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Abstract

Diet influences health as a source of nutrients and toxins, and by shaping the composition of resident microbial
populations. Previous studies have begun to map out associations between diet and the bacteria and viruses of the human
gut microbiome. Here we investigate associations of diet with fungal and archaeal populations, taking advantage of
samples from 98 well-characterized individuals. Diet was quantified using inventories scoring both long-term and recent
diet, and archaea and fungi were characterized by deep sequencing of marker genes in DNA purified from stool. For fungi,
we found 66 genera, with generally mutually exclusive presence of either the phyla Ascomycota or Basiodiomycota. For
archaea, Methanobrevibacter was the most prevalent genus, present in 30% of samples. Several other archaeal genera were
detected in lower abundance and frequency. Myriad associations were detected for fungi and archaea with diet, with each
other, and with bacterial lineages. Methanobrevibacter and Candida were positively associated with diets high in
carbohydrates, but negatively with diets high in amino acids, protein, and fatty acids. A previous study emphasized that
bacterial population structure was associated primarily with long-term diet, but high Candida abundance was most strongly
associated with the recent consumption of carbohydrates. Methobrevibacter abundance was associated with both long term
and recent consumption of carbohydrates. These results confirm earlier targeted studies and provide a host of new
associations to consider in modeling the effects of diet on the gut microbiome and human health.
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Introduction

Humans live in association with immense populations of

bacteria, viruses, fungi and archaea [1–8]. Many groups have

now contributed surveys using deep sequencing to characterize

these populations, revealing that the human microbiome differs

radically at different body sites and among individuals [9–12].

Differences in body sites are associated with availability of

nutrients, water, oxygen, and other site-specific features. The

origin of differences between individuals is less clear, however,

potentially reflecting distinct colonization early in life and different

environmental exposures such as antibiotic use [13–15]. Another

environmental exposure, ubiquitous but incompletely understood,

is diet.

Recently, we reported correlations of long-term dietary patterns

in 98 individuals and the bacterial lineages present in the gut

microbiota [10]. Two genera, Prevotella and Bacteroides, were shown

to have reciprocal patterns of abundance, paralleling several

reports from others [16–18]. Abundant Prevotella correlated with

consumption of carbohydrates, while abundant Bacteroides corre-

lated with consumption of choline, fats, and amino acids. A short

term controlled feeding study showed changes in the gut

microbiota associated with the dietary interventions, but not a

change in the overall structure of the bacterial community

analyzed, supporting a role for long-term diet in determining the

structure of the gut microbiome [10]. Another study recently

reported that the diversity of the gut microbiota was linked with

long-term diet, where a more diverse diet was correlated with an

increased gut bacterial diversity [19].

Bacteria are abundant members of the gut microbiome, but not

the only residents. Bacteriophage particles within the intestinal

tract are present in potentially greater numbers than bacterial cells

[20], [21]. Recently changes in bacteriophage communities in gut

have been correlated with dietary interventions [5].

Archaea are also present in human gut, the most frequently

occurring of which is Methanobrevibacter smithii [22–25], a methane

producer from byproducts of bacterial fermentation [23]. Report-

ed colonization rates by methanogenic archaea range from 25% to
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95% of humans [26], [27]. In microbial ecosystems such as the

human gut, when H2 accumulates due to bacterial catabolism,

archaeal growth is stimulated associated with incorporation of H2

into methane [23]. Support for such syntrophy in the mammalian

gut has been shown in a gnotobiotic mouse model, where co-

colonization by M. smithii and Bacteroides thetaiotaomicron promoted

increased growth of both species compared to mono-colonization

[28].

Yeasts have been detected in human stool samples at least since

1917 [29], and by the mid 20th century their presence in the

human intestine had been proposed to have a saprotrophic role

[30]. Gut fungi may also be involved in pathogenic processes.

Anti-Saccharomyces antibodies are detected in inflammatory bowel

disease cohorts and are used as a predictor of disease progression

[31], [32]. Recent work using a murine model has suggested that

normally mutualistic or commensal fungi species may exacerbate

intestinal inflammation in mice with sensitized genotypes [33]. In

mice, over 14 fungal genera have been reported to be present

within the mucus layer lining the intestinal epithelium [34].

