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Abstract

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects several million people in Latin America.
Myocarditis, observed during both the acute and chronic phases of the disease, is characterized by an inammatory
mononuclear cell infiltrate that includes CD4+ T cells. It is known that Th1 cytokines help to control infection. The role that
Treg and Th17 cells may play in disease outcome, however, has not been completely elucidated. We performed a
comparative study of the dynamics of CD4+ T cell subsets after infection with the T. cruzi Y strain during both the acute and
chronic phases of the disease using susceptible BALB/c and non-susceptible C57BL/6 mice infected with high or low
parasite inocula. During the acute phase, infected C57BL/6 mice showed high levels of CD4+ T cell infiltration and expression
of Th1 cytokines in the heart associated with the presence of Treg cells. In contrast, infected BALB/c mice had a high heart
parasite burden, low heart CD4+ T cell infiltration and low levels of Th1 and inflammatory cytokines, but with an increased
presence of Th17 cells. Moreover, an increase in the expression of IL-6 in susceptible mice was associated with lethality upon
infection with a high parasite load. Chronically infected BALB/c mice continued to present higher parasite burdens than
C57BL/6 mice and also higher levels of IFN-c, TNF, IL-10 and TGF-b. Thus, the regulation of the Th1 response by Treg cells in
the acute phase may play a protective role in non-susceptible mice irrespective of parasite numbers. On the other hand,
Th17 cells may protect susceptible mice at low levels of infection, but could, in association with IL-6, be pathogenic at high
parasite loads.
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Introduction

Chagas disease, caused by the protozoan parasite Trypanosoma

cruzi, affects approximately 10–12 million people in Latin America

and kills more than 15000 each year, thus representing a major

cause of morbidity and mortality in this region [1]. Myocarditis is

the most serious and frequent manifestation of chronic Chagas

disease and appears in 30% of infected individuals several years

after infection occurs. The pathogenesis is thought to be

dependent on an immune-inflammatory reaction to a low-grade

infection [2,3]. T. cruzi has a complex life cycle involving several

stages in both vertebrates and insect vectors. It infects and

replicates in both macrophages and cardiomyocytes as well as

many other cell types.

There is evidence that the CD4+ T helper (Th)-1 response

mediated by Interferon (IFN)-c is protective against infection

in vitro [4,5] and in vivo [6,7]. On the other hand, regulatory T

(Treg) cells may help to control T cell responses during infection.

Natural (n)Treg cells develop in the thymus and help to maintain

self-tolerance [8]. Treg cells can also be generated in the presence

of interleukin (IL)-2 and transforming growth factor (TGF)-b or as

induced (i)Treg cells in response to infection by microorganisms.

Treg cells are characterized by the expression of both CD4 and

CD25, the transcription factor forkhead box P3 (FoxP3) and some

also produce IL-10 and/or TGF-b [9]. Nevertheless, Treg cells

constitutively express high amounts of the folate receptor (FR)4

[10] and may lose CD25 expression [11]. T helper (Th)17 cells

characterized by IL-17 production, are pro-inflammatory cells

associated with autoimmune diseases [12] Reciprocal develop-

mental pathways have been described for the generation of both

Treg and Th17 cells, with Th17 requiring both TGF-b and IL-6

for differentiation [13].

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e65820



The role of Treg and Th17 cells in T. cruzi infection is not

completely understood. Peripheral Treg cell numbers were higher

in patients during the indeterminate phase of Chagas disease in

comparison with patients with overt cardiac pathology [14,15,16],

suggesting that the regulatory response plays a protective role.

Studies on Treg depletion with anti-CD25 antibodies in acute and

chronic mouse experimental models involving highly susceptible

mouse-parasite strain combinations (C57BL/6-Tulahuén strain

[17,18] or BALB/c-Y strain [19]), have however, suggested a

limited role for Treg cells in the control of T. cruzi infection.

On the other hand, deficient regulatory T cell activity and a low

frequency of IL-17-producing T cells have been correlated with

cardiomyopathy in human Chagas disease patients [20]. IL-17 has

been shown to play a protective role against parasite-induced

myocarditis in BALB/c mice infected with the Y strain, by

inhibiting Th1 differentiation during the acute phase of infection

[21]. IL-17 has also been shown to confer systemic protection

against infection by mediating neutrophil recruitment in C57BL/6

mice infected with the T. cruzi Tulahuén strain [22,23]. Thus,

different mechanisms seem to mediate protection depending on

the mouse model, the T. cruzi strains used for infection and the

CD4+ T cell subset studied.

Up until now, investigations of T. cruzi infection in mice models

have focused on only one CD4+ subset, either Treg or Th17, but

none have studied both CD4+ subsets in the same experimental

model. Furthermore, they have all been performed using

susceptible model/T. cruzi strain combinations, that is, BALB/c

infected with the Y strain or C57BL/6 with the Tulahuén strain.

Investigations exploring the role that distinct CD4+ T cell subsets

may play in controlling T. cruzi infection are thus needed,

particularly in non-susceptible models that control the infection

more efficiently.

