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Abstract

Significantly expressed genes extracted from microarray gene expression data have proved very useful for identifying
genetic biomarkers of diseases, including cancer. However, deriving a disease related inference from a list of differentially
expressed genes has proven less than straightforward. In a systems disease such as cancer, how genes interact with each
other should matter just as much as the level of gene expression. Here, in a novel approach, we used the network and
disease progression properties of individual genes in state-specific gene-gene interaction networks (GGINs) to select cancer
genes for human colorectal cancer (CRC) and obtain a much higher hit rate of known cancer genes when compared with
methods not based on network theory. We constructed GGINs by integrating gene expression microarray data from
multiple states – healthy control (Nor), adenoma (Ade), inflammatory bowel disease (IBD) and CRC – with protein-protein
interaction database and Gene Ontology. We tracked changes in the network degrees and clustering coefficients of
individual genes in the GGINs as the disease state changed from one to another. From these we inferred the state
sequences Nor-Ade-CRC and Nor-IBD-CRC both exhibited a trend of (disease) progression (ToP) toward CRC, and devised a
ToP procedure for selecting cancer genes for CRC. Of the 141 candidates selected using ToP, ,50% had literature support as
cancer genes, compared to hit rates of 20% to 30% for standard methods using only gene expression data. Among the 16
candidate cancer genes that encoded transcription factors, 13 were known to be tumorigenic and three were novel: CDK1,
SNRPF, and ILF2. We identified 13 of the 141 predicted cancer genes as candidate markers for early detection of CRC, 11 and
2 at the Ade and IBD states, respectively.
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Introduction

Colorectal cancer (CRC) is the fourth leading cause of cancer

death worldwide but rank higher in economically more

developed societies. Like other types of cancer, CRC is a

systems disease, a manifest of multiple functional disruptions in

the tumorous cells. Global gene expression profiling using

oligomeric DNA microarrays has been widely employed to gain

insight in the underlying mechanisms for complex diseases,

including CRC [1,2]. Previous studies on gene expression

profiles have provided distinct perspectives on the molecular

etiology of CRC [3–6]. The overlap between published gene

signatures from different studies for CRC tended to be small.

Early on it was recognized the identification of differentially

expressed genes (DEGs) in two cohort samples was a potentially

useful approach [7–9]. Drawing an inference from a long list of

DEGs is however a daunting task and may lead to widely

varying results [10]. Gene sets analysis, a method based on priori

biological information such as Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) on modules that

are functionally annotated [10], partially meets the challenge.

The rationale for this approach, which groups DEGs into

functional subsets using GO or KEGG (or something equiva-

lent), derives from the observation that most genes function as

part of a group rather than singly [11]. However, because

same-cohort genomic profiles are known to be highly hetero-

geneous, pre-grouped gene sets may not reflect the actual

grouping in a cohort under study. Furthermore, a majority of

human genes have not yet been assigned a definite pathway or

protein complex [12].

Various causes of CRC have been revealed, but the global

landscape for dynamic features of carcinogenesis processes

remains unclear. Protein-protein interactions (PPIs) are funda-

mental to biological processes, and protein interaction networks

(PINs) provide a global yet static view of cellular mechanisms in

cell. Dynamic features of PINs may be uncovered through the
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integration of PPI data gene expression profiles [13]. Genes

with correlated expression levels over different physiological

states or over individuals in a cohort are likely to be involved in

similar functions or cellular processes. For instance, genes

regulated by a common transcription factor are expected to

have correlated gene expressions. A gene interaction network

(GGIN) constructed by integrating gene expression data with

PPI data is meant to an interaction map of bio-molecules that

indicate co-regulatory relationships, co-expression associations,

downstream physical interaction between proteins encoded by

the ‘‘interacting’’ genes, and possibly other relationships between

genes [14]. Many methods employing, for instance, correlation

coefficient [15,16], mutual information [17,18], simulated

annealing [19], and reverse engineering approaches [20,21]

have been applied to re-construct GGINs for large-scale gene

expression data in model organisms, including yeast and

human. Several studies demonstrated the extraction of dynamic

properties of condition-specific networks by integrating gene co-

expression patterns and physical protein interactions [13,22,23].

With cancer being a systems disease, systemic changes in a

cancerous cell during cancer progression are expected to

measurably manifest in changes occurring in the GGINs

constructed from data taken at different states of the disease. An

important cause of cancer is serially accumulated gene mutations

[24]. Recent systematic screenings of cancer genomes have

revealed a significant number of functionally heterogeneous genes,

or hubs, that are mutated in colorectal tumors [25–27]. Because

hub genes are important in the function of a cell, we assumed that

a change in the status of a hub gene had a higher probability than

an average gene in reflecting an interrupted functional change in

the cell. Thus, a hub gene in a normal state that became a non-

hub gene should have a higher probability in reflecting a disease-

linked loss in cell function, while the opposite may reflect a gain in

cell function.

Here, we constructed GGINs for the four physiological states –

normal (Nor), colorectal adenoma (Ade), inflammatory bowel

disease (IBD), and CRC – by integrating gene expression data

from four corresponding sets of cohort microarrays with Human

Protein Reference Database (HPRD) [28]. In a given state, two

genes were assumed to ‘‘interact’’ if there expression intensities

were highly correlated and if proteins encoded by the pair were

known to interact. Using the GGINs we constructed, we devised

ToP (trend of progression) procedure, whereby genes whose

degrees and clustering coefficients [29] in GGINs changed in step

with the trend of the progression of cancer, or, genes that are not

hubs in the Nor network but become hubs in the CRC network,

were selected as potentially cancer genes.

We applied the ToP procedure to the state sequences Nor-Ade-

CRC and Nor-IBD-CRC and selected genes with statistical

significance (permutation test p-value ,0.001) similar to those

obtained by conventional methods as eBayes and SAM. However,

genes selected by ToP had a much higher hit rate (,50%, p-value

,0.001) of known cancer genes than hit rates obtained by eBayes

and SAM (,20%, p-value , 0.5). Because ToP based its analysis

on data from a sequence of states, we also used it to identify

potential biomarkers for early diagnostic detection of CRC at the

Ade and at the IBD states.

Materials and Methods

Samples and Microarrays
Data provided by the Gyorffy group [30] on genome-wide

gene expression profile from tissue samples of 53 human

patients evaluated by HG-U133 Plus 2.0 platform microarrays

(Affymetrix, Santa Clara), which list 18,267 genes, were

downloaded from Gene Expression Omnibus (GEO) database

(GEO accession no. GSE4183). The arrays were made from

patients’ tissues grouped into four physiological states of frozen

colonic biopsy: 8 for Nor, and 15 each for Ade, IBD, and

CRC, respectively. Colon biopsies were taken during routine

endoscopical intervention before treatment [31]. The accuracy

of the microarray expression values were validated by TaqMan

RT-PCR assay [30]. Analyses of microarray data carried out in

this work were conducted in R environment (version 2.12.0).