Available data is likely incomplete, because of reliance mostly on

culture-based methods. Recent reports using next generation

sequencing also suggest diverse fungal communities in humans

[35–37].

Based on the above, we hypothesized that the gut archaea and

fungi are influenced by both diet and the other microorganisms

present. Here we investigated these ideas in a cohort of 96 healthy

individuals who were previously characterized for their bacteria/

diet relationships [10]. Fungi were characterized by sequencing

the Internal Transcribed Spacer region 1 (ITS1) of the rRNA

locus and the archaea by sequencing a segment of the 16S rRNA

gene. Short-term diet was characterized using a Recall question-

naire, and long-term diet characterized using a Food Frequency

questionnaire. Analysis showed notable correlations of the three

Domains of life with each other, and with dietary components–

thus these data begin to specify potential multi-domain trophic

interactions in the human gut microbiota.

Results

Samples for Analysis of the Relationship between Human
Diet and Gut Microbial Populations
A total of 98 samples were collected from healthy volunteers,

and sequences from 96 of these samples were used in this analysis

after quality filtering. The archaeal and fungal components of the

microbiota were assessed using the 16S rRNA gene and the ITS1

rRNA gene tags, respectively [38–40]. The bacterial population of

these samples was characterized previously by 454 pyrosequencing

of V1V2 segments of the 16S rRNA gene [10]. Volunteers were

screened to be free of chronic gastrointestinal disease, cardiac

disease, diabetes mellitus or immunodeficiency diseases, to have a

normal bowel frequency (minimum once every 2 days, maximum

3 times per day), and body mass index (BMI) between 18.5 and 35.

The Archaea of the Gut Microbiome
A total of 99,131 archaeal sequence reads were obtained,

resulting in the detection of 5 genera (Figure 1). A total of 44 of the

96 samples analyzed were positive for at least one species.

Methanobrevibacter sp was detected in 30 samples, and Nitrososphaera

sp was detected in 16 samples (Figure 1A). The two genera were

usually mutually exclusive, coexisting in only 6 samples.

The detection of Nitrososphaera was surprising and so was

investigated further. Comparison of amplification efficiency

suggested that the Methanobrevibacter when present was relatively

abundant, while the Nitrososphaera was less abundant (Figure 1,

top). Nitrosophaera was not detected after sequencing control

amplifications with archaeal primers using products of blank

DNA purifications as template (no positives out of eight tested). To

validate the detection of Nitrososphaera, we used a nested PCR assay

to detect the AmoA gene, which encodes the ammonia mono-

oxyenase enzyme, and is distinctive for Nitrososphaera. We found an

association between an AmoA positive PCR and Nitrososphaera

detection in the samples (p = 0.014, Fisher’s exact test). The

association, while significant, was not invariant, probably because

of difficulties in detection due to the low level of Nitrosophaera in the

samples, and possible presence of AmoA in other microbes or food

materials. Inspection of published work showed detection of

Nitrosophaera in metagenomic sequences from one of two individ-

uals studied by [25], and in both 16S and metagenomic sequences

in another cohort [41]. These data do not distinguish whether

Nitrosophaera is replicating in the human gut or a transient present

in food.

The Fungi of the Gut Microbiome
The fungal sequencing effort yielded 332,659 sequence reads,

resulting in detection of 66 genera and 13 additional lineages that

could not be classified to the genus level (Figure 1 and Figure S1

and S2). Fungal sequences were detected in every sample

analyzed. Only 12 fungal genera were detected in 9 or more

samples (Figure 1B, Figure S2). The phyla Ascomycota and

Basidiomycota were mostly inversely correlated (Figure S1). The

most prevalent genus in this sample set was Saccharomyces (present

in 89% of the samples), followed by Candida (57%) and Cladosporium

(42%) (Figure S1).

