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Abstract

ChIP-seq is increasingly being used for genome-wide profiling of histone modification marks. It is of particular importance
to compare ChIP-seq data of two different conditions, such as disease vs. control, and identify regions that show differences
in ChIP enrichment. We have developed a powerful and easy to use program, called diffReps, to detect those differential
sites from ChIP-seq data, with or without biological replicates. In addition, we have developed two useful tools for ChIP-seq
analysis in the diffReps package: one for the annotation of the differential sites and the other for finding chromatin
modification ‘‘hotspots’’. diffReps is developed in PERL programming language and runs on all platforms as a command line
script. We tested diffReps on two different datasets. One is the comparison of H3K4me3 between two human cell lines from
the ENCODE project. The other is the comparison of H3K9me3 in a discrete region of mouse brain between cocaine- and
saline-treated conditions. The results indicated that diffReps is a highly sensitive program in detecting differential sites from
ChIP-seq data.
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Introduction

ChIP-seq (Chromatin immunoprecipitation followed by deep

sequencing) is the state-of-the-art technology for genome-wide

profiling of protein-DNA interaction sites [1]. Using an

antibody against a protein of interest, crosslinked DNA-protein

complexes are enriched and selected, then the ChIP-DNA

fragments are sequenced, and protein-DNA interaction sites can

be profiled at a whole-genome scale. This has provided us with

unprecedented details [2] of protein-DNA interactions at genes,

as well as intergenic regions, in comparison with its predecessor,

ChIP-chip. Previous work had largely been devoted to the

identification of the locations of these interaction sites [3], i.e.,

peak calling. However, less attention has been paid to the

discrepancies of the intensity of these interactions under

different conditions. As differences of histone modifications can

often associate with functional consequences, it has become an

urgent task to identify the differential sites from ChIP-seq data.

Some groups have already focused on this task and a few

tools have been developed to date [4,5,6]. Some of them rely

on peak calling programs to identify the interaction sites first,

and then perform differential analysis based on peak intensity

comparisons. However, peak calling for chromatin modification

marks is still poorly established, especially for the long and

diffusive marks. An example is H3K36me3, a histone mark for

transcriptional elongation, which often spans the whole gene

body. Different peak calling programs often give very different

results, making the choice of peak calling algorithm difficult. In

addition, small changes are often observed within a large peak,

especially from an in vivo study, making the peak-calling-

dependent approaches less powerful. Those small changes are

not trivial and can often associate with biological functions. For

example, many histone marks have been implicated in the

regulation of pre-mRNA alternative splicing [7]. Indeed, a large

portion of differential sites are observed on or around exons.

Another limitation of some of the existing methods is that they

do not take biological replicates into account. Using biological

replicates is crucial for an in vivo study where the variation,

derived from biology or experimental variability, is typically

large. It has been recognized that at least 2–3 replicates are

necessary for in vivo sequencing analyses [1].

To address these challenges, we have developed diffReps, a

program to detect differential sites from two comparison groups

of ChIP-seq samples. diffReps is independent of any peak

calling program and provides several statistical tests to take

advantage of the biological replicates. We have also taken the

task of identifying regions where the differential sites occur

significantly more often than chance, or the so-called chromatin

modification hotspots. Applying diffReps to study the differential

sites of H3K4me3 between hESC (human embryonic stem cells)

and K562 (leukemia cells) from ENCODE, we found a large

number of differential sites to associate strongly with gene

expression changes and alternative splicing. We also applied

diffReps to our previously published ChIP-seq data of chronic

cocaine-regulated H3K9me3 in mouse nucleus accumbens

(NAc) [8] and found numerous hotspots which may associate

with altered nervous system functions.
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Results

Model Description
diffReps is designed as a PERL program that can analyze an

entire ChIP-seq dataset using only one command. It uses a sliding

window to scan the genome and identifies the ones that show read

count differences. A sliding window is defined as a fix-sized

genomic region where the reads falling into this region can be

counted. The sliding window moves along the genome in a fixed

step size that is typically a fraction of the window size. The reason

to use these partially overlapping windows is to increase the

resolution of differential site detection. A user can specify the

window and step size as program arguments. In this paper, we use

window size of 1Kb and step size of 100bp across the board. To

ensure fair comparison, the same window size is used for all the

other comparing methods. This sliding window strategy allows

diffReps to be independent of any peak calling program. After the

detections are done, diffReps merges the overlapping windows that

pass a predefined statistical cutoff to define a so called differential

site. The statistical significance for each differential site is then re-

evaluated. It also records the sliding window that shows the most

significance among each differential site as part of its report.