We performed a comparative study that included analysis of the

Th1, Treg and Th17 cell markers in mice models both susceptible

and non-susceptible to infection by the T. cruzi Y strain. Mice were

infected with either low or high parasite loads and were examined

throughout the acute and chronic phases of the disease. Our

results suggest that a combination of Th1 and Treg responses in the

hearts of non-susceptible C57BL/6 mice acutely infected with the

Y strain helps to control infection and enhance survival, whereas

in susceptible BALB/c mice the combined Th1 and Th17

response protects mice from death only if the parasite inoculum

is low. Moreover, we observed a Th17 response in the hearts of

BALB/c mice infected with high numbers of the Y parasite strain,

associated with high levels of IL-6, which may be responsible for

the enhanced mortality observed during the acute phase.

Results

Susceptibility of the Mouse Strains to Trypanosoma cruzi
Infection
All BALB/c mice, but no C57BL/6 mice, succumbed to

infection from a high inoculum of the T. cruzi Y strain (figure 1A

top), despite the fact that similar levels of parasitemia were reached

in both mouse strains (figure 1B top). Moreover, BALB/c mice

showed a significantly higher parasite load in their hearts than

C57BL/6 mice at 12 (10 fold) and 17 (103 fold) d.p.i. (figure 1C

top). Even more interestingly, C57BL/6, but not BALB/c mice,

showed an efficient clearance of heart parasites by day 17 post-

infection (figure 1C top). These differences in parasite load and

control in the heart may explain the differences in survival

between these mouse strains, which agrees with previous results

indicating that C57BL/6 are more resistant than BALB/c to

infection with the Y parasite strain [24].

When mice were infected with low inoculum, 60% of the

BALB/c and all of the C57BL/6 mice survived (figure 1A bottom).

Both parasitemia (figure 1B bottom) and heart parasite load

(figure 1C bottom) were significantly higher in BALB/c mice than

in C57BL/6 mice at this inoculum level, indicating that the

outcome of the infection depends on both the hosts’ genetic

background and inoculum size.

Effect of Infection on Thymic Treg Cells
Thymic atrophy has been previously reported as being

associated with T. cruzi infection and it has been suggested that

it plays a role in the pathology of Chagas disease [25]. We

analyzed the effect of infection on thymic Treg cells. Thymuses

were removed from mice infected with high inoculum at different

time points, and analyzed using flow cytometry. Both BALB/c and

C57BL/6 mice showed similar depletion patterns of double

positive T cells (DP, CD4+CD8+) and a gradual increase in the

percentage of single positive CD4+ and CD8+ cells (figures 2A and

B, respectively). A decrease in the total number of cells per thymus

(figure 2C) was also detected, as previously reported [26]. Further

analysis of the CD4+CD25+ gated T cell subset showed that, in

contrast with the strong thymocyte depletion, the percentage and

number of thymic FoxP3+ Treg increased at 12 d.p.i. in both

mouse strains (figures 2D and 2E, respectively). Moreover,

absolute Treg cell numbers also increased in the thymus at

12 d.p.i. in both strains of mice, and were even higher in C57BL/

6 mice at 17 d.p.i. (figure 2F). Further experiments performed at

the low inoculum level showed a delay in thymic depletion in both

mouse strains but similar patterns regarding Treg cell dynamics

(data not shown).

T lymphocyte Infiltration and Immune Response in Heart
Tissue during Acute Trypanosoma cruzi Infection
In humans the heart is one of the organs most severely affected

by T. cruzi infection [27]. We thus evaluated lymphocyte

infiltration in heart tissue sections by immunofluorescence

microscopy at 14 d.p.i. in both strains of mice infected with the

high inoculum. Figure 3A shows that CD4+ T cell infiltration was

higher in infected C57BL/6 hearts than in BALB/c hearts. This

was confirmed and measured by quantitative RT-PCR of heart

mRNA utilizing a Cd4 probe in mice infected at the high inoculum

level (figure 3B).

In addition, in heart tissue of mice infected with high inoculum,

mRNA expression of Th1 and inflammatory cytokines, such as

IFN-c, IL-1a and TNF was higher in C57BL/6 than in BALB/c

mice (figure 3C top). C57BL/6 mice infected with low inoculum

also showed higher levels of IFN-c, IL-1a and TNF than similarly

infected BALB/c mice, although the kinetics were delayed with

respect to mice infected with the high inoculum (figure 3C

bottom). Interestingly, C57BL/6 mice infected with high inocu-

lum, showed a gradual decrease in Th1 and inflammatory

cytokine expression associated with the control of the infection,

whereas these parameters increased continually in BALB/c mice

inoculated at this same level until 17 d.p.i., just before their death.

Th17 and Treg Cell Infiltration in Heart Tissue during
Acute Trypanosoma cruzi Infection
To investigate whether or not Treg and/or Th17 infiltrate

cardiac tissue, we isolated CD4+ T cells from the hearts of 25–35

mice infected either at the low or the high inoculum level, at

different d.p.i. and analyzed the phenotypes of the CD4+

populations by flow cytometry. Interestingly, in BALB/c mice

infected with the high inoculum, a small but significant proportion

CD4+ T Cell Subsets in Trypanosoma cruzi Infection
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of CD4+ IL-17+ cells were detected at 17 d.p.i. (figure 4A) while no

Foxp3 staining was observed (data not shown). In contrast, in

C57BL/6 mice infected with the low inoculum, 70.3% of the

CD4+ isolated cells were CD4+CD25+, which could correspond

either to activated T cells or Treg cells at 17.d.p.i. Furthermore,

staining with anti-FoxP3 showed that 13% of the CD4+CD25+

gated population were Foxp3+ (figure 4B). Thus, our results

showed that in non-susceptible C57BL/6 mice, Treg cells infiltrate

the heart at detectable levels whereas in susceptible BALB/c mice

it is the Th17 cells that infiltrate this organ.