Co-occurrence Analysis using the Dice Index
Microbial communities in diverse settings have been shown to

form syntrophic communities, in which metabolic waste products

from one microbe provide nutrients for another. Thus an initial

analysis of these samples was carried out to determine which

microbes co-occur, as scored by the Dice index. For this, we only

used data of relatively abundant genera (within Domain sample

proportion of 0.01 or greater).

Numerous associations were detected. Figure 2 shows these

interactions, incorporating data over all three Domains. Co-

occurrence is indicated by the color code. Inspection of the figure

shows several examples of co-occurrence involving a high

proportion of samples (Figure 2, lower left corner, warmer colors).

Bacteroides occurred commonly with Parabacteroides, Lachnospiraceae,

and Ruminococcaceae. Lachnospiraceae occurred commonly with

Faecalibacterium and Ruminococcaceae as well as Bacteroides. In contrast,

co-occurrence of Methanobrevibacter and Nitrososphaera was low, as

mentioned above.

Candida and Saccharomyces were both associated with the group

containing the above bacteria. Several other fungi achieved levels

sufficient for inclusion in the analysis, but showed less clearcut co-

occurrence with other community members. Methobrevibacter

showed modest levels of association with the above group of

bacteria, but was similarly also associated with Prevotella and

several other bacterial groups. Nitrososphaera showed only modest

associations with other lineages. The frequent co-occurrence of

some of these microorganisms suggests candidate interactions

among gut microbes for further investigation.

Covariation among Microbial Lineages
We next examined covariation among the three Domains,

taking into account the relative abundance of each lineage in

addition to presence-absence information. For the fungi and

bacteria, multiple lineages were seen, and multiple different

Correlations of Diet with the Gut Microbiome
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lineages were present in all samples, allowing use of correlation-

based methods. However, for the archaea, only two lineages were

detected with substantial frequency, Methanobrevibacter and Nitroso-

phaera, and these were mostly mutually exclusive. Thus for the

archaea, samples were divided into three categories (containing

one of the two archaea or no archaea), and co-occurring bacteria

and fungi scored. For those few cases where both archaea were

seen in a single sample, there was always a substantially greater

abundance of one, so the sample was assigned based on the

predominant lineage.

As a first global test of association among the three Domains, we

conducted a Permanova test using the newly developed Gener-

alized Unifrac distance [42], which showed significance (Tables S1

and S2). To characterize the lineages involved, we used a non-

parametric Kruskal-Wallis test to determine which bacterial and

fungal genera co-varied with the archaeal categories (Figure 3A).

Several lineages co-varied with Methanobrevibacter, including the

commonly encountered bacteria Ruminococcus, and rarer lineages

such as Oxalobacter and Papillibacter. Of the fungi, Candida and

Saccharomyces were both positively associated with Methanobrevibacter.

Both fungal genera were negatively associated with Nitrososphaera.

The Prevotella/Bacteriodes ratio was implicated as important for

the gut microbiome structure in previous studies [10], [16], [41],

so we assessed correlations with fungal and archaeal taxa. We

performed a PermanovaG test using the Prevotella/Bacteroides ratio

and the generalized Unifrac matrices obtained from the fungal

composition data. A significant relationship was observed

(p = 0.0146) indicating a potential influence of the Prevotella/

Bacteriodes ratio on fungi. A post-hoc test with the individual

weighted and unweighted unifrac matrices showed that there was

a significantly correlation between the Prevotella/Bacteriodes ratio

and the weighted Unifrac distances (p = 0.0133), but not with the

unweighted Unifrac matrix. Thus the Prevotella/Bacteroides ratio

Figure 1. The archaeal and fungal components of the human gut microbiome. The heatmaps show the relative proportions of microbial
lineages detected by pyrosequencing. The lineages are marked on the right, with Phylum (abbreviated), Class, and Genus. Archaeal genera are shown
in (A), representative bacterial genera in (B), and fungal genera in (C). The top two rows show the DNA yield from PCR amplification reactions, which
serves as a rough indicator of abundance. Proportions were calculated within each amplicon (archaeal 16S, bacterial 16S, or fungal ITS) for each
sequencing study separately. The abbreviations for phyla were as follows (Eur: Euryarchaeota; Tha: Thaumarchaeota; Act: Actinobacteria; Bac:
Bacteroidetes; Fir: Firmicutes; Asc: Ascomycota; Bas; Basidiomycota). Other Ascomycota and Other Basidiomycota are composed of genera which
were detected in only one sample (see Table S7 and Figure S2 for a complete list of detected genera and their prevalence).
doi:10.1371/journal.pone.0066019.g001
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correlated with the amounts of fungi present, but not the types.