Finally, multiple testing correction is performed on the differential

sites for statistical stringency. diffReps works with reasonable

requirements of memory and CPU power: it typically finishes

running within 3 hr and uses ,4GB RAM with a mammalian

genome size dataset on a regular workstation (see Text S1 for

details). Once the differential sites are found, diffReps automat-

ically classifies each of them into one of the following categories

(see Design and Implementation for more details): Proximal

Promoter, Promoter1k, Promoter3k and Genebody. If a neigh-

boring gene cannot be found, diffReps attempts to associate a

differential site with one of the following heterochromatic regions:

Genedesert, Pericentromere and Subtelomere. If none of the

above can be assigned, the differential site is classified as ‘‘Other

Intergenic’’. So far, we have compiled genomic annotations for

three model species: mouse (mm9), human (hg19) and rat (rn4),

with more to be added in the future. Users can also choose

between two database flavors for gene annotation: RefSeq and

Ensembl.

The number of differential sites in a local region can be

approximated by a Poisson distribution if all differential sites were

allocated randomly on the genome. However, differential sites are

often found to be spatially clustered, forming so called chromatin

modification hotspots. These hotspots represent the heavily

regulated parts of a genome, which may be functionally

important under certain biological conditions. diffReps finds the

hotspots by first building null models (both local and global) on

differential site density and then looking for regions that violate

the null models with statistical significance using a ‘‘greedy

search’’ algorithm. In addition, when more than one lists of

different histone marks are presented to diffReps, they are first

combined and sorted according to the differential sites’ genomic

coordinates and then treated like a single list. Our program can

recognize the histone mark type for each differential site and

report the histone marks that are involved in each hotspot. This

way, a user can easily identify the interactions between different

histone marks in the hotspots and use this information for

classification purposes later.

Identifying Cell-specific Chromatin Modifications
We applied diffReps to analyze the differential sites of

H3K4me3 between hESC and K562 from the ENCODE project

[9]. This dataset (see Text S1 for more details) contains two

biological replicates for each condition and the number of

uniquely mapped reads ranges between 7 and 16 million

(Table 1). We used diffReps with default parameter values except

that the ‘‘–nsd’’ option (see Design and Implementation) is set to

‘‘sharp’’ because H3K4me3 tends to generate sharp peaks. The

hESC was used as the control group while the K562 was used as

the treated group. In addition, two input samples are also available

in each cell line from the same project (see Text S1 for more

details). We mixed one input from hESC with another input from

K562 and created two groups of input samples. We used these

data to perform mock comparisons to estimate the number of false

positives given by a differential analysis method.

First, we set out to determine the sensitivity and specificity

(using mock data) of a number of different methods, including

diffReps (negative binomial test), diffReps (G-test on pooled

replicates), DESeq [10], edgeR [11] and ChIPDiff [6]. Both

DESeq and edgeR are popular R packages that are widely used

in differential expression analysis for RNA-seq. They use the

negative binomial distribution to estimate the over-dispersion

among replicates and further stabilize it using neighboring genes.

They can also be applied to ChIP-seq data by splitting the

genome into non-overlapping windows (see Text S1 for more

details). ChIPDiff is an approach based on hidden Markov

models (HMM) to detect differential sites. For completion, we

also added a peak-calling based approach by first calling

H3K4me3 peaks using CCAT [12], finding the union of peaks

from the two cell lines and then identifying differential peaks

using DESeq (referred in the following as CCAT+DESeq). This

way we can compare the peak-calling based approach with

window based methods.

