
Characterizing Genes with Distinct Methylation Patterns
in the Context of Protein-Protein Interaction Network:
Application to Human Brain Tissues
Yongsheng Li., Juan Xu., Hong Chen., Zheng Zhao, Shengli Li, Jing Bai, Aiwei Wu, Chunjie Jiang,

Yuan Wang, Bin Su, Xia Li*

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China

Abstract

Background: DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how
genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a
mystery.

Results: In the present study, we systematically dissected the characterization of genes with different methylation patterns
in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological
centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely
the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN
are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the
network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in
functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as
binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential
genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-
classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complemen-
tation was revealed between methylation and miRNA regulation in the human genome.

Conclusions: We have elucidated the assembling principles of genes with different methylation levels in the context of the
PPIN, providing key insights into the complex epigenetic regulation mechanisms.
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Introduction

The postreplication addition of methyl groups to the 5-position

of cytosine in certain CpG dinucleotides is one of the most widely

investigated DNA modifications in mammals. Genetic studies have

established that this epigenetic modification is required for

embryonic development [1], genomic imprinting [2] and X-

chromosome inactivation [3], and aberrant alterations in DNA

methylation are linked to many human diseases, including cancers

[4]. Even though the methylation level of a gene is intimately

linked to its biological function, our understanding of this

relationship is still coarse, fragmented and incomplete, especially

in the context of protein-protein interaction network (PPIN).

Although the abundance of CpG dinucleotides in human DNA

is much lower than that expected based on the GC content, the

resulting dearth of CpGs is not uniformly distributed in the

genome. Saxonov et al. were the firstly to investigate the genome-

wide pattern of CpGs over the human genome, uncover their

existence, and categorize the two classes of genes based on their

CpG content [5]. Approximately 70% of human genes have high

CpG content, whereas the remaining genes tend to be depleted of

CpGs. Moreover, by systematically determining the methylation

status of 15,609 high confidence genes, Weber et al. found that

besides two distinct populations with high and low CpG

frequency, a substantial overlap corresponding to genes with

intermediate CpG frequency were also noted in both the

populations. Based on this observation, the genes were further

divided into three classes (HCPs, ICPs and LCPs) [6]. Indeed, the

methylation pattern of genes in mammalian genomes exhibits

substantial variations. For example, in the human genome, the

CpG ratio of genes varies ,120-fold. Recent evidences suggest a

dependence of DNA methylation on local sequence content, and
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the CpG ratio has been widely used to measure the level of DNA

methylation on an evolutionary time scale [7,8]. These findings

give us a hint that DNA methylation is primarily a function of

promoter CpG content, which results in a constitutive hypo- or

hypermethylated state. More recently, the generation of genome-

wide DNA methylome has greatly enhanced our ability to

examine the methylome and systematically dissect the methylation

patterns of genes [9,10]. Distinct patterns of methylation have

been observed for genes located on different genomic regions [11].

In addition, several studies have revealed that the DNA

methylation levels across samples also showed a bimodal

distribution, indicating that a high proportion of genes examined

were infrequently methylated, whereas a smaller proportion were

highly methylated, a trend which is consistent with the results

obtained in the sequence analyses [6,9,12–14]. Collectively, these

findings indicate the existence of functionally relevant variations of

methylation levels. By investigating the consequences of certain

methylation variations, we can gain additional insights into the

mechanisms and regulatory complexities of gene expression.

Recently, more and more studies are focusing on investigating

the relationship between DNA methylation levels and the

expression or functions of associated genes, since the seminal

work by Saxonov et al. Broadly considered, house-keeping

functions are significantly overrepresented in the low methylated

genes (LMGs), whereas specific functions characteristic of more

differentiated or highly regulated cells are significantly overrepre-

sented in the high methylated genes (HMGs) [5]. In addition,

through combined analyses of the expression levels of an extensive

set of genes in 79 different tissues [15], it has been observed that

genes expressed in all or almost all of the tissues are biased toward

the LMG class. However, most of the previous studies have mainly

focused on individual genes’ behaviours, and only limited studies

have investigated the functional biases of these genes at a system

level. Cellular systems use sophisticated communication between

genes in order to initiate and maintain basic cellular functions such

as growth, survival, proliferation and development [16,17]. To

understand the mechanisms underlying the complex biological

processes, we need not only to know the components that

constitute the biological system, but also the ways in which they

interact with each other [18]. Protein-protein interactions are the

building blocks of biological processes [19], but the roles of

methylation regulation in the network remain unclear. Given that

proteins are subject to variable modes of methylation regulation,

we considered the assembling patterns among them in the context

of the PPIN. A systematic dissection of how these genes are

assembled in the network can provide new insights into the

complex epigenetic regulation mechanisms underlying biological

systems as well as complex phenotypes.

Results

Topological Features in Relation to DNA Methylation
To better understand the DNA methylation patterns in the

context of PPIN, we first leveraged legacy genomic methylation

profiles from four brain regions, investigating the methylome and

transcriptome of 150 individuals [12]. There were 14,235 genes

examined for both methylation and expression. For each gene, the

level of DNA methylation is defined as a beta-value ranging from 0

to 1, with the value close to 0 indicating low levels of DNA

methylation and the value close to 1 indicating high levels [20]. In

total, 7891 of these genes were included in PPIN. In addition,

CpG ratio is another measure of the level of DNA methylation on

an evolutionary timescale, and hypermethylated genomic regions

would have lower ratios, while regions that undergo low DNA

methylation would maintain high ratios. Among the 14,300 genes

with CpG ratios available, 7368 genes were included in the PPIN.

Furthermore, in the following analyses we focused on those genes

included in the PPIN, and both beta-values and CpG ratios of

genes were used to further analyze the relationship between

topological features and DNA methylation.