We could not recover enough CD4+ Treg or Th17 subsets at any

other d.p.i. or treatment to allow conclusive evidence. This would

have required the sacrifice of many more than 35 mice per

treatment, which was non-viable for ethical reasons.

Figure 1. BALB/c mice infected with T. cruzi showed higher parasite loads and lower survival rates than infected C57BL/6 mice. BALB/
c mice were infected with high inoculum (open circle) or low inoculum (open square). C57BL/6 mice were infected with high inoculum (filled circle) or
low inoculum (filled square). (A) Survival was monitored from 0 to 100 d.p.i., (B) parasitemia was monitored from 0 to 35 d.p.i., and (C) the parasite
load in heart tissue was determined at 7, 12, 17 and 22 d.p.i. in mice infected with high inoculum (top) or low inoculum (bottom) by extrapolation
with parasite DNA standards. Data represent the results of at least two independent experiments performed with 3 mice per experimental group.
Statistically significant differences between BALB/c and C57BL/6 mice are shown: *p,0.05, **p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0065820.g001

Figure 2. Infected C57BL/6 mice show higher numbers of nTreg cells than infected BALB/c mice. Non-infected (NI) BALB/c and C57BL/6
mice and mice infected with high inoculum were sacrificed at 0 (NI), 12 and 17 d.p.i. Thymocytes were counted and stained with antibodies against
cell surface molecules and intracellular markers and analyzed with a flow cytometer. Data from BALB/c and C57BL/6 mice are represented by open
circles and filled circles, respectively. (A) Anti-CD4 and anti-CD8 antibody staining of thymocytes from non-infected (NI) BALB/c mice at 12 and
17 d.p.i. (B) Anti-CD4 and anti-CD8 antibody staining of thymocytes from non-infected (NI) C57BL/6 mice at 12 and 17 d.p.i. (C) Total number of
thymocytes per thymus in BALB/c (open circles) and C57BL/6 mice (filled circles). (D) Staining of the gated CD4+CD25+ population with anti-FoxP3
antibody in BALB/c mice. (E) Same as ‘‘D’’ for C57BL/6 mice. (F) Total number of FoxP3+ cells per thymus. Data represent the results of at least two
independent experiments performed with samples pooled from 3 mice per experimental group.
doi:10.1371/journal.pone.0065820.g002
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To avoid that limitation and confirm these results, we analyzed

markers associated with Th17 cells in the hearts of infected mice

by qRT-PCR. IL-6, which is required for Th17 differentiation,

was highest in BALB/c mice at 17 d.p.i. when infected with the

high inoculum (figure 4C top). At the low inoculum level, however,

IL-6 increased at 12 d.p.i. returning to base levels by 17 d.p.i. in

both strains of mice (figure 4C bottom). IL-17 was significantly

higher at 17 d.p.i. in BALB/c mice compared to C57BL/6 mice

infected at either level (figure 4C top and bottom, respectively).

Thus, the significant increase in IL-6 and IL-17 in BALB/c mice

infected at the higher level could be a cause of the mortality

observed. We also analyzed gene expression of cytokines involved

in Treg differentiation and function. TGF-b, IL-2 and IL-10 were

observed in both strains of mice infected with the high inoculum at

12 d.p.i. (figure 4D top). At 17 d.p.i., however, TGF-b, IL-2 and

IL-10 expression decreased in C57BL/6, whereas they further

increased in BALB/c mice. This occurred concurrently with the

increase of Th1 cytokines in this mouse strain (figure 4D top and

figure 3C top). C57BL/6 mice infected at the low inoculum level

showed higher IL-10 and TGF-b expression than BALB/c, with

maximum differences in gene expression between the two mouse

strains occurring at 17 d.p.i. (figure 4D bottom).

In addition, gene expression of Treg cell markers (Foxp3 and Fr4)

in heart tissue was highest at 12 d.p.i. in C57BL/6 mice infected

with the high inoculum, but interestingly, there was no significant

difference in gene expression of these markers between infected

and non-infected BALB/c mice (figure 4E top). Similarly, in mice

infected at the low level, Treg cell marker expression was higher in

C57BL/6 compared to BALB/c mice at all the d.p.i.’s studied

(figure 4E, bottom). Thus, Treg cell marker expression in the heart

was much higher in the resistant C57BL/6 strain.