Each method is run repeatedly with its nominal p-value chosen

from 1E-2 to 1E-8 (See Figs. S3 & S4 for additional p-values).

Fig. 1A shows that diffReps is the most sensitive method among all

the methods compared, followed by edgeR, DESeq, ChIPDiff and,

lastly, CCAT+DESeq. At each cutoff, diffReps (negative binomial

test) typically detects a few thousands more differential sites than

the secondly ranked method, edgeR. It should be noticed that G-

test predicts ,10,000 more sites than negative binomial test on

average. However, G-test also generates ,4–5 times more false

positives than negative binomial test when using a p-value cutoff of

1E-4 or more stringent (Fig. 1B). Because G-test simply considers

the ratio of read count between two comparison groups and

ignores the variation within a group, some loss of specificity is

expected. What is more, the negative binomial test result is almost

a subset of the G-test result as shown by Venn diagrams (Fig. 1C).

This makes G-test a viable alternative to negative binomial test if

specificity is less of a concern. Although diffReps seems to produce

Table 1. Summary of the two benchmark datasets.

In vivo mouse brain Human cell culture

Mark H3K9me3 H3K4me3

Genome Mm9 Hg19

Condition
Name

Saline Cocaine hESC K562

#Mapped reads

Replicate 1 13132622 14324424 7232113 9593249

Replicate 2 14399342 12697989 14188117 16311376

Replicate 3 15092182

The numbers reported are uniquely mapped short reads.
doi:10.1371/journal.pone.0065598.t001

diffReps:Detecting Differential Modification Sites
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more false positives than the other methods on the mock data

(Fig. 1B), we observed an exponential decrease of false positives

when the significance cutoff increases. At diffReps’ default cutoff

(p,1E-4), the empirically estimated false discovery rate (FDR) is

28/15,109 = 0.2% for negative binomial test and 137/

25,369 = 0.5% for G-test.

Figure 1. The number of differential sites found by different methods as p-value cutoff varies from 1E-2 to 1E-8 on the ENCODE
H3K4me3 ChIP-seq data. NB = negative binomial test. GT = G-test. X-axis represents the different p-value cutoffs. Y-axis represents the number of
differential sites. (A) Sensitivity curves based on the H3K4me3 ChIP data; (B) Specificity curves based on the DNA input mock data; (C) Venn diagrams
of NB vs. GT using diffReps based on its default cutoff (p,1E-4).
doi:10.1371/journal.pone.0065598.g001
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Another experiment was performed to determine the consis-

tency among various methods in ranking differential sites by

statistical significance. diffReps (negative binomial test) was

compared against two other approaches on the top 2,500 and

5,000 sites using Venn diagrams. Fig. 2 shows that diffReps shows

very nice consistency with DESeq and ChIPDiff: 87% (2,500) and

93% (5,000) of the diffReps top sites overlap with another method.

In contrast, ChIPDiff shows slightly more disparity than the other

methods: 19% (2,500) and 8% (5,000) of its top sites are unique.

We performed the same analysis between diffReps (negative

binomial test), edgeR and CCAT+DESeq. diffReps shows very

nice consistency with edgeR (Fig. S1): 74% (2,500) and 82%

(5,000) of the top sites are overlapped. However, CCAT+DESeq

largely disagrees with the other methods: 78% (2,500) and 80%

(5,000) of its top sites are unique.

To further study the differential sites identified by diffReps

(negative binomial test), we compared it with ChIPDiff and DESeq

at its default significance cutoff (p,1E-4). In total, diffReps found

9,649 increased sites and 5,460 decreased sites in K562 vs. hESC.

ChIPDiff detected 2,955 increased and 3049 decreased sites, while

DESeq detected 3,880 increased and 3,470 decreased sites. Venn

diagram shows that almost all of the differential sites found by

ChIPDiff and DESeq are also detected by diffReps (Fig. 3).

H3K4me3 is known to be associated with transcriptional

activation [13,14] and may also relate to alternative splicing

[15]. To study the functional relevance of the differential sites, we

analyzed the transcriptomes of hESC and K562 using RNA-seq.