For the archaea, Bacteriodes was significantly negatively correlated

with Methanobrevibacter, but positively correlated with both Nitroso-

sphaera and no archaea. Prevotella showed a reciprocal pattern, but it

did not achieve significance, probably because of the lower

numbers of Prevotella-positive samples in the data set.

We also used a PermanovaG test to determine whether the

proportion of fungal phyla (Ascomycota or Basidiomycota)

correlated with the gut bacterial lineages. Both Ascomycota and

Basidiomycota were significantly correlated with the bacterial

lineages (p = 0.0202 and p= 0.0037, respectively). A post-hoc

Permanova test with the individual weighted and unweighted

Unifrac matrices was significant only when using the weighted

Unifrac matrix (p = 0.0205 and p= 0.004, for the Ascomycota and

Basidiomycota, respectively). A targeted analysis of the Fungi

(Figure 3B) showed a negative association of Candida with

Bacteriodes. Together these results indicate that the types of fungal

species in the gut were not correlated with the bacterial taxa

present, but rather their relative proportions.

Figure 2. Analysis of co-occurrence among microbial lineages scored using the Dice index. Dice indexes across all genera pairs present at
a proportion .=0.01 are shown as a heatmap. Clustering was carried out using Ward’s criteria, based on the Euclidian distance between each genus
pair using their Dice index across all other genera. Domain membership is color-coded on the left. Data are summarized in Table S9 and S10.
doi:10.1371/journal.pone.0066019.g002
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Figure 3. Inter-generic relationships. The heatmaps quantify the intergeneric relationships. (A) Normalized z-score of the bacterial and fungal
proportions for samples grouped according to their archaeal status (Methanobrevibacter positive, Nitrososphaera positive, or archaea negative).
Asterisks indicate Kruskall-Wallis significant comparisons after FDR adjustment (FDR of 25, 20, 15, and 10% are marked with 1, 2, 3 or 4 asterisks,
respectively). Domain membership is color-coded on the left. (B) Spearman correlations between Fungi and Bacteria. Asterisks in red indicate FDR
adjusted significant correlations (FDR 20%) and the remaining raw p-values are shown to illustrate general patterns within the data (p-values
,=0.05, 0.01, 0.005, 0.001 are marked with 1, 2, 3 or 4 asterisks, respectively).
doi:10.1371/journal.pone.0066019.g003
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Associations with Diet
We next investigated correlations between diet and the archaeal

and fungal taxa. Dietary information was collected using diet

inventories that scored usual (long-term) diet, and recent (short-

term) diet. For each inventory, a clustering method was used to

identify co-varying groups of dietary components, thereby

reducing the number of variables and reducing penalties for

multiple comparisons in the statistical analysis. We found that

many of the clusters formed natural categories, such as carbohy-

drates, animal protein, and amino acids. Correlations between diet

and bacteria have been reported previously for this data set [10]

and were recapitulated here after using the pre-clustered dietary

data (below). As a first step, Permanova tests were carried out

using the nutrient cluster data and the weighted and unweighted

Unifrac distance matrixes to determine whether the fungal and

archaeal lineages were also associated with diet. Multiple

significant associations were detected and are cataloged in Tables

S3 and S4.

Relationships between archaea and nutrients were explored

using a Kruskall-Wallis test on the Permanova-selected nutrient

cluster measurements. As above, samples were separated into

archaea-negative, Methanobrevibacter-positive or Nitrososphaera-posi-

tive groups. A higher intake of carbohydrates was correlated with

Methanobrevibacter-positive samples. This trend was observed in

comparisons to both the long-term and short-term dietary data.