Selection of Significant DEGs
Significantly expressed genes were selected using the Signif-

icance Analysis of Microarrays algorithm (SAM) [9] and one-

way analysis of variance (ANOVA) [32]. The statistical

thresholds for the p-value of Student’s t-test and fold change

used in SAM were determined using published real-time PCR

results on 84 genes [30] (Figure S1). We used two modes, (1)

the two-class unpaired mode for selecting genes whose mean

expression level was significantly different in two groups of

samples (analogous to between subjects t-test) and (2) the multi-

class mode to select genes whose mean expression was different

across a set of samples greater than two (analogous to one-way

ANOVA). The empirical Bayes statistics (eBayes) was used as an

alternative statistical model. For a review of these algorithms see

in [33]. FDRs [34] were computed using both Student’s t-tests

and ANOVA tests using random permutation in SAM through

the R package ‘‘siggenes’’.

Construction of GGIN
Protein-protein interaction (PPI) information on 30,047 protein

entries and 39,194 interactions was downloaded from HPRD [28]

and were integrated with state specific microarray gene expression

data to construct GGINs, one for each state. For a given state and

a Pearson p-value (see below) threshold p0, we included a pair of

genes in the GGIN if: (1) the p-value for the pair was not greater

than p0; (2) the protein pair encoded by the gene pair was linked in

the PPI data. For a given state and a set of microarray data, a

Pearson’s correlation coefficient (PCC) between each gene-pair

was calculated based on the intensities across the set for the pair.

That is, if a set of n microarrays is used for the computation, the

PCC is that between two sets of n intensities. Statistical inference

based on PCC was performed by permutation tests and t-statistics.

We call a p-value corresponding to a PPC a Pearson p-value.

Network properties are n-dependent. Results given are for 8-

sample networks. For the 8-sample Nor, one network was

constructed (for each p0). For each of the other three 15-sample

states, 100 networks were constructed, each from an eight-sample

sets randomly selected from the 15 samples. We use standard

network terminology. We say a node i with degree ki has ki

neighbors. The clustering coefficient C of a node is the ratio of the

number of links e among the neighbors of degree-k node to the

number of possible such links: C = 2e/(k(k21)) [29]. Layouts for

networks were made using the open source platform Cytoscape

(version 2.7.0) through the ‘‘edge-weighted spring-embedded’’

layout function. Default parameters values were used, except that

the ‘‘number of iterations’’ for each node was increased to 200,

and ‘‘strength’’ was changed to 1500 to avoid collisions. The plug-

in ‘‘GOlorize’’ [35] was used to automatically assign colors to

gene nodes to highlight enriched gene-ontology terms. The color

and width of an edge were used to indicate sign and strength of

correlation, respectively; red (blue) for positive (negative) correla-

tion.

ToP
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Functional Sub-networks and FFN
Genes in each state-specific GGIN were assigned to over-

represented biological functions as defined in GO term association

[36]. Enrichment analyses based on conditional hypergeometric

test [37] were made using the R package GOstats [38]

downloaded from the Bioconductor website [39]. Based on

functional gene sets a GGIIN was reduced to FFN for easier

visual inspection.

ToP and ToP+SAM (TPS) Procedures for Selecting Cancer
Gene Discovery

The ToP procedure (Figure 1) applied to the sequence Nor-X-

CRC (X = Ade or IBD, as the case may be) consisted of the steps:

(1) Construct GGINs for Nor, X, and CRC using a threshold

Pearson p-value ,0.01. (2) Select a gene if: (a) it appears in at least

one GGIN; (b) it at least in one GGIN satisfies degree D .4 and

clustering coefficient C .0; (c) its D and C increase along the

sequence (but no limitation is set on the Nor-X pair). (3) Form a

separate category for predicted cancer genes encoding key

transcription factors. In the TPS procedure, an extra filtering

step added: (4) Limit the selected genes to be a DEG (adjusted p-

values ,0.05, fold change .1.5 or ,1/1.5) at least in X vs. Nor or

in CRC vs. Nor.

Hit Rate for Cancer Genes
Hit rate was defined as the ratio of selected genes appearing

given as a cancer-related gene in CancerGenes [40] to the total

number of selected genes, given as a percentage. CancerGenes lists

expert-annotated cancer related genes from key public databases

including Cellmap.org (http://cancer.cellmap.org), Entrez Gene

[41], and Sanger CGC [42], and cancer reviews [24,42–44]. Total

3,165 genes were collected and various types of sources (e.g.,

cancer gene, tumor suppressor, stability gene, etc.) were all

included in the hit rate calculation. Because the Affymetrix HG-

U133 Plus 2.0 array platform lists 18,267 genes and CancerGenes

lists 3,165 genes, a random selection of genes would yield a hit rate

close to 20%.

Randomization
We performed two kinds of randomizations. Type-1: Separately

for every gene, scramble the intensities on entire set of arrays. In

each case of randomization, one sweep over all the genes was

performed. This process conserves the distribution of intensities for

each gene but destroys the intensity correlation between gene

pairs. Type-2: randomly assign gene pairs to each link in a

network. The procedure conserved the number of links but not the

topology of a network. In each randomization, one sweep over all

the links in the network was performed. This process conserves the

number of links in, but not the topology of, the network. We tried

a third, type-3, topology-conserving randomization on networks,

in which the topology was left unchanged but genes were

randomly assigned to nodes in a network. This proved to be not

a true randomization.

Selection of Markers for Early Diagnostic Detection of
CRC

Biomarkers for early detection in the Ade state were selected

from the TPS gene set for the Nor-Ade-CRC sequence (see

Results) those having a five-fold or more increase in (network)

degree from Nor to Ade and being a DEG with a p-value ,0.0001

in Ade vs. Nor. Similarly for biomarkers for early detection in the

IBD state, with IBD replacing Ade.

Figure 1. ToP procedure flow chart for selecting of CRC cancer genes. DEG, differentially expressed gene; PPIN, protein-protein interaction
network. Boxes in the right-most column illustrate how the predicted tumorigenic gene CDC6 satisfies the ToP criteria: the gene-gene interaction
sub-network associated with it grows markedly as the state progress from normal through adenoma to CRC.
doi:10.1371/journal.pone.0065683.g001

ToP

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e65683



Results

Significant Differentially Expressed Genes
The total set of selected 2,666 DEGs (FDR ,0.001, Student’s t-

test (in SAM) p-value ,0.05, fold change .1.5; Figure S1) was the

union DEGs separately selected from three state pairs; ADE vs.