Cufflinks [16] was used to identify differential transcriptomic

events (FDR,5%) between the two cell lines [17]. We separated

all differential sites detected by the three approaches (diffReps,

ChIPDiff and DESeq) into two categories: ‘‘diffReps-specific’’ and

‘‘Overlap’’ (i.e., detected by both diffReps and another method).

To correlate the differential sites with gene expression, we further

classified them into ‘‘Promoter’’ (upstream 1Kb to downstream

1Kb of TSS) and ‘‘Genebody’’ (downstream 1Kb of TSS to TES),

and ignored the ones that are mapped to intergenic regions.

Considering the direction of change, we defined four groups in

total: ‘‘Promoter Up’’, ‘‘Promoter Down’’, ‘‘Genebody Up’’ and

‘‘Genebody Down’’.

In the overlap category, the differential sites show very

significant and positive correlation with the overall gene

expression change (Fig. 4B and Table S3), validating the

function of H3K4me3 as an activation mark. These differential

sites also show some correlation with alternative promoter usage

but no correlation with alternative splicing (Fig. 4B and Table

S3). In the diffReps-specific category, only increased gene

expression is correlated with ‘‘Promoter Up’’ and ‘‘Genebody

Up’’ (Fig. 4A and Table S3). Interestingly, alternative splicing

shows correlation with ‘‘Genebody Up’’ and ‘‘Promoter Down’’,

while alternative promoter shows correlation with ‘‘Genebody

Down’’ and ‘‘Genebody Up’’ (Fig. 4A and Table S3). There are

61 and 69 genes that show alternative promoter usage and

alternative splicing on the genome, while 20 and 14 of them

contain at least one diffReps-specific site. In total, 29 and 37

diffReps-specific sites are located on those genes with alternative

promoter usage and alternative splicing, respectively. We

identified those sites’ closest TSS or alternative exon (i.e.,

variant exon and exons with alternative boundaries) and plotted

the distribution of the distance between a site and its closest

feature (Fig. 5). Clearly, there is a sharp peak centered on TSS

or exon in the density plots, indicating spatial proximity of the

differential sites to those features. To investigate whether this

distribution is specific to the sites that are related with

alternative splicing/promoter, we drew the same plots for all

10,025 diffReps-specific sites (Fig. S2). We observed the same

distribution pattern. Indeed, 8,410 (or 84%) of the sites are

within 1Kb of TSSs or alternative exons, corresponding to

7,120 unique genes. 638 of these genes show transcriptional

changes (i.e. whole gene expression, alternative promoter or

alternative splicing) as defined by Cufflinks (FDR,5%).

As a negative control, we performed the same correlation

analysis between the differential sites from the mock data and the

transcriptional changes. In total, diffReps found 28 (negative

binomial test) and 137 (G-test) differential sites of which only 3 and

Figure 2. Overlap of the top differential site lists of three methods: diffReps (negative binomial test), DESeq and ChIPDiff on
H3K4me3 comparing K562 and hESC. (A) Top 2,500; (B) Top 5,000.
doi:10.1371/journal.pone.0065598.g002
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12 can be mapped to promoter or genebody, respectively. None of

these differential sites overlaps with the transcriptional changes.

Presumably the overlap category contains differential sites

that are most significant and represent major H3K4me3

differential sites. It is not surprising to find them to correlate

with gene expression change. While the diffReps-specific sites

represent minor H3K4me3 differential sites. The correlation

between diffReps-specific sites and alternative splicing (as well as

gene expression) indicates that many functionally important

differential sites may be missed by other methods. This is

further illustrated by two examples (Fig. 6). MICU1, a gene that

encodes a mitochondrial calcium uptake protein, contains two

isoforms with alternative TSSs: one TSS is about 100Kb

downstream of the other. ENST00000361114 is a major

isoform that shows 7.4 fold increased expression in K562

(RPKM = 37.2) compared to hESC (RPKM = 5.0). While

ENST00000418483 is a minor isoform that shows the opposite

direction of change (hESC RPKM = 2.5; K562 RPKM = 0).