Similar to previous studies [21–23], the methylation levels of

genes in human brain tissues also showed a bimodal distribution

(Figure S1). Therefore, the genes were first classified into five bins

(step by 0.2) according to their methylation levels in the brain

tissues, and then the degree of differences among these gene

groups was analyzed using ANOVA. As shown in Figure 1a, genes

with different methylation levels (beta-values) had significant

deviation in degree (p-value = 3.02e-7). Furthermore, the gene

group with lowest methylation had the highest average degree,

indicating their important roles in the PPIN. Next, we globally

perturbed the methylation levels of all genes and preserved their

interactions, and divided the genes into five bins as described

earlier. This procedure was repeated 10,000 times. As expected,

after perturbation, there was no significant change in the degree

with increasing methylation levels. In addition, we also analyzed

the relationships between methylation levels and another two

topological features, betweenness centrality and closeness central-

ity. We found that with an increasing methylation level, the

average betweenness and closeness centrality significantly de-

creased (Figure 1b and 1c, both p-values ,0.001). Moreover, on

analyzing the relationships between CpG ratio and three

topological centrality measures, we obtained similar results

(Figure 1d-f, p-values ,0.001).

Based on these results, we found that there exists a potential

biological association between the DNA methylation levels of

genes and their topological features in the PPIN. To further

analyze their assembling patterns in the PPIN, we particularly

focused on two classes of genes: LMGs, consisting of genes with

beta-values less than 0.2 and CpG ratio greater than 0.8, and

HMGs, including genes with beta-values greater than 0.8 and

CpG ratio less than 0.2. As the beta-value and CpG ratio measure

the methylation levels of gene from two different aspects, this

partitioning allowed us to obtain relatively more pure HMGs and

LMGs and dissect more reliable assembling patterns. Finally, we

allocated 1727 genes to the LMG class and 247 genes to the HMG

class.

LMGs are Centrally Located in the PPIN
As discussed earlier, DNA methylation levels and topological

features have an inverse association. Hence, we analyzed the

differences in topological features of these two gene groups. A

summary of these analysis results is presented in Table 1. As shown

in the table, LMGs tend to interact with more genes than HMGs

and have a higher betweenness centrality. The average degree of

LMGs was found to be 9.969, which is significantly higher than

that of HMGs, even significantly higher than the average degree of

the whole PPIN. Moreover, the average betweenness of LMGs

was found to be about twice that of HMGs. These results indicate

that many of the LMGs are network hubs and bottlenecks, whose

values are ranked top 10% of the whole gene list; moreover, we

found that the LMGs are indeed overrepresented in the top genes

with high number of interactions (hubs), while the HMGs are

underrepresented (Figure 2a). For example, SMAD3, one of the

LMGs, is both a hub and bottleneck in the PPIN (degree = 178,

betweenness = 1.81e6), and SMAD protein is well known as a

signal transducer and transcriptional modulator, and functions as

a transcriptional modulator activated by transforming growth

factor-beta [24,25]. Thus, it is thought to play a key role in the
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regulation of carcinogenesis. In the present study, we found that

this gene has a low methylation level (beta-value = 0.007,

R= 0.9037) and a high expression level (expression intensity

values = 1024), indicating that this gene also plays important roles

in the normal brain tissues.

Detection of the difference in the topological features between

LMGs and HMGs could suggest a difference in the functional

complexity. Both hubs and bottlenecks are known to represent

important nodes in biological networks, whose changes may

consequently influence a large number of interacting genes.

Functional aberration of these genes may cause large-scale

deleterious effects on the PPIN. Thus, we first used an in silico

strategy that simulated the effect of specifically removing

(attacking) genes in the PPIN on the characteristic path length of

the main component of the network [26]. In fact, separately

removal of the LMGs and HMGs from the original network has

distinct effects on the overall network integrity. Moreover,

successive attacks against LMGs starting from the most connected

genes have a more deleterious effect on the network integrity than

the removal of random proteins (Figure 2b). Conversely, removal

of HMGs does not affect connectivity and thus has deleterious

effects similar to the removal of random genes. The number of

components and size of maximum component measure the

integrity of a network from another two aspects. We found that

the number of components after removal of LMGs was

significantly greater than that after removal of HMGs (Figure 2c).

However, the main component remaining after removing the

LMGs was significantly smaller than that remaining after the

removal of HMGs (Figure 2d).

Collectively, these results show that LMGs and HMGs have

markedly different global properties in the PPIN. The LMGs tend

to be hubs and bottlenecks in the network, indicating that they are

centrally located in the PPIN, and play important roles in

biological processes. In contrast, the HMGs are located in the

periphery of the network. Thus, attacking LMGs may cause a

more deleterious effect on the network integrity than attacking

HMGs.

Modular Organization of LMGs and HMGs in the PPIN
The complex functions of a living cell are carried out through

the concerted activity of many genes. This activity is often

coordinated by the organization of the genome into modules,

which have been shown to share common functions [27].