NOR, 1652 genes; CRC vs. NOR, 1100 genes; IBD vs. NOR:

1629 genes. The DEGs were classified according to GO into

eleven functional modules: DNA replication, DNA repair, cell

cycle, cell proliferation, RNA metabolism, transcription, transla-

tion, apoptosis, signal transduction, immune system, cell adhesion

(Table S1). A heat map generated by the two-way unsupervised

hierarchical clustering method (Figure S2) shows the fragmenta-

tion into two parts of CRC, reflecting relative heterogeneity in the

cancer samples. However, no difficulty in extracting CRC specific

DEGs was encountered.

Disease Networks were Larger and more Complex, and
CRC Network had Highest Complexity

Results for GGINs given are for 8-sample networks. There was

one GGIN but 100 GGINs for each of the disease states were

constructed (see Methods). The number of genes and (gene-gene)

links both decreased with decreasing Pearson p-value threshold p0

[45] in constructed GGINs (Figure 2), as expected. For given p0

both the gene and link numbers increased in the progression Nor

to Ade to IBD/CRC. Gene number in the IBD network was

slightly larger than in CRC, but the link number in CRC was

significantly larger than IBD. The degree distributions of the four

networks obeyed power-laws. In terms of network complexity

(Table 1), the four networks belongs to three groups, in ascending

order of complexity: Nor, Ade and IBD, and CRC. All four

networks were composed of connected sub-networks, or clusters.

The three disease networks were each dominated by a giant

cluster, containing (on average) 760, 971, and 1388 genes, for Ade,

IBD, and CRC, respectively. The Nor network does not have a

giant cluster; its two largest clusters respectively had 219 and 73

genes.

CRC Network had the Highest Complexity and was
Qualitatively different from the IBD Network

The percentage of hub-like genes increased with disease severity

(Figure 3; see Figure S3 for one set of GGINs). For instance, less

than 0.5% of the genes in Nor, but more than 10% in CRC, had

degrees higher than 11; only CRC had a significant number of

genes with degrees 16 or higher; only CRC had a non-negligible

percentage of genes with degrees greater than 16 while possessing

the highest level of clustering coefficient. Although much larger,

the complexity of the IBD network was similar to that of Ade. IBD

had more genes of degrees up to 5 than CRC, but fewer high

degree nodes and far fewer nodes with high degrees and large

clustering coefficients (Figure 3).

Sizes of Gene Sets of Functional Modules in FFNs
Generally Increased with Disease Severity

FFNs were reduced from GGINs through DEGs partition

according to GO terms (Figure 4; see Table S2 for GO enrichment

analysis for the functional modules). Sizes of functional modules in

FFNs generally increased with disease severity (Figure S4). The

relations Nor,CRC and Ade,CRC held for all 11 functions (the

‘‘,’’ symbol refers to the sizes in gene numbers of functional

modules, with p-value less than 1024). The relation Nor,A-

de,CRC held in 10 of the 11 functions (the immune system

function was the exception), with the trend being especially strong

for RNA metabolism, transcription, DNA repair, DNA replica-

tion, and cell cycle. In comparison, the relation Nor,IBD held in

only six functions: translation, cell adhesion, cell proliferation,

immune system, signal transduction and apoptosis. The relation

Nor,Ade,IBD did not hold with good statistical support in any

of the functions.

Ade-CRC Pair had Significantly Larger Inter-FFN
Percentage Intersections of Functional Link Sets

For every function in a FFN a list of in-function links, namely

interactions between two genes in the functional module, was

constructed, and percentage Inter-FFN intersections of link sets

were computed (Figure 5). The Ade-CRC intersection stood out as

an outlier relative to the other five intersections. For almost all

functional modules the five intersections were closely bunched at

values typically half the size of the corresponding Ade-CRC

intersections. Relative to the other five intersections the Ade-CRC

intersections had p-values of ,1022 in all but one of the functions

(cell adhesion), and ,1023 in seven functions (Figure 5). A similar

treatment of the Ade-IBD intersections found that all functions

had p-values close to unity. The relatively large overlap between

DEG sets from Ade and CRC has been noted before [46–48].

Examples of ToP Genes
A ToP gene was required to have its network connectivity and

complexity grew noticeably along a state sequence. Four examples

of such genes that code transcription factors (TFs) were the three

genes ILF2, CDK1, and SNRPF, curated from both the Ade- and

IBD-sequences, and MCM10, exclusively from the IBD-sequence

(Figure 6). In each case the predicted gene was a low-degree node

in the relatively small Nor network, became a moderate hub in a

noticeably grown Ade or IBD network (or both, as the case may

be), and finally a super-hub in the large and complex CRC

network.

Discovery of Cancer Genes using the ToP Procedure
The ToP procedure was applied to the Nor-Ade-CRC (or

simply Ade) and Nor-IBD-CRC (or IBD) sequences to select

Figure 2. Number of genes and gene-pair interactions in
networks as functions of Pearson p-value. Number of genes (A)
and gene-pair interactions (B) in the disease specific networks, as
functions of Pearson p-value threshold, p0, in the 8-sample gene-
networks of patients belonging to the four state-types: Nor, Ade, IBD,
and CRC. Non-Nor results are averaged over 100 random 8-sample sets.
Error bars indicate standard deviations. Asterisks above (below) the
curves give p-values of two-sample Student’s t-test between CRC and
IBD (CRC and Nor): * p-value,1024; ** p-value,1028; *** p-
value,10212; **** p-value,10216.
doi:10.1371/journal.pone.0065683.g002

ToP
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cancer genes, yielding lists of 389 and 381 genes, respectively, with

373 genes appearing in both lists (Table S3, Figure S5A). The TPS

procedure yielded 134 and 74 genes from the Ade and IBD

sequences, respectively, with 67 common to both lists (Table S4,

Figure S5B). In comparison, the ToP selected only 7 and 4 genes,

respectively, from the CRC-Ade-Nor and CRC-IBD-Nor se-

quences, and TPS reduced the sets to null sets (data not shown),

confirming the two sequences did not exhibit any trend toward a

disease state. Application of eBayes and SAM with thresholds p-

value,0.05 and absolute fold-change.1.5 yielded DEG lists of

2648 and 2666 genes, respectively. Whereas each of the steps in

the ToP procedure had an important impact on reducing the pool

of candidate genes, the ToP gene requirement was the major

limiting factor. For the Ade sequence the requirement that genes

encode proteins listed HPRD reduced the number of candidates

from 18,267 to 9,122; that it belonged to one of the relevant

GGINs, to 3,556; that it was a ToP gene, to 389; that it was a

DEG by SAM, to 134. For the IBD sequence the first two

reductions were the same, and the corresponding last three

numbers were 3,074, 381, and 74 (Figure S6).