Systemic Immune Response during Acute Trypanosoma
cruzi Infection
Serum cytokine concentration was determined as a measure of

the systemic response against infection. Several cytokines, such as

Figure 3. Infected C57BL/6 mice showed greater numbers of cardiac infiltrating CD4+ T cells and more inflammation than infected
BALB/c mice. BALB/c mice were infected with high inoculum (open bar) or low inoculum (open dashed bar). C57BL/6 mice were infected with high
inoculum (filled bar) or low inoculum (filled dashed bar). (A) Immunofluorescence staining of heart tissue sections from BALB/c and C57BL/6 mice
infected with high inoculum with anti-CD4 antibody at 14 d.p.i. (magnification: 6306). (B) Quantitative RT-PCR of total heart tissue RNA from non-
infected (NI) mice and mice infected with either high inoculum (top) or low inoculum (bottom) at 7, 12, 17 and 22 d.p.i., utilizing the Cd4 probe. (C) as
for ‘‘B’’ utilizing the Ifng, Il1a and Tnf probes. Data were normalized with respect to NI mice (Fold change: 1) and represent at least two independent
experiments performed with 3 mice per experimental group. Statistically significant differences between infected and non-infected mice (0 d.p.i.) and
between BALB/c and C57BL/6 mice under each treatment are shown: *p,0.05,**p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0065820.g003
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the granulocyte macrophage colony-stimulating factor (GM-CSF),

IL-1a, TNF-a, IL-10, IL-17A, IL-2, IL-4 and IL-5, showed a slight

but non-significant increase in their serum concentrations upon

infection (data not shown). However, in both strains of mice, a

significant increase in IFN-c serum concentration was observed at

12 d.p.i in mice infected with the high inoculum compared to non-

infected mice (figure 5A left). Notably, IL-6 serum concentration

was significantly higher at 17 d.p.i. in infected BALB/c mice

compared to both healthy mice and C57BL/6 mice infected at

both inoculum levels (figure 5A and 5B right).

Parasite Burden and T lymphocyte Infiltration in Heart
Tissue during Chronic Trypanosoma cruzi Infection
To analyze the immune response during the chronic phase,

mice infected with the low inoculum were sacrificed at 100 d.p.i.

and parasite persistence was analyzed by PCR with T. cruzi specific

probes. Surviving BALB/c mice (figure 6A) showed stronger PCR-

amplified T. cruzi DNA signals than C57BL/6 mice (figure 6B),

suggesting that they harbored a higher number of parasites during

this phase.

The analysis of immune cell markers during the chronic phase

showed a low but significant CD4+ T cell infiltration in BALB/c

mice whereas these T cells were not detected in infected C57BL/6

mice (figure 6C). CD4+ infiltration in infected BALB/c mice was

associated with a higher expression of Th1 and inflammatory

cytokines, such as IFN-c TNF and IL-2, and to a lesser extent IL-

1a, compared to that of non-infected mice (figure 6D). In infected

C57BL/6 mice, however, only IFN-c and IL-2 were detected at

higher levels than in non-infected mice, although this difference

was much lower than that found between infected and non-

infected BALB/c mice (figure 6D).

The low number of CD4 cells present in the mouse hearts

during the chronic phase meant that it was impossible to recover

enough of them for analysis. Neither could we detect significant

changes in Th17 associated genes such as IL-6 and IL-17

Figure 4. Th17 and Treg cells were isolated from the hearts of BALB/c and C57BL/6 mice, respectively. BALB/c mice were infected with
high inoculum (open bar) or low inoculum (open dashed bar). C57BL/6 mice were infected with high inoculum (filled bar) or low inoculum (filled
dashed bar). (A) Percent of CD4+IL-17+ cells isolated from the hearts of BALB/c mice infected with high inoculum at 17 d.p.i. (B) Percent of
CD4+CD25+FoxP3+ cells isolated from the hearts of C57BL/6 mice infected with low inoculum at 17 d.p.i. (C) Quantitative RT-PCR from total mouse
heart tissue RNA from non-infected (NI) mice and mice infected with either high inoculum (top) or low inoculum (bottom) at 7, 12, 17 and 22 d.p.i.,
utilizing Il6 and Il17a probes. (D) as for (C) but utilizing Tgfb, Il10 and Il2 probes. (E) as for (C) but utilizing Foxp3 and Fr4 probes. For ‘‘A’’ and ‘‘B’’ the
data represent the results from two experiments performed with 25 and 35 mice per group, respectively. For ‘‘C’’, ‘‘D’’ and ‘‘E’’ the data were
normalized with respect to NI mice (Fold change: 1) and represent the results from at least two independent experiments performed with 3 mice per
experimental group. Statistically significant differences between infected and non-infected mice (0 d.p.i.) and between BALB/c and C57BL/6 mice
under each treatment are shown: *p,0.05,**p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0065820.g004
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expression (figure 6E) or the expression of Treg associated cell

markers (FR4 and FoxP3) in chronically infected BALB/c and

C57BL/6 mice, compared to healthy mice (figure 6F). Nonethe-

less, infected BALB/c mice showed a 10 fold increase in IL-10 and

about 2 fold in TGF-b expression over non- infected mice of the

same age, which was not observed in infected C57BL/6 mice

(figure 6F). None of the values of any of the other cell markers that

were analyzed in the acute phase showed significant differences

between infected and healthy mice of the same age during the

chronic phase (data not shown). Our results thus indicate that

susceptible mice who survive the acute infection and reach the

chronic phase maintain parasites in their hearts that illicit a

combined Th1 and regulatory-like response, but not a Th17

response.