For the long-term diet, samples with Nitrososphaera or no archaea

were enriched for clusters representing vegetable fat and poly-

unsaturated fats. Samples with no archaea were enriched for a

cluster representing total fat and total mono-unsaturated fats in the

recent diet data (Figure 4).

Fungal and bacterial proportions were also scored versus usual

diet (Figure 5A) or recent diet (Figure 5B). Only diet categories

with at least one significant association are shown. As reported

previously, bacterial proportions were most strongly correlated

with components of the long term diet–Bacteriodes was more

abundant in individuals eating high levels of animal protein,

amino acids, and fats, while Prevotella was higher among those

eating higher proportions of carbohydrates. For fungi significant

correlations were observed only with the recent diet inventory,

differing from the observations with bacteria. In the recent diet

data, Candida was positively correlated with carbohydrates and

negatively with total saturated fatty acids. A trend in the same

direction was seen for Candida in the usual long-term diet, but it did

not achieve significance. Aspergillus was negatively correlated with

short chain fatty acids in the recent diet data. No trends were seen

with Saccharomyces. Thus, these data indicate that fungal abundance

is particularly strongly associated with the composition of recently

consumed foods.

Discussion

Here we investigated the relationships of diet and the fungi and

the archaea of the human intestinal microbiome. Previously we

reported, for this same set of samples, that patterns in the bacterial

part of the gut microbiome correlated with long-term diet. Here

we characterized the sample set by sequencing marker genes of the

archaeal rDNA 16S and the fungal ITS1 region. Many

interactions among microorganisms and nutrients were identified.

Methanobrevibacter and Candida were positively correlated with the

ingestion of carbohydrates. This was most notable in short-term

diet data for both groups, and in fact only achieved significance at

all for Candida in the short-term diet data. These data support

specific proposals for the interactions of members of the gut

microbiome with dietary components and with each other.

We detected no fewer than 62 fungal genera and 184 species

level OTUs, paralleling and extending a study of one subject,

which also yielded a high number of fungal lineages [35]. Which of

these lineages are true gut residents, and which are transients in

food is unknown. Six individuals had sequences belonging to genus

Agaricus, the white button mushroom, which is consumed as food.

This genus was among those filtered out of the analysis due to low

prevalence in the dataset, suggesting that fungal DNA in food may

be mostly degraded during digestion. However, we cannot exclude

the possibility that the high prevalence of Saccharomyces in the

fungal data is due to the ingestion of yeast-containing foods such as

bread and beer.

Nitrososphaera, which were encountered with unexpected fre-

quency in our data, are different enough from other archaeal

groups to be placed in their own phylum, the Thaumarchaeota.

Members of the Nitrososphaera genus are able to oxidize ammonia

and degrade urea, which presumably would also feed nitrogen into

the gut microbial community. Nitrososphaera may have been

previously underappreciated in microbiome studies due to its

low abundance. Here, it was detected in 16% of the samples

analyzed, though in low abundance, in a mutually exclusive

pattern with Methanobrevibacter. The basis of possible antagonism

between Methanobrevibacter and Nitrososphaera is unknown. Nitroso-

sphaera also showed a positive association with the ingestion of

proteins and amino acids, both for usual and recent diet. The

correlation was not sufficient to survive correction for multiple

comparisons, but may nevertheless indicate utilization of ammonia

and or urea to meet their energy and carbon requirements.

Alternatively, we cannot exclude the possibility that Nitrososphaera

was ingested with foods, possibly associated with meats.