Therefore, we analyzed the modular and community structure

of these two classes of genes. After mapping these two classes of

genes to the PPIN, we constructed two subnetworks of LMGs and

HMGs, named as LMN and HMN, respectively (Figure 3a and

3b). As shown in Figure 3a, the maximum component of LMN

consisted of 2141 interactions between 1114 genes. To evaluate

whether genes in each class are significantly connected to each

Figure 1. The relationship betweenmethylation levels and topological features of genes. The genes were divided into five bins according
to their methylation levels, and then the average DNA methylation levels and the average topological features were computed. The blue lines
represent the distribution of topological features while the grey lines represent the average methylation levels of the genes in each bin. The genes’
methylation levels in (a)–(c) were measured by methylation microarray, while the methylation levels in (d)–(f) were measured by CpG ratios on an
evolutionary timescale.
doi:10.1371/journal.pone.0065871.g001
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other, we randomly chose the same number of genes as LMGs and

then obtained the maximum component of these genes. We found

that none of these randomized subnetwork was denser than the

real one (Figure 3c and 3d, p-value,1.0e-4). However, the

maximum component of the HMG subnetwork only had eight

genes connected by eight edges (Figure 3b), which is significantly

smaller than random conditions (Figure 3e and 3f). As genes may

either form certain complexes or express specific biological

functions with their interacting partner genes [28], we also

specified an extended subnetwork, denoted as HMN1, consisting

of all HMGs and their interacting genes for further analysis. As

expected, genes in the HMN1 were more densely connected than

random conditions. Collectively, the above-mentioned discussion

shows that the LMGs are connected to each other densely in the

PPIN, indicating that they may form certain modules to express

specific functions; however, the HMGs are connected with the aid

of interacting partners.

Subsequently, we further used three common metrics to

measure the modularity of a subnetwork (see Methods section),

and found that the LMN showed significantly higher network

Figure 2. LMGs are central to network topology. (a) The percentage of LMGs and HMGs in the hubs. Genes are ranked by the degree in the
PPIN and hubs are defined as the top-ranked genes. (b) The effects on the characteristic path length of the network on gradual node removal.
Random removal of nodes is represented by gray lines; dark gray line represents the random removal of HMGs, while light gray line represents
random removal of LMGs. Attacks against LMGs are denoted by the green line and those against HMGs are represented by the red line. (c) The
number of components remaining after removing the LMGs, HMGs, and random genes. (d) The sizes of the largest remaining component after
removing LMGs, HMGs and random genes.
doi:10.1371/journal.pone.0065871.g002

Table 1. Comparisons of topological features of LMGs and
HMGs.

HPRD LMGs HMGs
Rank sum
test

MeanStd MeanStd MeanStd p-values

Degree 7.945 14.583 9.969 17.112 5.450 6.946 1.447e-5

Betweenness (*104) 2.914 12.221 3.897 14.671 1.303 2.823 5.0e-8

Closeness 0.241 0.031 0.248 0.030 0.231 0.030 7.06e-15

doi:10.1371/journal.pone.0065871.t001
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modularity than that expected in random conditions (Table 2).

The characteristic path lengths between the LMGs were

significantly shorter (Figure 4a, 3.976 on average, p-value,0.001),

implying that the LMGs are closer to each other. In addition, the

LMN also exhibited significantly higher in-degree ratio and

density. However, the characteristic path lengths between HMGs

were significantly longer than random conditions (Figure 4a). The

average ratio of in-degree of HMGs was only 0.032, implying that

the proteins with high methylation levels may not always form a

module. Conversely, the HMN1 exhibited significant modular

features (Table 2). These analyses indicate that LMGs express

their function in a modular pattern, and although genes with

higher methylation levels might not form a network module by

themselves, they are formed with the aid of their interacting

partners to show significantly higher modularity.

Additionally, to estimate if the LMGs still tend to be within the

same densely connected modules detected in the original PPIN, we

used the CFinder tool to identify modules from the whole PPIN.

Here, a module was defined as a clique, which is a complete

subgraph such that an edge is realized from every vertex to all

others [29]. A module was regarded as an LMG/HMG module if

more than half of its members were LMGs/HMGs. This

definition reflects that the LMGs/HMGs may have dominant

functions in the module. Subsequently, we counted the number of

modules for the LMGs and HMGs respectively. As shown in

Figure 4b, with the increase in the minimum number of genes in

modules (k), a sharp decrease occurred in the number of HMG-

involved modules, indicating that the HMGs do not tend to be

assembled in the same modules. In contrast, the LMGs were found

to participate in more modules, even some big ones. As discussed

Figure 3. The LMG and HMG networks. (a) A PPIN connected by LMGs (LMN). (b) The protein interaction network is extracted from the PPIN
which is connected by HMGs (HMN). (c) The number of vertexes of LMN is significantly larger than that of random networks (p-value,1.0e-4). (d) The
number of edges of LMN is significantly larger than that of random networks (p-value,1.0e-4). (e) The number of vertexes of HMN is similar to
random networks (p-value= 0.465). (f) The number of edges of HMN is similar to random networks (p-value = 0.383).
doi:10.1371/journal.pone.0065871.g003
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earlier, the LMGs implement functions as modules and are located

in close proximity. Therefore, we carried out a detailed

investigation of the modules from the LMN. In total, 327 modules

were detected. As the modules were highly overlapped with each

other, we further identified 13 distinct communities ranging in size

from 4 to 23 when k= 4. Figure 4c–h show six communities with

more than six genes. Next, we explored to observe if these

communities are specifically enriched in certain cellular functions.

Interestingly, the most significant relative functions of the

maximum community (Figure 4d) are the functional categories

related to regulation, signal transduction, and development,

indicating that they play global important roles, which is in

agreement with our above-mentioned analyses. In particular, the

GRB2 gene of this community was found to have 192 interacting

partners in the PPIN, indicating its key role in biological processes.

Evidences have shown that GRB2 forms a complex with activated

Figure 4. LMGs resemble functional modules in the PPIN. (a) Comparison of the average lengths of shortest paths among LMGs, HMGs, and
random genes in the human protein interaction network from HPRD database. The distance between random LMGs or HMGs is fitted. (b) Number of
cliques with the percentage of interesting genes greater than 0.5 at different k-values. (c)–(h) Examples of LMGs communities. Genes that have been
analyzed in detail are marked with red stars.
doi:10.1371/journal.pone.0065871.g004

Table 2. Summary of modular properties of LMGs and HMGs.