Permutation Tests
The p-values for permutation tests by randomization of the all

the selected genes lists were ,0.001 (Figure 7A). The numbers

(standard deviation in brackets) of eBayes and SAM DEGs in 1000

type-1 randomizations (see Methods) were 228.81 (13.93) and

255.31 (25.57), respectively (Figure S7A–B). Because randomiza-

tion destroyed intensity correlation among genes, the 1000

randomizations yielded only 0.42(1.2) genes (Figure S7C), making

network construction impossible. For the ToP procedure gene-

intensity associated was subject to type-1 randomization and gene-

link associated, to type-2 (see Methods). In 1000 randomizations

the numbers of genes selected by the ToP and TPS for the Ade

sequence were 29.09 (standard deviation 8.18) and 8.31 (3.36),

respectively (Figure S8A–B); corresponding number for the IBD

sequence were 28.01 (8.15) and 6.58 (2.91) (Figure S8C–D).

Hit Rates for known Cancer Genes
Distribution of hit rates for known cancer related genes in gene

selected in 1000 randomization of conventional methods (eBayes

and SAM; Figure S7D–E) and ToP based methods (Ade-ToP,

Ade-TPS, IBD-ToP, and IBD-TPS; Figure S8E–H) all have

averages in the 19%–23% range, an expected value in view of the

3,165 cancer related genes among the 18,267 genes on a HG-

U133 Plus 2.0 array. The hit rates of the real cases (permutation

test p-value by randomization in brackets) were 23% (0.422), 22%

(0.547), 47% (,0.001), 50% (0.008), 51% (0.008), and 54%

(,0.001), respectively (Figure 7B). In comparison, the average hit

rate of selected genes in all randomization tests was ,20% (Figure

S8). The hit rates for the top 134 genes from eBayes and SAM

were 27% and 33%, respectively (Figure 8). The combined Ade

and IBD TPS list had 141 predicted cancer genes, of which 67

came exclusively from Ade, 67 were common to Ade and IBD,

and 7 came exclusively from IBD (Table S3). GO enrichment

analysis showed that the GO terms nuclear lumen, cell cycle and

nucleoside binding were the most enriched, involving 51%, 33%

and 34%, respectively, of the genes (Table 2). Sixty-seven of the

141 genes were known cancer genes, of which 27, 39, and 1,

respectively, came from Ade only, were common to Ade and IBD,

and came from IBD only (Table S4).

CRC Cancer Genes and Transcription Factors
Forty-eight of the 141 genes had been reported to be CRC

cancer genes, of which 15, 32, and 1, respectively, came from Ade

only, were common to Ade and IBD, and from IBD only (Table 3).

The percentage of transcription factor (TF)-encoding genes among

the selected genes varied depending on method used (Figure 8A).

In the case of the top 134 genes, the number of TF genes ranged

from 10 to 17 (Figure 8B). Among the 141 TPS genes, 16 were

transcription factor (TF)-encoding (Table 4), of which 12 were

listed in CancerGenes [40] and 11, including the 3 not listed in

CancerGenes, had been cited in the literature as CRC associated

(Table 3). PML, listed in CancerGenes and cited in the literature as

CRC related, was the only TF among the 16 TFs that came

exclusively from the IBD sequence; the four TFs CEBPB, E2F5,

MYC, and RUVBL1 were common to both the Ade and IBD

Table 1. Structural parameters for the four gene-gene interaction networks* (GGINs).

Network No. of nodes No. of edges Mean degree ,k.

Power-law exponent of degree
distribution Mean clustering coefficient C

Nor 1436 1215 1.69 22.75 0.0458

Ade 1801 2281 2.53 22.23 0.0904

IBD 2478 3457 2.79 22.22 0.0922

CRC 2318 4988 4.30 21.85 0.1266

*For Pearson p-value p0 = 0.01. For disease networks numbers given are averaged over 100 8-sample networks.
doi:10.1371/journal.pone.0065683.t001

Figure 3. Percentage of genes in a given range of clustering
coefficient plotted as a function of degrees in the Nor, Ade, IBD
and CRC networks. Genes of degree 1 are not shown. The clustering
coefficient of a gene of degree 2 is either 0 or 1. Asterisks indicate p-
values (by Wilcoxon rank sum tests) relative to Nor: * p-value ,0.05; **
p-value ,0.01.
doi:10.1371/journal.pone.0065683.g003

ToP
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sequences; the remaining 11 came exclusively from the Ade

sequence (Table 4).

Biomarkers for Early Diagnostic Detection of CRC
Among the 141 predicted TPS cancer genes 13 were identified

as markers for early diagnosis of CRC; 11 for detection in the Ade

state, of which 9 came exclusively from the Ade sequence and 2

were common to both sequences, and 2, for detection in the IBD

state and also common to both sequences (Table 5). In each case

the candidate either did not appear or appeared as a single-link

gene in (the) Nor (network), but blossomed into one having five or

more links and were strongly expressed (p-value ,0.0001) in Ade

or IBD, as the case may be, and proceeded to become a substantial

hub in CRC.

Discussion

Most noticeable about the GGINs was that their sizes and

complexities grew with the severity of disease (Figure 2) in

ascending order: Nor, Ade, IBD, and CRC. The IBD network had

slightly more genes but far fewer links than CRC. In the three

metrics that measured network complexity, IBD closely resembled

Ade, placing the two midway between Nor and CRC (Table 1).

From this we infer that normal and healthy cells operate under

optimal and the most efficient conditions, whereas systemically

diseased cells such as cancer cells are the extreme opposite.