Discussion

The identification of the key factors that determine survival of

T. cruzi infection in mice as well as the mechanisms controlling

infection in the asymptomatic chronic phase of the infection is

crucial in order to develop novel strategies to fight Chagas disease.

The influence of host genetic background on the susceptibility to

T. cruzi infection has been documented both in human and mice

[28,29,30]. On the other hand, the role of different CD4+ T cell

subsets has been reported in experimental T. cruzi infection in

mice, but always utilizing susceptible host models of infection. But,

to date, a simultaneous comparative analysis of CD4+ T cell

subsets in susceptible and resistant hosts has not been performed.

Many studies have focused on the Th1/Th2 balance during the

acute and chronic phases, but there are only a few reports that

discuss the role of other CD4+ T cell subsets such as Treg and

Th17 cells. Even then, these reports only studied one CD4+ T cell

subset at a time; either Treg or Th17 cells, and only in susceptible

T.cruzi/mouse strain combinations, thus providing an incomplete

picture of the immunopathogenesis of this complex disease. In this

investigation, we undertook a comprehensive study of the

dynamics of T cell subsets, analyzing the immune response during

both the acute and chronic phases of the experimental infection

and furthermore, comparing susceptible and non-susceptible mice

infected at two different parasite inoculum levels. This analysis

may thus provide some clues as to how these T cell populations

may influence the outcome of this disease.

Our results indicate that in the BALB/c-Y strain susceptible

model, the higher the parasite inoculum the lower the survival

rate, irrespective of the actual parasitemia. Thus, mortality seems

to be related specifically to heart parasite load. Heart parasite load

was much higher in BALB/c (several logs) than in C57BL/6 mice.

Furthermore, C57BL/6, but not BALB/c mice, showed an

efficient clearance of heart parasites by day 17 post-infection.

Thus, C57BL/6, but not BALB/c mice, are able to control

parasite replication in the heart and thus have a better chance of

surviving the disease. This agrees with previous results indicating

that C57BL/6 are more resistant than BALB/c to infection with

the T. cruzi Y strain [24].

Moreover, we found important differences in the immunolog-

ical responses in the hearts of infected mice between susceptible

and resistant mouse strains. CD4+ T cell infiltration was highest at

12 d.p.i. in C57BL/6 mice infected at the high inoculum level,

whilst in mice infected with the low inoculum the time course of

cardiac infiltration was delayed to 17 d.p.i. CD4+ T cell

Figure 5. IL-6 serum concentration significantly increased in infected BALB/c mice. BALB/c mice were infected with high inoculum (open
bar) or low inoculum (open dashed bar). C57BL/6 mice were infected with high inoculum (filled bar) or low inoculum (filled dashed bar). IFN-c and IL-
6 concentrations were determined from sera extracted from non-infected (NI) mice and mice infected with (A) high inoculum or (B) low inoculum at
0 (NI), 7, 12 and 17 d.p.i. Data represent the results of at least two independent experiments performed with 3 mice per experimental group.
Statistically significant differences between infected and non-infected mice (0 d.p.i.) and between BALB/c and C57BL/6 mice under each treatment
are shown: *p,0.05,**p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0065820.g005
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recruitment into the heart and the expression of Th1 and

inflammatory cytokines (such as IFN-c and TNF) was significantly

higher in C57BL/6 mice compared to BALB/c mice at 12 d.p.i.

but later decreased at 17 and 22 d.p.i. This coincided with a

decrease in parasite load in C57BL/6 mice associated with their

survival, thus indicating that a strong infiltration of Th1 in the

heart protects against infection during the acute phase of the

disease. This agrees with observations concerning the protective

role of the Th1 response in controlling T. cruzi proliferation during

the acute phase, exemplified by the fact that mice deficient in

either the IFN-c [6] or the IFN-c receptor [7] are highly

susceptible to infection.

Inflammation has been considered detrimental for the outcome

of Chagas disease [31]. However, C57BL/6 mice, despite showing

much greater inflammation than BALB/c mice, controlled the

infection and survived. This suggests that although inflammation

may control parasite replication, it must be somewhat controlled

in order to avoid excessive damage.

We observed thymic atrophy and subsequent CD4+CD8+ T cell

depletion during the acute phase of infection in both strains of

mice, as for previous reports [26]. However, since BALB/c, but

not C57BL/6 mice, showed high mortality, it is likely that severe

thymic atrophy does not determine the outcome of the infection.

Despite the depletion of CD4+CD8+ T cells, we observed an

increase in the number of thymic CD4+CD25+FoxP3+ Treg at

12 d.p.i. However, the absolute number of CD4+CD25+FoxP3+

Treg only continued to increase in resistant C57BL/6 mice., This

was observed even at 17 d.p.i. when thymocyte depletion was

maximal, suggesting that Treg can control excessive inflammatory

responses thus counteracting some of the detrimental effects of

T.cruzi infection.

We would like to note that a previous study has indicated that

Treg decreased in the thymus upon T. cruzi infection [32]. This

apparent inconsistency with our results could be ascribed to the

use of a different T. cruzi strain as well as the time point analyzed.