HPRD LMG network H0 network H1 network

Mean Mean p-value Mean p-value Mean p-value

In-degree ratio N/A 0.146 ,0.001 0.032 ,0.001 0.261 ,0.001

Density 8.77e-4 0.002 ,0.001 0.001 0.046 0.007 ,0.001

Characteristic path length 4.227 3.976 ,0.001 4.509 1 3.769 ,0.001

doi:10.1371/journal.pone.0065871.t002
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EGFR and the RAS-specific guanine nucleotide exchange factor

SOS1, thereby mediating the growth factor-induced activation of

RAS [30,31]. Surprisingly, we found that these three genes are all

grouped into the LMGs, implying that genes with similar functions

may have similar methylation levels. Moreover, we found the

second largest community that includes many members of the

SMAD family, but none of the genes in this family were noted to be

HMGs, implying that not only functionally similar genes tend to

be co-methylated, genes in a family are also co-methylated with

each other. Indeed, the average co-methylation levels of these two

communities were found to be 0.7627 and 0.6481, respectively,

which are significantly higher than random communities (p-

values,1.0e-4); this co-methylation may imply that the genes

coordinate to express their similar biological functions.

Interaction Preferences of LMGs and HMGs
To understand how genes with different methylation patterns

assembled within the PPIN, we analyzed the interaction prefer-

ences of these two classes of genes. For this purpose, we defined

interaction preference index to find out significantly over- or

underrepresented interaction patterns (see details in Methods

section). Consistent with our above-mentioned results, there was a

significantly high density of interactions among LMGs and

HMGs, implying that the intra-class communications were

enhanced (Figure 5a, p-values,0.001). However, the interaction

density between the LMGs and HMGs appeared to be extremely

low. The actual number of interactions between LMGs and

HMGs was 216, while in random networks these two classes of

genes were averagely connected by 322.87 edges, implying that

the interactions among LMGs and HMGs are significantly

repressed (Figure 5b, p-values,0.001). According to the above-

mentioned discussions and special interaction preferences between

and within the two classes of genes, we obtained the communi-

cation patterns between the genes with different methylation levels

in the context of PPIN. As the LMGs are centrally located in the

PPIN, they tend to express their biological functions in a modular

pattern. On the other hand, as the HMGs are located in the

periphery of the PPIN, they have relatively lower modularity. The

communications between intra-class genes were both enhanced;

however, the LMGs, with the help of other genes (e.g.,

intermediate methylated genes (IMGs)), were found to communi-

cate with the HMGs. These observations suggest that genes with

similar methylation levels tend to interact with each other, while

those with considerable difference in the methylation levels tend to

avoid interactions. Indeed, in one of our recent studies, we found

that physically interacting gene pairs have a similar methylated

pattern; i.e., they have higher co-methylation level than random

pairs. Therefore, systematic dissection of the assembling pattern of

genes with differential methylation levels may provide new insights

into the complex regulatory mechanisms.

Differences in Expression and Functions between the
LMGs and HMGs
It has been reported that DNA methylation has different

propensities to regulation messages in different biological processes

or functional categories. For example, in animals, genes expressed

in more tissues are biased to be low methylated while genes that

are expressed in only a small number of tissues tend to be high

methylated [5]. Indeed, we found that the expression patterns

between LMGs and HMGs are significantly different (p-

value = 3.87e-68, Kolmogorov-Smirnov test), and that the most

of the LMGs are highly expressed genes (Figure 6a), implying their

key roles in brain tissues. Subsequently, we explored if these two

groups of genes express different functions in biological systems.

According to the above-mentioned analyses, the LMGs tend to be

hubs and bottlenecks in the PPIN, playing important roles in

maintaining the stability of the network. As expected, the LMGs

are overrepresented in the basic biological functions, such as

binding activity and regulation of transcription, while the HMGs

are overrepresented in sophisticated functions categories, such as

‘‘chemotaxis,’’ ‘‘inflammatory response,’’ and ‘‘immune response’’

(Table 3).

In addition, several genes are known to be a typical class of

genes that play specific roles in cellular systems; it is interesting to

examine the DNA methylation pattern of these genes, which may

provide new insights into understanding the mechanism of

complex diseases. Cancer is a common complex disease, and

many genes have been reported as involved in the development of

cancer. Aberrant methylation of CpG islands in promoter regions

is known to be involved in multiple types of cancers. First, we

explored the methylation patterns of known cancer genes. As

expected, we found that cancer genes are significantly over-

represented in the LMGs (Figure 6b, p-value = 0.0045, Fisher’s

exact test), indicating that cancer genes tend to have low

methylation levels, which is consistent with a recent study [12].

Hypermethylation is one of the major epigenetic modifications

that repress transcription via promoter regions of tumor suppres-

sor genes [32,33]. We subsequently compared the DNA methyl-

ation patterns in two major classes of cancer genes: dominant and

recessive cancer genes [34]. After excluding four genes with

ambiguous classification in the database, among the 470 cancer

genes, there were 365 dominant cancer genes and 105 recessive

cancer genes. Interestingly, the dominant cancer genes were found

to be slightly overrepresented in the LMG class (p-value = 0.0327,

Fisher’s exact test), but no recessive cancer gene was observed in

the HMG class, indicating that recessive genes tend to avoid

methylation in normal tissues. Biologically, this finding is

reasonable. As evidences have shown that recessive genes are

frequently hypermethylated in cancers, their low methylation level

in normal states promises a wider range to change in cancers.

Furthermore, through selective aberrant methylation of the

LMGs, which are hubs and bottleneck proteins, cancer may

regulate the PPIN in a wider scope, and attacking these genes has

more deleterious effects on the stability of cellular systems.