The ToP procedure succeeded in confirming both Ade and IBD

sequences as state sequences trending to cancer, while showing the

sequences CRC-Ade-Nor and CRC-IBD-Nor did not. In com-

parison, the much simpler method of examining overlaps of

functional modules (Figure 5) alone was not a reliable identifier of

ToP sequence: it suggested Ade sequence as ToP, but not the IBD

sequence. The procedure also identified candidate cancer genes

with high efficiency. However, the IBD sequence had a

significantly weaker trend toward CRC than Ade. Although the

IBD network was much larger than the Ade network (Table 1),

exclusive IBD-sequence contribution to various categories of

cancer genes was much smaller than that from the Ade sequence

(Table 6). This seems to suggest that unlike Ade, which is

essentially a way station to CRC, IBD may or may not lead to

CRC. As an indication of this weaker trend, the permutation-test

p-value for the 74 IBD-TPS genes in 1000 topology-conserving

type-3 randomizations (weaker than a true randomization; see

Methods) was close to unity. In comparison, the p-value for the

134 Ade-TPS genes in a similar test was ,0.001.

Although there are unknown errors in array data, it is generally

acknowledged that the associated noise is much smaller than

variations in data due to heterogeneity in patients. Assumption we

used to construct the GGINs and to identify ToP genes may have

Figure 4. Function-function networks. Nodes are functional modules named after Gene Ontology terms. Functional modules containing less
than 70 genes are not shown. The diameter of a module scales with the logarithm of the number of genes in the module. The color shade of a
module indicates the number of intra-module gene-gene interactions per gene. The thickness of the edge indicates the number of inter-module
gene-gene interactions.
doi:10.1371/journal.pone.0065683.g004

Figure 5. Percentage overlaps of functional modules. 0 For a
given functional module, the percentage overlap is expressed as the
ration of the number of links (belonging to that module) common to
the two networks to the number of links in the smaller partner.
Asterisks indicate p-values from one-sample Student’s t-test of the Ade-
CRC intersection versus the other five intersections: for *, **, and ***, p-
value,1022, 1023, and 1024, respectively.
doi:10.1371/journal.pone.0065683.g005
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its own sources of errors. For instance, GGIN construction might

be improved by incorporating sub-cellular localization data [49],

and selection rules for ToP genes could be further refined. On the

other hand, the fact that our ToP gene lists had permutation test p-

values less than 0.001 and had high hit rates for known cancer

genes provides assurance that most of the selected genes were not

chance results.

A surprise of this study was that although eBayes and SAM were

just as statistically robust as ToP in identifying differentially

behaving genes as potential biomarkers, the two standard methods

did not select cancer genes with statistical significance (p-value

,0.5), a task ToP did very well (p-values ,0.001) (Figure 7). The

inference is that a biomarker, even in cancer related diseases, need

not be cancer causing; it may be simply a symptom of cancer. The

better performance by ToP in identifying cancer genes confirmed

our supposition that motivated the design of the ToP procedure:

cancer genes tended to be hubs in GGINs.

A majority of the 48 predicted genes already known to be CRC

associated (Table 3) were on common CRC pathways: prolifer-

ating signals, resisting cell death, inducing angiogenesis, invasion

and metastasis. Four genes had functions in epigenetic switching:

histone deacetylase 2 (HDAC2), enhancer of zeste homolog 2

(EZH2), N-acetyltransferase 10 (NAT10), protein arginine meth-

yltransferase 1(PRMT1). Five, the transforming growth factor beta

1 (TGFB1), B-cell CLL/lymphoma 2 (BCL2), replication factor C

(activator 1) 2, 40kDa (RFC2); E2F transcription factor 5, p130-

binding (E2F5), and v-myc myelocytomatosis viral cancer gene

homolog (MYC) were among the cancer ‘‘hallmark’’ genes

discussed in [50]. TGF-beta is best known for its anti- proliferative

and apoptosis inducing effects. In many late-stage tumors, TGF-

beta signalling is redirected away from suppressing cell prolifer-

ation to activating a cellular EMT (the epithelial-to-mesenchymal

transition) process, and confers on cancer cells traits associated

with angiogenesis and migration [51–53]. In the event, the real

anti-apoptotic signals are conducted by the Bcl-2 family of

regulatory proteins including Bcl-xL, Bcl-w and A1, acting largely

by binding to suppress two pro-apoptopic proteins (Bax and Bak)

[54]. MYC and E2F are up-regulated in mitogenic tumors in

order to sustain proliferative signals. These genes have diverse

effects on tumor progression but share two general principles,

higher levels in a specific signal and versatile functions across

different cancer signals, and illustrate the principle that distinct

Figure 6. Examples of changes in partial gene networks connected to cancer genes. Partial networks to which the four ToP genes ILF2 (top
left), CDK1 (bottom left), SNRPF (top right), and MCM10 (bottom right) separately belong in the Nor, Ade, IBD and CRC networks. In each case, the size
of the module connected to the ToP gene increases along the state sequence Nor-Ade-CRC or Nor-IBD-CRC, or both. Nodal trim color code: over-
expression, red; under-expression, blue; neutral, black. Nodal color code for GO functions: cell cycle, green; RNA splicing, purple; DNA repair, brown;
chromatin remodelling and histone modification, yellow.
doi:10.1371/journal.pone.0065683.g006
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cancer hallmarks can be co-regulated by the same transforming

agent. For example, TGF-beta from tumor cells not only

contributes to invasion and migration, but also plays a role in

evading immune destruction [55]. MYC induces angiogenesis

directly and drives proliferative signaling [56]. PML is the only

CRC associated gene curated exclusively from the IBD sequences.

It is often involved in the translocation with the retinoic acid

receptor alpha gene associated with acute promyelocytic leukemia.

The gene encodes a phosphoprotein that localizes to nuclear

bodies and has many functions, including as a transcription factor

and tumor suppressor [57]. Eight of the predicted 48 CRC cancer

genes have been studied as diagnostic markers and 20, prognostic

markers (Table 3).

The vast majority of the 141 predicted cancer genes were up-

regulated. Only 12 were down-regulated, of which 6 were from the

7 exclusive IBD-sequence genes. Four of the down-regulated genes

were known cancer genes: KAT2B (from the Ade sequence only),

BCL2, IQGAP2 (from Ade & IBD), and PMT (from IBD only).

KAT2B encodes K (lysine) acetyltransferase 2B, also known as

P300/CBP-associated factor, a protein that suppresses the

adenoviral oncoprotein E1A by counteracting its mitogenic

activity [58]. BCL2 encodes a family of proteins that regulate

and contribute to apoptosis; some members of the family are anti-

apoptosis while others are pro-apoptosis [59,60]. IQGAP2

encodes a member of the IQGAP (IQ motif containing GTPase

activating protein) family. It interacts with other biomolecules to

regulate cell morphology and motility [61]. PMT encodes

promyelocytic leukemia, a phosphoprotein that localizes to nuclear

bodies where it functions as a transcription factor and tumor

suppressor [57].