Previously, interactions among microbial lineages of the gut

were proposed to separate human populations into ‘‘enterotypes’’,

leading to considerable controversy. Arumugam et al. [16]

described three interacting networks of microbial lineages,

centered on the presence of Prevotella, Bacteriodes, and Ruminococcus,

together with other interacting taxa. However, subsequent work

indicated that the most prominent feature of the data was an

inverse correlation between the Prevotella and Bacteroides genera

[41], [10]. Here we show a positive association of Methanobrevibacter

and Candida with the Prevotella group, and each of these was further

correlated with a diet high in carbohydrates. A negative

correlation of Methanobrevibacter and Bacteroides was also observed,

paralleling the original Arumugam et al. paper. However, we also

observed a strong positive relationship between Methanobrevibacter

and Ruminococccus, which were initially described to belong to

distinct enterotypes. Thus our findings associate archaea and fungi

with aspects of the enterotype concept.

The intergeneric relationships described here, together with the

nutrient correlations, support models for specific interactions

among microbes in the human gut. An example of syntrophism

has been previously described for Ruminococcus and methanogens,

where the methanogens consume H2, allowing Ruminococcus to

produce twice as many ATP molecules from the same amount of

substrate [43]. One possible syntrophic guild specified in our data

includes Candida, Prevotella, Ruminococcus and Methanobrevibacter

(Figure 6). Candida is able to degrade starches, especially after

pre-treatment with amylases [44] such as the human-encoded

amylases present in the mouth and small intestine. Thus, in one

model, Candida may assist in breaking down starch in carbohydrate

rich foods, which in turn liberates simpler sugars to be fermented

by bacteria such as Prevotella and Ruminococcus. Fermentation

byproducts produced would then be consumed by Methanobrevi-

bacter with the subsequent production of CO2 and/or CH4 [43].

Alternatively, Prevotella might degrade starch (pre-treated or not by

Correlations of Diet with the Gut Microbiome
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human alpha amylases) and mannan containing polysaccharides

from food to smaller poly- and monosaccharides [45]. Prevotella

would then take up the smaller mono and polysaccharides,

catabolizing them to produce succinate and other byproducts [46],

[47]. All such hydrolysis is extra cellular, which would provide

Candida with simpler sugars for fermentation (potentially down to

acetate). Ruminococcus might then consume the succinate produced

Figure 4. Archaea-Diet relationships. Heatmap of normalized average means for nutrient cluster measurements of the samples classified
according to the dominant archaeal genus. Usual diet (A) and recent diet (B) relationships considered significant are marked with asterisks as
described in Figure 2A.
doi:10.1371/journal.pone.0066019.g004
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by Prevotella and produce H2 or acetate2/H+ for consumption by

Methanobrevibacter [44], [48], [46].

In summary, the findings presented here provide a broader

picture of the human gut microbiome, integrating its full diversity

with human diet. The associations presented here, together with

other work [49], [41], [13], allow the proposal of specific

relationships between nutrition and microbial consortia within

the human gut.

Figure 5. Fungi-Diet relationships. Heatmap of Spearman correlations between nutrient clusters and the bacterial and fungal genera detected in
the dataset. Correlations which were considered significant using the Usual (A) and the Recent (B) diet data are marked with asterisks as in Figure 2A.
Domain membership is color-coded on the bottom.
doi:10.1371/journal.pone.0066019.g005
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Methods

In addition to the below, further information on methods can be

found in the Supplemental Information, Figures S1–S3, and

Tables S1–S10.

Ethics Statement
The Institutional Review Board of the University of Pennsylva-

nia approved all study protocols and all participants provided

written informed consent, or assent in the case of minors. Legal

guardians provided written informed consent for minors (protocol

#810009).

Samples
The samples described in [10] were used in this study. Bacterial

16S sequences data and diet data from [10] was used here. Briefly,

healthy volunteers were screened to be free from any chronic

gastrointestinal disease, cardiac disease, diabetes mellitus or

immunodeficiency diseases, to have a normal bowel frequency

(minimum once every 2 days, maximum 3 times per day), and

body mass index (BMI) between 18.5 and 35. Demographic data

was collect and analyzed as described previously for bacterial taxa

([10], Table S8). One stool sample was provided per subject and

kept frozen at 280oC until processed for DNA extraction [10].