This suggests that the kinetics of the different responses in

experimental T. cruzi infection should be taken into account, since

these could radically change depending on the time point

analyzed. It is also worth mentioning that the origin of the Treg

cells found in the thymus during acute infection could be either

Figure 6. Infected BALB/c mice show a greater parasite load and more inflammation during the chronic phase than infected C57BL/
6 mice. BALB/c and C57BL/6 mice were infected with the low inoculum and sacrificed at 100 d.p.i. (A) Specific T. cruzi PCR with DNA from the hearts
of non-infected (NI) and infected BALB/c mice at 100 d.p.i.; parasite DNA was used as a positive control (C+) and H2O as a negative control (C-). (B) As
for ‘‘A’’ but for C57BL/6 mice. Quantitative RT-PCR from total heart tissue RNA of infected BALB/c mice (open dashed bars) and C57BL/6 mice (filled
dashed bars) utilizing: (C) a Cd4 probe, (D) Ifng, Il1a, Tnf and Il2 probes, (E) Il6 and Il17a probes and (F) Foxp3, Fr4, Il10 and Tgfb probes. Data represent
the results of at least two independent experiments performed with 3 mice per experimental group and were normalized with respect to NI mice
(Fold change: 1). Statistically significant differences between infected and non-infected mice and between BALB/c and C57BL/6 mice under each
treatment are shown: *p,0.05,**p,0.01 and ***p,0.001.
doi:10.1371/journal.pone.0065820.g006
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thymic (nTreg) or iTreg cells that have re-entered the thymus from

the periphery [33,34]. Thus, the origin of these Treg cells should be

further investigated.

In this study we were able to isolate, for the first time, Tregs from

the inflammatory heart infiltrate from infected C57BL/6, but not

BALB/c, mice. These results indicate that in non-susceptible

C57BL/6 mice, Treg responses are generated that likely control

the excessive and potentially pathogenic inflammation produced

by the strong Th1 response in the heart. Our results suggest that

the combined action of Th1 and Treg responses observed in

C57BL/6 mice could be protective during the acute phase of

infection by combining an effective anti-parasite response with

limited damage.

In accordance with our results, several clinical studies have

indicated that peripheral Treg cell numbers increased in asymp-

tomatic patients in comparison with Chagas disease patients with

overt cardiac pathology [14,15,16], suggesting that the regulatory

response plays a protective role. However, the results obtained in

mouse experimental models are more complex. Thus, when

C57BL/6 mice highly susceptible to the Tulahuén or the Brazil

strain were infected and then treated with anti-CD25 antibodies to

deplete Tregs, the results suggested that these cells played a limited

role in the control of T. cruzi infection in muscle [17] and heart

[18]. In contrast, BALB/c mice, infected with a sub-lethal

inoculum of the Y strain and then depleted of Tregs by treating

them with anti GITR (glucocorticoid-induced TNFR-related

protein) rather than anti-CD25 antibodies, showed an increase

in heart parasite burden and host susceptibility [19]. However, the

results of the above mentioned experiments should be interpreted

with caution, since anti-CD25 antibodies are not specific for Treg

cells and may eliminate other types of activated T cells.

On the other hand, IL-6 may play an important role in

determining the outcome of the disease. Both serum IL-6

concentration and IL-6 expression in the heart significantly

increased at 17 d.p.i. in BALB/c, but not C57BL/6 mice, infected

at the high inoculum level. This means that the strong IL-6

expression in heart tissue and high concentrations of systemic IL-6

secretion could be linked to the high mortality observed in BALB/

c mice during the acute phase. High IL-6 levels in infected BALB/

c mice may lead to Th17 cell differentiation while inhibiting Treg

cell development [13]. Accordingly, infiltrating Th17 cells were

only isolated from infected BALB/c hearts and only at 17 d.p.i.

Five days later all the BALB/c mice infected at the high level died,

showing that high Th17 responses may be associated with

uncontrolled parasite replication in the heart leading to death in

this mouse strain. Other authors have demonstrated, using anti-

IL-17 antibody treatment, that IL-17 plays a protective role in

BALB/c mice infected with a low inoculum of the Y strain,

although this was attributed to the Th17-mediated suppression of

excessively pathogenic Th1 responses in the heart [21].

Investigations undertaken using a different T. cruzi strain,

Tulahuén, produced higher mortality in C57BL/6 than in BALB/

c mice. Thus, in this experimental model C57BL/6 mice are more

susceptible to infection than BALB/c mice [35,36]. In this context,

susceptible C57BL/6 mice became even more susceptible to

infection when IL-17 [22] and the IL-17 receptor [23] were

genetically eliminated. In addition, IL-6-deficient C57BL/6 mice

were more susceptible to infection with the Tulahuén strain than

wild type mice due to deficient lymphocyte recruitment [37]. In

this experimental model, C57BL/6-Tulahuén, mortality is likely

due to fatal liver damage caused by the differential modulation of

hepatic Toll-like receptors, rather than cardiac injury [35]. Thus,

it seems that different T. cruzi strains may exhibit diverse

pathogenic mechanisms which attack different host organs, thus

affecting the outcome of the disease [38].

Taken together, all of the above clearly indicates that the IL-6/

Th17 or Th1/Treg responses may be either protective or

pathogenic depending on the T.cruzi-mouse strain combination.