Three of the 16 TF-encoding genes in Table 4, cyclin-

dependent kinase 1 (CDK1), small nuclear ribosomal polypeptide

F (SNRPF), and interleukin enhancer binding factor 2 (ILF2), were

not listed in the CancerGenes [40]. However, they show strong ToP

characteristics (Figure 6) and have been reported in the literature

as being CRC related (Table S5). We therefore view them as novel

cancer genes for CRC. An analysis of the GO enrichment in the

CRC network of protein modules regulated by the 16 TFs (Figure

S9) indicated that cell cycle (with 7 and 8 TFs showing strong and

moderate over-representation, respectively), DNA repair (4 and

11), RNA splicing (6 and 5), chromatin remodeling (null and 13),

histone modification (null and 13), DNA methylation (null and 5),

angiogenesis (null and 1), and inflammatory response (null and 1)

show over-representation. These may: reflect the instability of the

genomes of tumorous cells that facilitates the selection of cells for

their abilities to proliferate and invade and to evade host immune

systems (cell cycle and DNA repair) [62]; reflect the preponder-

ance of alteration in epigenetic regulation of gene expression, a

frequent event in human cancer (the three epigenetic functions)

[63]; suggest that tumorous cells utilize alternative splicing of

mRNA transcripts to generate abnormal genomic complexity

thereby hampering the effectiveness of tumor suppressor genes

including APC, TP53, and BRCA1 [64] or cause erroneous RNA

splicing in cancer cells (RNA splicing) [65]. Modules regulated by

the three novel TFs are highly or moderately overrepresented in

RNA splicing, DNA repair, RNA splicing. In addition, those by

SNRPF are moderately overrepresented in chromatin remodel-

ling.

Because ToP traces the network properties of genes through

sequences of states, starting from the healthy Nor through an

Figure 7. Results from 1000 randomization tests (white box)
and in actual cases (gray box). Randomization tests are type-1 for
eBayes and SAM, and type-2 for ToP and ToP+SAM (see Methods). (A)
Number of genes selected. (B) Percentage of genes listed in
CancerGenes [40] database among those selected in (A). ***, p-value
,0.001 for permutation test by randomization; **, p-value ,0.01; *, p-
value ,0.05.
doi:10.1371/journal.pone.0065683.g007

Figure 8. Percentages of selected genes listed in CancerGenes
[40] and gene coding transcription factors (TFs). Non-tumor TF
means not listed in CancerGenes. (A) In gene set selected by statistical
threshold. (B) In top 134 genes in gene sets. Numbers given above bars
indicate total number genes in set.
doi:10.1371/journal.pone.0065683.g008

Table 2. Gene ontology enrichment analysis for predicted
cancer genes.

Gene Ontology Class Genes (%)p-value
Adjusted p-value
(BH)

Nuclear lumen CC 71 (51%) 2.60e-33 6.40e-31

Cell cycle BP 46 (33%) 1.40e-23 9.50e-21

Nucleoside binding MF 47(34%) 1.50e-12 2.50e-10

doi:10.1371/journal.pone.0065683.t002
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Table 3. The 48 genes among the 141 predicted cancer genes known in the literature as diagnostic or prognostic markers for CRC,
or are reported to be associated with them (Table S5).

Gene symbol Gene name
No. of research
papers

Diagnostic
markers

Prognostic
markers

Sustaining proliferative signaling

AURKB aurora kinase B 3 V

BUB1B budding uninhibited by benzimidazoles 1 homolog beta (yeast) 4 V

CCND1 cyclin D1 3

CDC25A cell division cycle 25 homolog A (S. pombe) 4 V

CDC25B cell division cycle 25 homolog B (S. pombe) 2 V

CDK1 cyclin-dependent kinase 1 4 V

CDK2 cyclin-dependent kinase 2 .20

CDK4 cyclin-dependent kinase 4 6 V

CDK8 cyclin-dependent kinase 8 3 V

CENPA centromere protein A 3

E2F5* E2F transcription factor 5, p130-binding 4

HMGA1 high mobility group AT-hook 1 2

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) 2 V

MKI67 antigen identified by monoclonal antibody Ki-67 4 V

MYC* v-myc myelocytomatosis viral cancer gene homolog (avian) 5 V

PML promyelocytic leukemia 3 V

PLK1 polo-like kinase 1 (Drosophila) 3 V

PTPN11 protein tyrosine phosphatase, non-receptor type 11 3

SKP2 S-phase kinase-associated protein 2 (p45) 2 V

TUBB tubulin, beta 5

Resisting cell death

BCL2* B-cell CLL/lymphoma 2 7 V

BIRC5 baculoviral IAP repeat-containing 5 .20 V

KAT2B K(lysine) acetyltransferase 2B 1

HSPH1 heat shock 105 kDa/110 kDa protein 1 3 V

RFC2* replication factor C (activator 1) 2, 40 kDa 1

TRAP1 TNF receptor-associated protein 1 3

Inducing agiogenesis

PECAM1 platelet/endothelial cell adhesion molecule 2

MMP2 matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase,
72 kDa type IV collagenase)

7 V

MMP9 matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase,
92 kDa type IV collagenase)

16 V

Activating invasion and metastasis

CEBPB CCAAT/enhancer binding protein (C/EBP), beta 3

CSE1L CSE1 chromosome segregation 1-like (yeast) 5 V

PLAU plasminogen activator, urokinase 4 V

PSAT1 phosphoserine aminotransferase 1 1

SNRPF small nuclear ribonucleoprotein polypeptide F 3

SPARC secreted protein, acidic, cysteine-rich (osteonectin) 7 V

TGFB1* transforming growth factor, beta 1 11 V

Enabling replicative immortality

PARP1 poly (ADP-ribose) polymerase 1 1 V

TOP2A topoisomerase (DNA) II alpha 170 kDa 2

Epigenetic switching

EZH2 enhancer of zeste homolog 2 (Drosophila) 4 V

HDAC2 histone deacetylase 2 9 V
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intermediate state (Ade and IBD in the present case) to the final

disease state (CRC), it naturally lends itself as a tool for screening

genes at the intermediate state for early detection of the

development toward the eventual disease state. We identified 13

such genes, 11 markers in Ade and 2 in IBD (Table 5), 5 of which,

PRMT5, PSAT1, ILF2, CEBPB, and PLAU were known to be

CRC related (Table 3). Among the predicted early markers in

Ade, SUPT16H (FACT complex subunit SPT16) is a histone

interacting protein that facilitates chromatin transcription; it is a

TF and is listed in CancerGenes (Table 4). PRMT5 (Histone-arginine

N-methyltransferase 5) has been reported to be CRC associated

(Table 3), is not listed in CancerGenes but its homolog PRMT1,

Table 3. Cont.