Essential genes are another class of functionally important

genes, which have been comprehensively analyzed previously.

When we compared the distribution of essential genes in the two

classes of genes with different methylation levels, we found that

essential genes were significantly overrepresented in the LMGs

than HMGs, indicating that essential genes also tend to have low

methylation levels in normal tissues (p-value = 0.0068, Fisher’s

exact test). Aging is another complex process in addition to genetic

diseases controlled by both genetic and epigenetic factors. As aging

is one of the important factors to induce diseases, investigation of

the methylation pattern of aging genes is helpful to understand the

nature of diseases [14,35,36]. As expected, the aging genes were

also found to be over-represented in the LMG class (p-

value = 0.0316, Fisher’s exact test), indicating that aging genes

tend to have lower methylation levels. Previous studies have shown

that aging genes have higher degree and betweenness in the PPIN,

which is in accordance with the characteristic of the LMG class

[37].

Functional Complementation between Methylation and
microRNA Regulation
DNA methylation in the 59-promoter regions of the genes and

miRNA regulation at the 39-untranslated regions are two major

epigenetic regulation mechanisms. Both these regulations can

Characterization of Distinct Methylated Genes
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affect the gene expression and their corresponding protein

products. However, limited studies have investigated the relation-

ship between DNA methylation and miRNA regulation [8].

Unexpectedly, when comparing the miRNA regulation patterns of

LMGs and HMGs, we found that LMGs tend to be regulated by

miRNAs (Figure 6c, p-values,0.001, Fisher’s exact test). About

93.69% of LMGs were predicted to be target genes of miRNAs,

which is about 1.3-fold higher than that of HMGs (p-value,1.0e-

32, Fisher’s exact test). We found that the trend is clearer in the

‘‘experiment validated target set’’ than in the ‘‘predicted target

set’’ (the ratio was about twice the value, p-value = 3.03e-4,

Fisher’s exact test). Most importantly, when focusing on the

miRNA key targets which were manually retrieved from more

than 3,000 literatures [38], 30% of these key targets were observed

to be LMGs, whereas only 1.64% of the key targets were

represented in the HMG class. Moreover, in the LMG class, it was

found that the genes’ 39-UTR tend to include more miRNA target

sites than the HMGs, implying higher miRNA regulatory

complexity of these genes (Figure 6d, p-value,1.0e-32, Kolmo-

gorov-Smirnov test). In other words, the genes under stronger

promoter DNA methylation control tend to avoid miRNA

regulation, and vice versa, indicating functional complementation

between transcriptional methylation regulation and posttranscrip-

tional miRNA regulation in the human genome.

Robustness of the Organizational Principles of Genes
with Distinct Methylation Patterns
The use of large-scale protein-protein interaction and DNA

methylation data as the basis of the present study proved to be

useful for gaining biological knowledge. Although these datasets

are far from being complete and may contain some noises, it is

unlikely that the incompleteness or noise can totally distort the

obtained results. All the information in Human Protein Reference

Database (HPRD) had been manually extracted from the

literature by expert biologists who read, interpret and analyze

the published data. Thus, the overall signal inferred from our

analyses is strong enough to reflect real biology. In addition, we

also analyzed the organizational patterns in the context of another

two PPINs-one being the integrated PPIN from a total of 21

different databases [39] and the other being predicted based on

protein structures [40], and found that the results obtained in our

analyses are robust (see detailed results in Text S1).

Similar to previous studies on other tissues, the current study

revealed that the genes’ methylation level in the human brain

tissues also follows a bimodal distribution. In the above-mentioned

analyses, to obtain more pure LMGs and HMGs, we had used the

commonly employed threshold (0.2/0.8) to define the two classes

of genes, which may bring about some false negatives. By relaxing

the definitions of LMGs and HMGs, we also used another

threshold (0.3/0.7) that had been employed in some studies to

define the LMGs and HMGs [41,42]. As a result, we found most

of the results remaining stable (see details in Text S2), further

mirroring the actual assembling patterns of genes with different

methylation levels in the context of the PPIN.

Discussion

Our study revealed a negative correlation between topological

centralities and DNA methylation regulations in the brain tissues.

That is, for proteins centrally located in the PPIN, the

corresponding genes avoid to be regulated by DNA methylation.

By focusing on two main classes of genes with considerably

different methylation levels in the brain tissues, we elucidated the

assembling principles of genes with different methylation levels in

the context of PPIN. The LMGs are centrally located in the PPIN

and have higher expression levels than the HMGs, and express

their functions in a modular pattern. In contrast, the HMGs are

located in the periphery of the PPIN and form functional modules

with the aid of their interacting partners. Furthermore, genes with

similar methylation levels tend to interact with each other, while

those with considerable difference in methylation levels tend to

avoid interactions.

By further analyzing the function and expression of these two

classes of genes, it was found that most of the LMGs are highly

Figure 5. Interaction preferences of LMGs and HMGs. (a) The number of interactions within LMGs is significantly higher than that of degree-
conserved random networks (p-value,0.001). (b) The number of interactions between LMGs and HMGs is significantly lower than that of degree-
conserved random networks (p-value,0.001). The procedure to generate the random networks is described in Materials and Methods section.
doi:10.1371/journal.pone.0065871.g005
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expressed genes and tend to be functionally important genes, such