diffReps found two up-regulated H3K4me3 sites: one (fold

change = 2.5; p-value = 1.3E-5) is ,500bp upstream and the

other (fold change = 2.1; p-value = 6.8E-7) is ,1,200bp down-

stream of the TSS of ENST00000361114 (Fig. 6A). This

supports the role of H3K4me3 as a positive regulator of

alternative promoter usage. FANCI is a gene that belongs to the

Fanconi anemia complementation group which is related to

DNA repair. This gene’s expression shows a 6.4 fold increase

from hESC (RPKM = 14.3) to K562 (RPKM = 91.4). However,

the gene’s 18 isoforms show variable degrees of transcriptional

change which is probably regulated by the splicing machinery in

a very delicate way. Cufflinks can detect these splicing changes

by modeling the isoform expression distributions for the two

comparison groups [16] and report alternative splicing events.

Here the gene is determined by Cufflinks to contain alternative

splicing (FDR,0.1%). To evaluate the degree of splicing vs.

overall transcriptional output for each isoform, a splicing index

can be calculated as:

Figure 3. Venn diagrams of the differential sites of diffReps (negative binomial test), ChIPDiff and DESeq on H3K4me3 comparing
K562 and hESC. Because a differential site from one method may overlap with two or more sites from another method, a priority is set for the
number to be reported at the overlapped regions: ChIPDiff.DESeq.diffReps. (A) Increased sites; (B) Decreased sites.
doi:10.1371/journal.pone.0065598.g003

Figure 4. Heatmaps of correlation between chromatin modification differential sites and differential transcriptomic events on the
ENCODE data. mRNA Up, mRNA Down: overall gene expression change. Promoters: alternative promoter usage. Splicing: alternative splicing. The
darkness of the color indicates the odds ratio (i.e. observation/expectation) of enrichments. The p-values of enrichments are determined by Fisher’s
exact test and are labeled in red color. (A) diffReps-specific: differential sites detected only by diffReps; (B) Overlap: differential sites detected by both
diffReps and another method.
doi:10.1371/journal.pone.0065598.g004

diffReps:Detecting Differential Modification Sites
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SI~log2

Fold Change of Isoform

Fold Change of Gene

� �

so that a negative SI means the isoform changes to a lesser

degree than the other isoforms; while a positive SI means the

isoform changes to a greater degree than the other isoforms. A

major isoform, ENST00000310775, shows a 5.0 fold increase

from hESC (RPKM = 5.6) to K562 (RPKM = 28.2), while a minor

isoform, ENST00000564920, shows a 34.0 fold increase from

hESC (RPKM = 0.1) to K562 (RPKM = 3.4). The SI is calculated

for the major and minor isoforms to be 20.4 and 2.4, respectively.

diffReps found an up-regulated site (fold change = 2.5; p-

value = 3.3E-6) which overlaps a variant exon of the minor

isoform (Fig. 6B). This seems to suggest a positive role for

H3K4me3 in the inclusion of the variant exon in K562 cells.

It should be noticed that in Fig. 6B, the differential site overlaps

with an H3K4me3 peak that sits on the TSS of FANCI.

H3K4me3 is a histone mark that strongly associates with

promoters (or alternative promoters). In our analysis, we also

found most differential sites to be located near TSS. However, an

H3K4me3 peak often spans several Kb, raising the possibility for it

to affect the splicing procedures of the downstream overlapping

exons. Previously, people have reported the histone mark’s

association with splicing [15]. Here we have shown some statistical

association between the mark’s differential sites that extend into

genebody and splicing. This phenomenon is further demonstrated

by an additional example in Fig. S7.

Applying diffReps to Study a Repressive Mark in Mouse
Brain

We have previously published a ChIP-seq study [8] of

H3K9me3 in nucleus accumbens of mouse treated with chronic

cocaine or saline injections. This dataset (Table 1) contains two

groups: cocaine and saline. The cocaine group has two replicates

and the saline group has three replicates. Each replicate has ,12–

15 million uniquely mapped reads. This dataset also contains six

DNA input samples. We separated them into two groups with

three samples in each group and created a mock dataset. This

dataset represents an in vivo study where the signal-to-noise ratio is

presumably much lower than that of cultured cells. We used

diffReps with default parameter values and the ‘‘–nsd’’ option is

set to ‘‘broad’’ because H3K9me3 tends to generate broad peaks.