Overall, however, kinetic studies suggest that cardiac T cell

mobilization is quicker in C57BL/6 than in BALB/c mice. This

influences the extent of parasite replication and the infiltration of

Treg or Th17 cells in the heart.

In previous studies we observed greater numbers of MDSCs

infiltrating the heart in susceptible BALB/c compared to resistant

C57BL/6 mice infected with a high Y strain inoculum [39,40].

Here we found that Th17 cells were also infiltrating BALB/c

cardiac tissue, and that the high mortality produced in these mice

when infected with a large parasite load was associated with high

levels of IL-6. Thus, there is likely some correlation between IL-6,

Th17 cells and MDSCs in susceptible mice, associated with high

mortality. In addition, we found that heart infiltrating heteroge-

neous CD11b+ cells isolated from BALB/c mice at 21 d.p.i.

expressed IL-6 and IL-10 [39]. Since the number of these

cytokines increased in BALB/c mice with scarce infiltrating CD4+

T cells it is tempting to speculate that in the susceptible model lL-6

and IL-10 are being produced by a subset of infiltrating CD11b+

cells.

In another type of cardiac disease; experimental autoimmune

myocarditis (EAM), the IL-6/IL-17 response seems to be

pathogenic. In EAM, IL-6 is critical in the progression from

inflammatory myocarditis to fibrotic dilated cardiomyopathy [41].

In addition, IL-17-deficient animals were protected from fatal

heart failure and did not develop EAM induced severe dilated

cardiomyopathy [42]. Thus, with regard to the role of IL-17 in

myocarditis, there do appear to be some similarities between EAM

and our susceptible model of T. cruzi infection of BALB/c mice

with the cardiotropic Y strain.

It is interesting that during the chronic phase, heart IFN-c and

IL-10 expression were higher in BALB/c than in C57BL/6 mice.

This may indicate that in chronically infected BALB/c mice, in

addition to a residual Th1 response against persisting parasites,

regulatory cytokines are expressed in heart tissue, albeit in the

absence of Foxp3 expressing Treg cells. Nevertheless, BALB/c

mice, despite having a detectable parasite burden and inflamma-

tory cytokines at 100 d.p.i., did not show any external symptoms

of the disease. This may be due to the balancing effect of anti-

inflammatory IL-10, although more experiments are needed to

investigate this hypothesis.

In summary, our work describes for the first time an association

between the presence of Treg cells isolated from the heart of

Trypanosoma cruzi infected mice with resistance to infection with

the Y parasite strain. We also describe that the presence of Th17

cells is associated with resistance to infection in susceptible BALB/

c mice. However, the regulatory response seems to be more

beneficial than the Th17 response for controlling infection with

high parasite inocula. Although there are reports on Treg and

Th17 in the literature, we believe our contribution is important

since those studies were performed only on susceptible models,

and concluded that Treg cells play a limited role in the control of

infection, while Th17 cells protect mice from infection. Moreover,

our results put a word of caution when analyzing the nature and

importance of the various CD4+ T cells subsets in the mouse

models of Chagas disease, since they may be protective or

pathogenic depending on the T. cruzi-mouse strains combinations

and may help to better understand, the immunopathological

responses of such a complex disease. Future experiments will focus

on the identification of the cellular sources of the relevant
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cytokines involved in cardiac inflammation with the aim of

designing immune intervention protocols that ameliorate the

outcome of the disease.

Methods

Ethics Statement
This study was carried out in strict accordance with the

European Council Directive [43]. Mice were maintained under

pathogen-free conditions at the UAM animal facility. The protocol

for the treatment of the animals was approved by the ‘‘Comité de

Ética de Investigación de la UAM’’, Spain. Animals had unlimited

access to food and water. They were euthanized in a CO2

chamber and all efforts were made to minimize their suffering.

Parasites and Mice
Young adult (6 to 8-week-old) BALB/c and C57BL/6 female

mice were transported from Charles River Laboratories and

hosted in a controlled environment. T. cruzi Y strain blood

trypomastigotes were routinely maintained by infecting IFN-c
receptor deficient mice and purifying them from their blood.

Infections at either a high (26103 trypomastigotes per mouse) or a

low (50 trypomastigotes per mouse) inoculum level were

performed by intra-peritoneal injection after two weeks of

quarantine. Parasitemia was monitored by the Brener method as

described in [44].

Serum Cytokine Measurement
Serum cytokine concentration was determined using beads

coupled to fluorescent antibodies specific to different cytokines

using the Mouse Th1/Th2 10-plex Flowcytomix Multiplex kit

(eBioscience). Samples were analyzed following the directions of

the manufacturer in a FACSCanto II Cytometer (Becton

Dickinson).

Removal of Organs and CD4+ Magnetic Cell Sorting
Groups of 25 C57BL/6 mice and 35 BALB/c mice were

infected with the T. cruzi Y strain. The parasitemia was monitored

and mice were euthanized at different days post-infection (d.p.i.).