as cancer genes, essential genes, and aging genes. Many previous

exploratory studies have been carried out to understand how DNA

methylation and miRNA regulate the expression of their target

genes; however, most of them have focused on the effect of each

mechanism on the expression of target genes. Most interestingly,

we found that the LMGs tend to be further regulated by miRNAs,

implying functional complementation between transcriptional

methylation regulation and posttranscriptional miRNA regulation

in the human genome. As shown in Figure 6e and 6f, some LMGs

in these two communities were observed to be under strict miRNA

regulations. For example, theMET gene was found to be regulated

Figure 6. LMGs and HMGs are significantly different in expression pattern, functions and miRNA regulations. (a) The cumulative
distribution functions of gene expression for LMGs (green) and HMGs (red). (b) Comparison of the percentage of cancer genes. Cancer genes are
further divided into dominant and recessive cancer genes according to the annotations of cancer gene census. (c) Comparison of the percentage of
miRNA targets. The experimentally validated target genes have been retrieved from four manually curated databases, while the predicted miRNA
targets have been collected from TargetScan and further divided into three types of targets. (d) The cumulative distribution functions of the number
of miRNA target sites in LMGs (green) or HMGs (red). The maximum distance between these two distributions and the probabilities are computed by
the Kolmogorov-Smirnov (K-S) test. (e) and (f) Two LMG communities that are regulated by miRNAs. The red diamonds represent miRNAs, while the
green circles represent LMGs (The red stars above the bars indicate the significant levels, **p,0.01, *p,0.05).
doi:10.1371/journal.pone.0065871.g006

Table 3. Distributions of top 15 GO terms for the LMG and the HMG classes.

GO code GO term description Appearances P-value

LMGs HMGs

Over-represented in class LMG

GO:0005634 (CC) nucleus 0.511 0.190 ,1.0e-32

GO:0005737 (CC) cytoplasm 0.479 0.247 7.26e-12

GO:0005515 (MF) protein binding 0.524 0.304 9.20e-11

GO:0005654 (CC) nucleoplasm 0.131 0.036 1.67e-5

GO:0005730 (CC) nucleolus 0.155 0.053 1.74e-5

GO:0000166 (MF) nucleotide binding 0.200 0.089 2.67e-5

GO:0003677 (MF) DNA binding 0.145 0.049 2.85e-5

GO:0005829 (CC) cytosol 0.228 0.113 3.86e-5

GO:0006355 (BP) regulation of transcription, DNA-dependent 0.130 0.049 2.37e-4

GO:0005524 (MF) ATP binding 0.146 0.073 1.78e-3

GO:0010467 (BP) gene expression 0.077 0.024 2.45e-3

GO:0006915 (BP) apoptotic process 0.071 0.020 2.53e-3

GO:0003700 (MF) sequence-specific DNA binding transcription factor activity 0.102 0.045 3.98e-3

GO:0000122 (BP) negative regulation of transcription from RNA polymerase II promoter 0.064 0.024 1.28e-2

GO:0045892 (BP) negative regulation of transcription, DNA-dependent 0.054 0.020 2.30e-2

Over-represented in class HMG

GO:0006935 (BP) chemotaxis 0.003 0.061 ,1.0e-32

GO:0009897 (CC) external side of plasma membrane 0.005 0.069 ,1.0e-32

GO:0006954 (BP) inflammatory response 0.011 0.109 ,1.0e-32

GO:0006955 (BP) immune response 0.011 0.130 ,1.0e-32

GO:0005615 (CC) extracellular space 0.031 0.247 ,1.0e-32

GO:0005576 (CC) extracellular region 0.054 0.360 ,1.0e-32

GO:0007267 (BP) cell-cell signaling 0.013 0.093 7.55e-15

GO:0005887 (CC) integral to plasma membrane 0.042 0.146 1.74e-11

GO:0007601 (BP) visual perception 0.005 0.040 2.94e-8

GO:0007166 (BP) cell surface receptor signaling pathway 0.010 0.057 3.06e-8

GO:0004872 (MF) receptor activity 0.058 0.146 3.42e-7

GO:0008544 (BP) epidermis development 0.003 0.032 4.08e-7

GO:0005102 (MF) receptor binding 0.012 0.057 7.08e-7

GO:0005529 (MF) sugar binding 0.005 0.036 1.37e-6

GO:0004888 (MF) transmembrane signaling receptor activity 0.003 0.028 1.49e-6

P values were calculated by using the chi-square statistic. Only top 15 terms significant at the 0.05 level are presented. Parenthesized markings stand for the three major
sub-ontologies comprising GO: CC for ‘‘cellular component,’’ BP for ‘‘biological process,’’ and MF for ‘‘molecular function’’.
doi:10.1371/journal.pone.0065871.t003
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by 11 miRNAs in the experiment validated target set and has been

shown to be the key target of four miRNAs (hsa-miR-1, hsa-miR-

206, hsa-miR-23b and hsa-miR-34a). In the brain, the MET gene

is expressed in developing circuits that are involved in social

behavior and communication. Disturbances in MET expression

may contribute to a syndrome that includes autism and co-

occurring gastrointestinal dysfunction [43]. As hsa-miR-1 is a

brain and muscle-tissue-specific miRNA [44], these strict regula-

tions ofMET would reasonably be more beneficial in stabilizing its

expression in brain tissue. Another example is the EGFR gene, an

interacting partner of MET, which is regulated by four miRNAs.