16S rDNA Gene, ITS1 Region and AmoA Gene PCR
Pyrosequencing was carried out using barcoded composite

primers constructed as described in [50]. PCR reactions were

carried out in triplicate using the Accuprime system (Invitrogen,

Carlsbad, CA, USA). Each reaction contained 50 nanograms of

DNA and 10 picoMol of each primer. Archaeal specific 16S rDNA

primers and ITS1 fungal primers were adapted from the literature

and used to amplify a rDNA 16S fragment; the final PCR cycling

conditions were optimized to maximize specificity [51], [52], [38],

[40],(Tables S5 and S6).

A nested PCR using specific primers for the AmoA gene was

used to confirm the detection of Nitrosophaera sequences (Supple-

mental data. [53]). The nested PCR was performed to increase the

sensitivity of the assay and improve the detection in these samples.

Conventional PCR was not sufficiently sensitive to detect the 16S

gene efficiently. PCR reactions were carried out using Invitrogen

Accuprime. One mL of the total extracted DNA was used as

template for the initial PCR. The nested PCR used 1 mL of PCR1

as template (Table S6). Blank extractions were used to control for

environmental and reagent contamination. All PCR work was

carried out in a laminar flow hood and all consumables and

equipment were UV irradiated for a minimum of 30 minutes prior

to use.

Pyrosequencing
Amplified 16S rDNA and ITS1 fragments were purified using

1:1 volume of Agencourt AmPure XP beads (Beckman-Colter,

Brea, CA). The purified PCR products from the stool samples

were pooled in equal amounts prior to pyrosequencing using

Roche/454 Genome Sequencer Junior. DNA pools were separat-

ed by amplicon type. All samples were submitted for sequencing,

even control samples for which no visible amplicon was observed

in agarose gels. For such samples, 40 out 50 mL of the bead-

purified PCR product was pooled with the other samples for

sequencing.

Sequence Analysis
Sequences obtained were decoded and quality controlled using

the QIIME pipeline [54]. OUT’s were formed at 97% and 95%

similarity for archaeal and fungal sequences respectively, and were

considered for further analysis if they had a minimum of 5

sequences detected across all samples. Taxonomy was assigned to

OTU representative sequences using the RDPclassifier [55] for

archaeal sequences and BROCC [36] for fungal sequences. All

taxonomy assignments were manually curated to check for

accuracy and nomenclature using BLASTn against GenBank’s

NR/NT database. For Archaea, the taxonomic assignment given

by RDP to 2 out of the 12 archaeal OUT’s detected was corrected

due to low coverage of those groups on RDP. For ITS, of the 290

OUT’s detected, 10 were missing mid-level (between phylum and

genus) taxonomic information, which was filled in, and 5 yielded

differing mid level taxonomies, of which only one of per genus was

used. Two ITS OUT’s were automatically classified down to

genus using BROCC, but had their taxonomy assignment brought

up to Order level upon inspection of BLAST results (both OUT’s

were present in one sample each). OTU sequence counts for each

sample were aggregated at genus level. All downstream analysis

was done at the Genus level using R unless otherwise noted.

Genera were considered in the analysis if present in at least 9 out

of the 96 available samples, and its absolute sequence count was

equal to or greater than 10. For the ITS amplicon, samples were

included in downstream analysis if they yielded at least 200

sequences. All novel sequence data was deposited at NCBI’s

Sequence Read Archive under accession number SRP021021.

Beta Diversity
Taxonomic information was used to obtain the Taxonomic

Distance between each genus using the R package Ade4, version

1.5 [56], [57]. The taxonomic distance matrix was used as input to

calculate Unifrac distances using the R package GUniFrac, version

1.0 [42].

Inter-generic Relationships
Effects of bacteria on fungi, effects of the fungi on bacteria, and

effects of archaea on bacteria and fungi were investigated using a

Figure 6. Possible syntrophic relationships in the human gut
consistent with data reported in this study.
doi:10.1371/journal.pone.0066019.g006
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Permanova test. Simulations of the effects of unequal variance in

the different data sets compared indicated that differential

variance was not a major confounder (Text S1). Within sample

genus proportions were used to calculate Spearman correlations

between bacterial genera and fungal genera. As only one or very

few archaeal genera were detected in any sample, sequence

proportions would be greatly skewed, invalidating any potential

correlation results. Instead, samples were classified according to

the archaea genera detected and bacterial and fungal proportions

were used on as input for Kruskall-Wallis tests. P-values were

considered significant using a FDR of 25%.