Hearts were processed as described in [39]. Briefly, hearts were

reperfused with 10 ml of PBS and 1 U/ml heparin after

purification of T cell tissue. Groups of 4 hearts were digested

with 600 U/ml collagenase II (Worthington, CLS-2) and 60 U/ml

of DNAse I in the gentleMACSTM Dissociator following the

directions of the manufacturer (Miltenyi Biotec). CD4+ cells were

isolated with CD4 Microbeads following the directions of the

manufacturer (Miltenyi Biotec) giving CD4+ isolated cells with

95% cell purity. Thymic cells were obtained by the mechanical

disruption of the thymus and passing the resulting material

through a 40 mm cell strainer (BD Falcon).

PCR, Quantitative Real-time PCR and Quantitative
Reverse-transcription (RT)-PCR
Heart DNA was isolated using the High Pure PCR Template

Preparation Kit (Roche). Heart tissue samples used in PCR

reactions contained 100 ng of genomic DNA, and T. cruzi was

detected using nested PCR [45]. For quantitative PCR, samples

were run in duplicate with T. cruzi probes [46] and the genomic

mouse TNF Taqman probe (Applied Biosystems). The quantity of

T. cruzi DNA in mouse heart tissue was calculated from the

comparative threshold cycle (CT) values obtained from T. cruzi

probes and normalized with respect to the mouse TNF probes.

The regression equation resulting from plotting the CT values

obtained from serial dilutions starting from 100 pg to 0.001 pg of

parasite DNA standard was then used to extrapolate the quantity

of parasite DNA in the samples. Results were expressed as pg of T.

cruzi DNA per mg of heart tissue DNA. Total RNA was extracted

from hearts with TRIzol reagent (Invitrogen) following the

manufacturers’ instructions. For quantitative RT-PCR analysis,

reverse transcription of total RNA was performed using the High

Capacity cDNA Archive Kit (Applied Biosystems) and the

amplification of different genes encoding clusters of differentiation;

(CD)4 (Cd4), interferon (IFN)-c (Ifng), interleukin (IL)-1a (Il1a),

tumor necrosis factor (TNF, Tnf), IL-2 (Il2), IL-6 (Il6), forkhead

box P3 (FoxP3, Foxp3), folate receptor (FR)4 (Fr4), IL-10 (ll10),

transforming growth factor (TGF)b (Tgfb) and IL-17 (Il17a), was

performed in triplicate utilizing Taqman probes (Applied Biosys-

tems). The relative quantity of each of the genes was then

calculated by the comparative threshold cycle (CT) method

following the manufacturer’s instructions. All quantifications were

normalized to the 18S gene to account for variability in the initial

concentration of RNA and in the conversion efficiency of the

reverse transcription reaction (DCT). Finally, all data from samples

taken from infected mice were normalized with respect to the

values obtained from non-infected mice (DDCT). The relative

quantity (RQ) was calculated as: RQ = 22DDC
T.

Immunofluorescence
Hearts were fixed in 4% paraformaldehyde in PBS solution for

2 h at room temperature, incubated in a 30% sucrose solution

overnight at 4uC, embedded in Tissue-Tek O.C.T. compound

(Sakura), and frozen. Sections 10 mm thick were then cut and fixed

in acetone. The sections were incubated with goat anti–mouse

CD4 antibody (BD Pharmingen) at 4uC overnight, and then with

anti-goat IgG Alexa Fluor 488 at room temperature for 1 h (BD

Pharmingen). Slides were preserved in Prolong Gold Antifade

(Invitrogen) and images were obtained using an LSM510 Meta

confocal laser coupled to an Axiovert 200 (Zeiss) microscope.

Flow Cytometry
Flow cytometry was performed as previously described [39]. For

IL-17 intracellular staining, cells were previously stimulated with

PMA/ionomycin (Sigma) in the presence of Brefeldin A (BD

Pharmingen) for 4 h. For FoxP3 and IL-17 intracellular staining,

cells were permeabilized with the Cytofix/Cytoperm Kit (BD

Pharmingen). FccRs were blocked with anti CD16/CD32

antibody (Fc block) prior to staining with antibodies coupled to

fluorophores. The flow cytometry staining antibodies used were:

FITC-conjugated-anti-CD4 (clone RM4-5), PE-conjugated-anti-

CD8a (clones 53.6.7), PE-conjugated Rat IgG2a,k, FITC-conju-

gated Rat IgG2b and Cytofix/Cytoperm Kit from BD Pharmin-

gen; APC-conjugated-anti-CD25 (clonePC61.5), PE-conjugated-

anti-FoxP3 (Clone FJK-16s), APC-conjugated-anti-FR4 (clone

eBio12A5), APC-conjugated-anti-IL-17 (clone eBio17B7), PE-

conjugated Armenian hamster IgG1, AlexaFluor647-conjugated

Rat IgG2b and APC-Conjugated-Rat IgG2b, from eBioscience.

Samples were analyzed in a FACSCanto II Cytometer (Becton

Dickinson) using the FlowJo software (Tree Star, Inc. Oregon

Corporation).

Statistical Analysis
All experiments performed for gene expression analysis were

performed in groups of three mice (n = 3) and data are reported as

means 6 standard error of the mean. A representative experiment

of gene expression out of at least two experiments is shown.

Statistical significance was evaluated using the Student’s t-test

(95% confidence interval) with the GraphPad Prism version 5.0 for
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Windows (GraphPad Software, San Diego California USA, www.

graphpad.com). The Welch correction was applied when variances

were significantly different.
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