Evidences have revealed that the activation of EGFR stimulates

multiple pathways of signal transduction, leading to a wide range

of cellular responses. Aberrant overexpression of EGFR has been

observed in glioma [45]. The above-mentioned studies suggest

that although the EGFR plays important roles in the development

of brain, its abnormal overexpression could result in the

progression of glioma. Additionally, the EGFR promoter is

hypermethylated in both low-and high-grade glioblastoma. The

hsa-miR-7, which targets EGFR, is a potential tumor suppressor in

glioblastoma targeting critical cancer signalling pathways. Kefas

et al. have identified miR-7 downregulation in glioblastoma tissue,

when compared with the adjacent brain. They noted that the

miR-7 directly targets EGFR, thus decreasing its level in

glioblastoma cells [46]. Furthermore, it has been demonstrated

that transfection of miR-7 reduced the viability and invasiveness of

glioblastoma cells. In another gene community, it has been

observed that some genes with important roles are also tightly

regulated by miRNAs (Figure 6f), such as SMAD1, ERBB2IP, and

TGFBR1. We propose that this sophisticated regulation of gene

expression may be achieved by the functional complement of

methylation and miRNA regulations, and abnormal regulations

may result in complex phenotypes. First, the low methylation

levels of a gene promise a high expression potentiality, while the

strict miRNA regulations avoid its aberrant high expression.

Through extension, if a gene is under stronger promoter DNA

methylation control, then its expression will become low enough

and may not need miRNA to further repress its expression. In

contrast, if the DNA methylation regulation of a gene is weak, then

the cellular system may adopt miRNA’s fine-tune regulation to

avoid its aberrant high expression in the cells. Systematic analysis

of multiple layers of regulation may provide new insights into the

nature of human diseases. In addition, LMGs and HMGs are

over- and underrepresented in hubs, respectively, suggesting that

DNA methylation selectively avoids targeting the network hubs,

promising their high expression adequate to play their important

functions. Meanwhile, miRNAs target the network hubs in a fine-

tune pattern to avoid their aberrant high expression. By selectively

regulating the network hubs, which in turn affects a larger amount

of neighboring cellular components, DNA methylation can

regulate cellular networks on a larger scale.

Moreover, we found that the genes in functional modules or the

same gene family tend to be under similar DNA methylation

regulations; i.e., they are co-methylated with each other, which is

in agreement with the previous findings that genes encoding

interacting proteins tend to have similar mRNA expression

profiles. Analyzing DNA methylation regulation in the context

of the PPIN provides important insights into how the dynamics of

a biological system can be efficiently controlled.

By considering other independent PPINs obtained by different

technologies, the main results obtained in the present study are

robust. Although it has been reported that there might be weak

experimental bias with respect to abundant proteins showing more

PPI partners in yeast [47], the identified correlation between

degree and abundance depends on the technology to detect

protein-protein interactions. However, there is no correlation for

abundance-independent technology (such as structure-based or

yeast two-hybrid). In the structure-based PPIN used in the present

study, this association was not observed (R=20.0162,

P= 0.0875), suggesting that the differences between LMGs and

HMGs are robust to PPI detection bias.

Finally, we noted that the present study may significantly

contribute to both the PPIN and DNA methylation research: On

the one hand, by incorporating DNA methylation data, our results

make important steps to reveal the dynamic properties and

organizational principles of genes with different methylation levels

in the context of the human PPIN. On the other hand, this study

also highlights the potential to improve current aberrant

methylated genes identification by adding protein-protein inter-

action data. However, all the results analyzed in this study are

based on methylation dataset from normal brain tissues; we

presumed that this analysis strategy can be extended to other

tissues with datasets having more samples. In addition, in the

current study, we only focused on the LMGs and HMGs, and it

might be interesting to determine where the intermediate class

belongs. On comparing the topological features of the IMGs with

LMGs, HMGs, and the whole PPIN, we found that the IMGs

have the intermediate degree, betweenness and closeness, similar

to randomly selected genes (see details in Text S3). In summary,

our study provides insights into the assembling patterns of genes

with different methylation levels, and the implication of this study

will impact the understanding of normal cellular functions and the

mechanisms of tumorigenesis and aging process.

Conclusions
Our results reveal the organization principles of genes with

different methylation levels in the context of PPIN. Importantly,

we found that LMGs in normal brains play central roles in the

network, whose functional aberrances have deleterious effects on

the biological system. In addition, together with the recent

findings, we observed that the LMGs tend to be regulated by

miRNAs, implying functional complementation between tran-

scriptional methylation regulation and posttranscriptional miRNA

regulation in the human genome. Analysis of DNA methylation

regulation in the context of the PPIN not only provides important

insights into how the dynamics of a biological system can be

efficiently controlled, but also has implications for the functional

interpretation of mechanisms underlying complex phenotypes.

Materials and Methods

The Human PPIN
The human protein-protein interaction data were downloaded

from HPRD (release 9) [47]. To measure the DNA methylation

levels of the transcripts, we retrieved Entrez gene IDs for all the

transcripts that were listed in the HPRD interactome with RefSeq

identifiers. After removing entries that lacked Entrez gene

identifiers and only considering the maximum component of the

interactome, the PPIN that we analyzed contained 35,865

interactions among 9028 proteins. In addition, another two

human PPINs were considered – one is integrated interactions

from 21 different databases and the other is predicted based on

protein structures. For the integrated PPIN, each interaction was

required to be supported by at least one piece of direct

experimental evidence demonstrating physical association between

these two human proteins [39]. After mapping these proteins to

Entrez genes, there were 76,049 interactions among 9692 genes in

the maximum component. The structure-based prediction of
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protein-protein interactions was kindly provided by Zhang et al

[40], which contains 371,741 interactions between 14,091 genes in

the maximum component.