Gene symbol Gene name
No. of research
papers

Diagnostic
markers

Prognostic
markers

NAT10 N-acetyltransferase 10 (GCN5-related) 13

PRMT1 protein arginine methyltransferase 1 2 V

Hyperactivation of fatty acid synthase

FASN fatty acid synthase 3 V

Genome Instability and Mutation

ATR ataxia telangiectasia and Rad3 related 3

MRE11A MRE11 meiotic recombination 11 homolog A (S. cerevisiae) 4

MSH2 mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli) .20

Deregulating cellular energetics

PKM2 pyruvate kinase, muscle 4 V

Avoiding immune destruction

ILF2 interleukin enhancer binding factor 2, 45 kDa 2

doi:10.1371/journal.pone.0065683.t003

Table 4. The sixteen transcription factors predicted to be cancer genes in this study.

TF Degree Clustering coefficient
Student’s t-test (Ade/IBD
v.s. Nor)

Student’s t-test (CRC
v.s. Nor) OMIM

Listed in
CancerGenes
[40]

Nor Ade/IBD CRC Nor Ade/IBD CRC p-value
fold
change p-value

fold
change

Ade only

+CDK2 1 22 48 0 0.05 0.05 5.58e-03 1.51 6.88e-02 1.33 116953 YES

+EZH2 0 6 11 0 0.07 0.02 1.63e-02 1.71 7.74e-02 1.46 601573 YES

+HDAC2 0 3 35 0 0 0.07 1.47e-05 1.53 3.54e-02 1.33 605164 YES

+HMGA1 0 0 6 0 0 0.13 ,1e-06 1.78 9.47e-02 1.25 600701 YES

+KAT2B 2 3 8 0 0 0 1.35e-03 0.55 1.60e-01 0.82 602303 YES

SUPT16H 1 5 8 0 0.4 0.32 5.39e-05 1.58 6.46e-02 1.21 605012 YES

TRIM28 0 4 8 0 0.17 0.11 1.47e-05 1.56 4.79e-02 1.33 601742 YES

YEATS4 0 3 12 0 0.67 0.68 1.02e-03 1.68 5.50e-02 1.48 602116 YES

+CDK1 21 39 68 0.01 0.03 0.01 3.25e-03 2.27 5.34e-02 1.92 116940 NO

+ILF2 1 7 12 0 0.29 0.64 ,1e-06 1.83 1.58e-02 1.49 603181 NO

+SNRPF 1 10 20 0 0.27 0.38 4.28e-04 1.52 6.97e-02 1.37 603541 NO

Ade & IBD

+CEBPB 1 1/6 7 0 0/0 0.05 3.24e-04/7.92e-05 1.80/1.20 5.15e-03 2.48 189965 YES

+E2F5 1 1/0 7 0 0/0 0.29 ,1e-06/1.76e-03 1.99/0.55 5.56e-03 1.89 600967 YES

+MYC 1 0/1 21 0 0/0 0.03 ,1e-06/3.1e-01 3.05/0.13 2.26e-02 2.14 190080 YES

RUVBL1 0 2/0 17 0 1/0 0.26 ,1e-06/2.8e-03 2.10/0.41 8.37e-03 1.78 603449 YES

IBD only

+PML 0 0 11 0 0 0.05 ,1e-06 0.85 2.00e-02 0.42 102578 YES

In each case, the degree of the TF increases in the progression Nor to Ade to CRC. TF’s in the first column marked by ‘‘+’’ have been reported in the literature as being
associated with CRC and appear in Table 3.
doi:10.1371/journal.pone.0065683.t004
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which is (Table 4). Both belong to the PRMT family of genes

involved in post-translational arginine methylation, and both are

believed to regulate the transcriptional elongation properties of

SUPT5H, a homolog of SUPT16H. The emergence of SUPT16H

and PRMT5 as early markers may indicate tumorigenic epigenetic

modification begins at an early stage. PSAT1, which encodes a

phosphoserine aminotransferase, is reported to be CRC associated

(Table 3); its overexpression stimulates cell growth and increases

chemoresistance in CRC cells [62]. The novel TF-encoding

cancer gene ILF2 is the only early marker that appears in both

Tables 4 and 5. Its low activity in Nor and drastically increased

activity in Ade has already been noted (Figure 6). A slightly less

stringent selection criterion – increasing the p-value threshold from

0.0001 to 0.0005– would qualify a second novel TF-encoding

cancer gene, SNRPF (Figure 6 and Table 4), as an early detection

marker. Four members of the CCT gene family that code various

subunits of the chaperonin containing T-complex protein, CCT3,

CCT4, CCT7, and CCT8, are predicted early markers. None are

listed in CancerGenes or have been reported to be cancer associated.

However, our results showed CCT7 to be the most active, and

CCT4 and CCT8 among the most active, early markers in Ade,

and CCT7 and CCT4 to be significant hubs in CRC (Table 5).

The early marker that develops into the most significant hub was

NOLC1. This gene, not known to be associated with CRC,

encodes the nucleolar and coiled-body phosphoprotein 1, has been

reported to be an enhancer of nasopharyngeal carcinoma

progression, and is essential for TP53 to regulate MDM2

expression [65]. CEBPB and PLAU were the only predicted

markers for early detection of CRC in the IBD. The PLAU gene

encodes plasminogen activator, a serine protease involved in

degradation of the extracellular matrix and possibly tumor cell

migration and proliferation [66]. The CEBPB gene is an

important transcriptional activator that plays a role in the

regulation of acute-phase reaction, inflammation and hemopoiesis

[67,68].

Summary and Conclusion
We summarize the main results in this report: (i) We built

GGINs for the four states Nor, Ade, IBD, and CRC. In terms of

interaction number and network complexity, Nor was the smallest

and least complex, CRC was at the opposite extreme, and Ade

and IBD were intermediates. (ii) We devised a ToP procedure

Table 6. Types of cancer genes contributed by the Ade and IBD state-sequences.

From TPS list generated by Predicted cancer genes In Cancergenes [40]
Reported in literature
as CRC-related TFs

Markers for early
detection (state of
detection)

Ade sequence 67 27 15 11 9 (Ade)

Both Ade & IBD sequences 67 39 32 4 2 (Ade) 2 (IBD)

IBD sequence 7 1 1 1 0

Total 141 67 48 16 13

doi:10.1371/journal.pone.0065683.t006

Table 5. Predicted candidate diagnostic markers for early detection of CRC in the Ade or IBD state.

