa is needed to confirm this. Although C4

grasslands were spreading across Australia at this time, our results

suggest they were not the primary habitat type present in this

locality.

Conclusions

Despite the fact the Pliocene marks the spread of grasses around

Australia [13], the depositional area of the Chinchilla Sand was

not dominated by C4 grasslands. Instead, the environment was

more mixed, with a clear indication of abundant C3 plants,

potentially a wet tropical sclerophyll forest. The Pliocene Macropus

sp. indet. at Chinchilla consumed both C3 and C4 plants. The

proportion of C4 grasses in their diets may be confirmed in the

future through dental microwear analyses. Both Euryzygoma dunense

and Troposodon sp. indet. were mixed feeders with a tendency

towards C3 plants, while the confirmed forest wallaby Protemnodon

sp. indet. subsisted almost entirely on C3 plants, indicating the

likely presence of trees. These inferences are confirmed by our

comparison of fossil isotopic values with those of modern Macropus

spp. from different regions of Australia. We reconstruct the

Chinchilla Sand fossil locality as significantly wetter and more

vegetated during the Pliocene than today, potentially representing

an environment with forests in addition to tropical grasslands and

wetlands. Further exploration at this site and neighboring

Pleistocene localities will give us a better indication of paleoecology

and shifts in paleoenvironments in relation to climate change in

the region.
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