Analysis of DNA Methylation and Gene Expression Data
In our study, two types of datasets were used to measure the

DNA methylation levels of protein-coding genes: DNA methy-

lomes of human brain tissues and CpG ratios at the DNA

sequence level. The former dataset reported by Gibbs JR et al.

investigated the DNA methylomes of four human brain regions

each from 150 individuals (600 samples in total) [12]. In total, the

DNA methylation levels of 27,578 CpG sites spanning more than

14,000 genes were measured by the Illumina Infinium HM27

DNA assay, and the beta-values were used to quantitatively

measure the DNA methylation levels of specific CpG sites, ranging

from 0 (completely unmethylated) to 1 (completely methylated)

[48]. On the other hand, we used CpG ratios of high- confidence

promoters to represent the DNA methylation patterns in the

human genome [11]. The GC content and the ratio of the

observed vs. expected CpG dinucleotides in sliding 500-bp

windows with 5-bp offset were first determined, and then the

CpG ratio was calculated using the following formula: (number of

CpGs6number of bp)/(number of Cs6number of Gs). After

mapping to Entrez gene identifiers, 14,300 promoters were

subsequently analyzed.

The matched mRNA expression dataset was also collected from

Gibbs JR et al, and raw intensity values for each probe were first

transformed using the rank invariant normalization method and

then using log2 method. In our analysis, only samples with both

DNA methylation and gene expression datasets were used, which

included 475 samples of four human brain regions.

Compilation of Gene Sets with Specific Functions
The aging genes were downloaded from the GenAge database,

which collected human aging-related genes after an extensive

review of the literatures [49]. In total, we retrieved 261 human

aging genes for further analysis. In addition, we obtained 474

human cancer genes and their corresponding annotation infor-

mation from the Cancer Gene Census database [34]. These

cancer genes could be further divided into two major types of

cancer genes: dominant cancer genes and recessive cancer genes.

After excluding four genes with ambiguous classification in the

database, among the 470 cancer genes, there were 365 dominant

cancer genes and 105 recessive cancer genes. The third kind of

important genes that we considered was essential genes, and

human essential genes were obtained from MGD [50,51]. For the

phenotype data, lethality postnatal (MP: 0005373) and lethality-

prenatal/perinatal (MP:0005374) were treated as lethal pheno-

types. Finally, 2667 mouse-lethal human orthologs were collected

as human essential genes.

Data of miRNA Targets
Two sets of miRNA target genes were used in our analyses.

First, a set of experimentally validated target genes were extracted

from TarBase [52], miRTarBase [53], miRecords [54], and

miR2Disease [55], assembling 3131 regulations among 311

miRNAs and 1761 genes, and defined as ‘‘experiment validated

target set’’. In addition, another set of conserved miRNA targets

predicted by TargetScan [56] were downloaded and there were a

total of 15,031 targets for all human miRNAs, and were defined as

‘‘predicted target set’’. As TargetScan predicts biological targets of

miRNA by searching for the presence of conserved 8mer and

7mer sites that match the seed region of each miRNA, the targets

were further divided into three types: an exact match to positions

2–8 of the mature miRNA followed by an ‘‘A’’ (8mer), an exact

match to positions 2–8 of the mature miRNA (7mer-m8), and an

exact match to positions 2–7 of the mature miRNA (the seed)

followed by an ‘‘A’’ (7mer-1A).

Topological Features in the PPIN
Topological centrality in the PPIN can be characterized by

three widely used topological features: degree, betweenness

centrality and closeness centrality. Degree is defined as the

number of connections a gene has with other genes. Betweenness

centrality, which represents how influential a gene is in commu-

nicating between node pairs, is defined by bci~
P

jvk

gjk(i)

gjk
, where

gjk(i) is the number of shortest path between node j and k across

gene i, and gjk is the total number of shortest paths connecting

nodes j and k. Closeness centrality is defined as the mean shortest

path between a gene and all other genes reachable from it. The

greater these measures of a node are, the more central it is. In

addition, hub and bottleneck genes are defined as the percent of

genes that are top-ranked (5–50%), according to degree and

betweenness. Moreover, we also used the number of network

components and the size of maximum component that remains

after gradual removal of genes to evaluate the centrality of a gene

set.

Modularity
To investigate whether gene subnetworks form any modules, we

used the term ‘‘in-degree’’ of a gene to represent the number of its

within-subnetwork connections, and ‘‘out-degree’’ for its outside-

subnetwork connections. The in-degree ratio is used to measure

the modularity of a gene set, which is defined as the ratio of in-

degree. Moreover, we also used the density and average

characteristic path length to measure the modularity of the gene

sets. Characteristic path length is the average of shortest paths

between the nodes. Density is defined as the ratio between the

number of total edges in a subnetwork and the total number of

possible edges.

Interaction Preference
To evaluate how closely two classes of genes or genes belonging

to the same class interact with each other, we introduced a concept

of interaction preference index. Interaction preference index

quantitatively assesses the extent of interactions of genes between

two classes or within the same class in the actual protein network,

when compared with random cases. Here, random cases mean the

average number of interactions of the considered genes in 1000

degree preserving random networks. And the interaction prefer-

ence index is significantly higher than 1 indicates that the

interactions are enhanced. In contrast, the interactions are

suppressed if this measure is significantly lower than 1.

Overrepresented Functional Categories of a Gene Set
The functional annotation of genes was obtained from the

NCBI gene database, and then the chi-square test was used to

identify the significantly overrepresented functional categories of a

specific gene set. Functional categories with an adjusted p-value

less than 0.05 and annotated by at least five genes were considered

in our analyses.

Randomization Test
To evaluate whether the genes in one class are significantly

connected with each other, we computed the number of nodes and

edges in the actual networks, and then randomly selected the same
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number of genes in the PPIN and computed these two measures.

This process was repeated 10,000 times. The p-value is the fraction

of the nodes (or edges) in random cases, which is greater than that

in the real condition. We also used the same approach to

determine the significance of the modularity measures of the

LMGs and HMGs.

The statistical significance of the interaction preference of a

gene set or between two gene sets is determined by the fraction of

values in random networks, which is higher (or lower) than the

actual ones. In the present study, 1000 random networks that have

the same degree of distribution as that of the original network were

generated.
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