Gene Degree Clustering coefficient
Student’s t-test (Ade/
IBD vs. Nor)

Student’s t-test
(CRC vs. Nor)

ANOVA
p-value

Cancer Genes
[40]

Nor Ade CRC Nor Ade CRC p-value fold change p-value fold change

Ade

*SUPT16H 1 5 8 0 0.4 0.32 5.39e-05 1.58 6.46e-02 1.21 1.00e-05 YES

#PRMT5 0 6 8 0 0.33 0.25 ,1e-06 1.78 2.77e-02 1.34 5.61e-06 YES

NOLC1 1 9 28 0 0.78 0.57 2.85e-05 1.75 2.30e-02 1.44 4.22e-05 NO

#$
PSAT1 0 5 18 0 0.4 0.67 ,1e-06 6.15 2.70e-03 5.62 3.54e-05 NO

CCT7 1 9 18 0 0.56 0.41 8.43e-05 1.54 2.58e-02 1.4 1.05e-03 NO

CCT4 0 7 17 0 0.71 0.46 ,1e-06 1.57 1.62e-02 1.45 1.25e-04 NO

*#ILF2 1 7 12 0 0.29 0.64 ,1e-06 1.83 1.58e-02 1.49 2.13e-05 NO

$
CCT3 0 5 11 0 0.6 0.67 ,1e-06 1.84 1.45e-02 1.55 1.81e-04 NO

DARS 0 6 10 0 0.33 0.47 4.89e-05 1.62 3.71e-02 1.43 1.37e-03 NO

CCT8 1 7 9 0 0.76 1 1.91e-05 1.51 1.43e-02 1.42 4.56e-04 NO

GEMIN6 0 5 9 0 0.5 0.72 ,1e-06 1.56 1.91e-02 1.39 5.28e-04 NO

IBD

$#*CEBPB 1 6 7 0 0.00 0.05 7.92e-05 1.20 5.15e-03 1.31 1.01E-03 YES

$#PLAU 0 5 6 0 0.00 0.07 3.22e-05 1.75 7.44e-03 1.43 7.76E-05 YES

A biomarker for early detection in the Ade state is not a DEG in the IBD state, and vice versa. The hash and asterisk superscripts indicate the gene also appears in Tables 3
and 4, respectively. Genes with a $ superscript are common to the ToP+SAM lists for the Ade and IBD sequences; genes without are from the Ade sequence only.
doi:10.1371/journal.pone.0065683.t005
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based on using changes in state-dependent network complexity of

individual genes for identifying genes that exhibited a trend of

disease progression, and used the procedure to identify sizable sets

of ToP and TPS (i.e., ToP+SAM) genes (permutation test p-value

,0.001) from the two state sequences Nor-Ade-CRC (the Ade

sequence) and Nor-IBD-CRC (the IBD sequence). (iii) About 50%

of the ToP (permutation test p-value ,0.01) and TPS (permuta-

tion test p-value ,0.001) genes were known cancer genes,

compared to about 22% of DEGs selected by SAM (permutation

test p-value ,0.5). (iv) TPS genes from the Ade sequence

numbered 134, those from the IBD sequence numbered 74; the

intersection of the two lists had 67 genes. (v) IBD is a weaker

precursor to CRC than Ade; of the 13 genes identified as markers

for early diagnosis of CRC, 11 was for detection in the Ade state

and 2, in the IBD state.

We have shown ToP to be potentially powerful procedure for

predicting cancer genes from gene expression data. Our results

should be subject to experimental tests. Because every predicted

cancer genes also had a predicted growing (or shrinking in a few

cases) gene network underlying it, the prediction may be validated

(or not) by a suitably timed series of tests. Such tests could provide

new insights to colorectal tumorigenesis. Our early detection

marker may also similarly be validated, if samples tracing the

development of Ade or IBD patients with and without the marker

gene up-regulated are made available. We believe the ToP

procedure can be usefully applied to other types of cancers and

other systems diseases. Ultimately, we envision the ToP approach

developed into a routine tool used in the early detection and the

diagnostic of cancer (and other systems diseases), and for drug

discovery for systems cancer treatment.

Supporting Information

Figure S1 ANOVA p-values and fold-changes deter-
mined with the SAM algorithm of 84 genes (in 36 colon
biopsies) whose significances were verified Real-time
PCR data [15].

(TIF)

Figure S2 Hierarchical clustering for 2,666 differential
expressed genes, or DEGs. The genes are classified according

to GO terms. Color bar gives normalized log2-intensities of genes.

(TIF)

Figure S3 Genes in the giant clusters of the p0 = 0.01
networks are color-coded according the Gene Ontology
functional modules.

(TIF)

Figure S4 Numbers of genes in GO classification in the
p0 = 0.01 Nor, Ade, IBD and CRC networks. For Ade,

CRC, and IBD, error bars are obtained from bootstrapping 100

times eight out of fifteen chips. Asterisks indicate p-values from

one-sample Student’s t-tests between a disease state and Nor: for *,

**, ***, and ****, p-value ,1024, 1028, 10212, and 10216,

respectively.

(TIF)

Figure S5 Gene sets selected in the ToP and ToP+SAM
(TPS in text) procedures from the Nor-Ade-CRC and
Nor-IBD-CRC sequences, and their intersections.
(TIF)

Figure S6 Size of gene set after each stage of screening
in the ToP procedure.
(TIF)

Figure S7 Results from 1000 type-1 randomization tests
(see Methods) and in actual cases (red lines). (A–C)

Distribution of number of selected genes. (D–E) Distributions of

percentages of selected genes listed in CancerGenes [40].

(TIF)

Figure S8 Results from 1000 type-2 randomization tests
(see Methods) and in actual cases (red lines). (A–D)

Distribution of number of selected genes. (E–H) Distributions of

percentages of selected genes listed in CancerGenes [40].

(TIF)

Figure S9 Analysis of gene ontology enrichment in the
CRC network of protein modules (right-hand column)
regulated by the 16 TFs (bottom) selected by ToP+SAM.
(TIF)

Table S1 Gene ontology enrichment results for six
DEGs clusters.
(XLS)

Table S2 Gene ontology enrichment analysis for the
four networks.
(XLS)

Table S3 The 397 predicted cancer genes curated by the
ToP procedure. Genes in the first column marked by ‘‘*’’,

exclusively from the Nor-Ade-CRC sequence; Genes marked by

‘‘#’’, exclusively from the Nor-IBD-CRC sequence; Genes

without marks, from both.

(XLS)

Table S4 The 141 predicted cancer genes curated from
the ToP+SAM procedure. Genes in the first column marked by

‘‘*’’, exclusively from the Nor-Ade-CRC sequence; Genes marked

by ‘‘#’’, exclusively from the Nor-IBD-CRC sequence; Genes

without marks, from both.

(XLS)

Table S5 References on the 48 CRC-related genes
among the 141 predicted cancer genes. Genes are grouped

under GO terms. The symbol #, exclusively from the Nor-Ade-

CRC sequence; &, exclusively from the Nor-IBD-CRC sequence;

$, from both. PML is the only "&" gene.

(XLS)
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