Co-occurrence
The Dice index [58] was used to determine the co-occurrence of

genera across the entire dataset. Genera were considered present

in a sample if its sequence proportion was at least 0.01.

Diet Analysis
Dietary information from [10] was used in this analysis. Usual

diet was obtained using the Willett food frequency questionnaire

[59]. Recent diet was obtained from 3 interviews recalling all

consumed food on 3 days within the week preceding the sample

acquisition (NHANES method, [60]). All interviews were carried

out by trained nutritionists. Nutrient measurements across

individuals obtained from the dietary questionnaires were used

in a clustering procedure to reduce the number of comparisons to

be made. First, Spearman correlations were calculated pairwise for

all nutrient variables available and this correlation matrix was used

as input in a clustering analysis, and 20 clusters (approximately

10% of the total number of nutrients available) were selected.

Nutrients within each cluster were submitted to a Principal

Component Analysis and the first principal component values

were extracted and used as a surrogate dietary measurement

(Nutrient Cluster Measurement). These nutrient cluster measure-

ments were used in a Permanova analysis together with the

taxonomy based, weighted and unweighted Unifrac distances

calculated using the R packages Ade4 and GUniFrac. Clusters

which were significant in the Permanova analysis were further

used to calculate Spearman rank correlations using the proportion

for each bacterial and fungal genus across all samples. The

Nutrient Cluster Measurements for each sample were also

classified according to their archaeal status and then submitted

to a Kruskall-Wallis test to determine archaea/diet relationships.

P-values with a False Discovery Rate of 25% or less were

considered significant.

Supporting Information

Figure S1 The Fungal phyla detected are shown as sequence

proportions within each sample (A). A Spearman rank correlation

for the proportions of Ascomycota versus Basidiomycota across the

samples was 0.7456. Care should be taken when interpreting this

correlation as the proportional nature of sequencing data naturally

yields inverse correlations. The prevalence of each fungal genera

detected across all samples is depicted in (B). Genera are grouped

by their phylum affiliation and only genera sequences that could

be assigned to the genus level are shown.

(TIF)

Figure S2 Heatmap with all Fungal genera detected in
the stool sample set used, and blank extraction controls.
Colors indicate relative proportion within each sample.

(TIF)

Figure S3 Number of Fungal and Bacterial genera per
sample. Samples were classified as Methanobrevibacter positive,

Nitrososphaera positive, or Archaea negative. Difference between

groups was tested using a Kruskal-Wallis test, followed by a post

hoc Dunn’s multiple comparison test. Asterisks indicate significant

comparisons (p,0.001).

(TIF)

Table S1 Permanova of Archaea effects on the Bacterial
and Fungal parts of the microbiome.

(XLSX)

Table S2 Permanova of Fungal Phyla with Bacteria.

(XLSX)

Table S3 Permanova analysis of the association be-
tween usual dietary groups and bacterial, fungal, and
archaeal lineages.

(XLSX)

Table S4 Permanova analysis of the association be-
tween recent dietary groups and bacterial, fungal, and
archaeal lineages.

(XLSX)

Table S5 Primers used in this study.

(XLSX)

Table S6 PCR amplification conditions used in this
study.

(XLSX)

Table S7 Number of reads for each genus, in each
sample analyzed.

(XLSX)

Table S8 Permanova analysis of the association be-
tween demographic factors and bacterial, fungal, and
archaeal lineages.

(XLSX)

Table S9 Co-occurring genera according to the calcu-
lated Dice index.

(XLSX)

Table S10 Positively co-varying genera. Archaeal covari-

ation represents the positive relationship detected in Figure 3A.

Fungi/Bacterial relationships are the same as the positive

relationships represented in Figure 3B.

(XLSX)

Text S1 Supporting information text.

(DOCX)
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