First, we performed the same sensitivity and specificity study as

above on these data. The results (Fig. 7A; See Figs. S5 & S6 for

additional p-values) again show that diffReps is more sensitive than

the other methods. Because the ‘‘–nsd" option is set to a more

permissive threshold than above, we observed more false positives

from almost all methods (ChIPDiff is still zero) on the mock data

(Fig. 7B). At the most relaxed cutoffs, i.e. p,1E-2 and p,1E-3, the

FDR seems to be very high: roughly 10–20% for both negative

binomial test and G-test using diffReps. At the default cutoff

(p,1E-4), the FDR decreases to 5% for negative binomial test and

6% for G-test. Similarly, the negative binomial test result is a

subset (nearly) of the G-test result (Fig. 7C).

We compared diffReps (negative binomial test) with DESeq and

edgeR at the default cutoff. diffReps reports more than 3,000

differential sites, while DESeq and edgeR report only 20 and 31

sites. Venn diagrams (Fig. 8) show that diffReps is inclusive of the

comparison methods except two down sites that are uniquely

identified by edgeR. diffReps automatically annotates the .3,000

differential sites based on their genomic locations. Using the

annotated output, we could easily create a pie-chart to analyze the

domains of this mark’s regulation. As shown in Fig. 9, the majority

of the mark’s regulation resides in intergenic regions (76%). This is

consistent with the mark’s enrichment in heterochromatic regions.

There is also an appreciable portion of the differential sites in

genebodies (20%) with only a very small portion in promoters

(3%).

diffReps further defined 266 hotspots (p,1E-2; Table S1) from

these differential sites. We annotated the hotspots using the

ChIPpeakAnno package [18] to identify the overlapping tran-

scripts allowing a 1Kb gap. 132 of the hotspots were found to

associate with 627 transcripts which correspond to 198 unique

genes. We performed pathway analysis (Ingenuity Systems, www.

ingenuity.com) on these genes and found the top one under

physiological function to be ‘‘Nervous System Development and

Function’’ (p = 2.9E-8) which involves 52 genes (Table S2). The

first thing we noticed is that the majority of these genes would be

considered to be silenced in adult neurons. For example, the top

functional annotation is ‘‘olfactory response of organism’’

(p = 2.9E-8) that involves 27 olfactory receptors (OR), which are

not expressed appreciably outside of the olfactory epithelium; the

top two functional annotation are ‘‘abnormal morphology of axis’’

(p = 5.1E-07) that involves five homeobox domain genes, which are

developmentally regulated transcription factors that function

during mammalian development [19]. Our RNA-seq data confirm

that these genes are not expressed at significant levels in the

nucleus accumbens (unpublished data). Although it is hard to

predict what partial unsilencing, or further silencing, of these genes

would do in this brain region, regulation at these sites indicates

that repeated cocaine might alter certain developmentally

determined gene programs, which, through chromatin structural

Figure 5. Distance density plot of diffReps-specific sites that
are related with alternative promoter usage and alternative
splicing. The distance is determined by first looking for the closest TSS
or alternative exon and then calculating the number of basepairs
between the boundaries of a site and a feature. (A) Distance to TSS; (B)
Distance to exon.
doi:10.1371/journal.pone.0065598.g005

diffReps:Detecting Differential Modification Sites
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alterations, may lead to aberrant regulation of silenced loci in adult

nucleus accumbens neurons. This observation is consistent with

our previous study [8] where we also observed global alterations in

chromatin/nuclear structure, whereby chronic cocaine exposure

resulted in decreased heterochromatic domains and increased

nuclear surface area in nucleus accumbens neurons, potentially

indicating large scale alterations in nuclear function. What is

more, a recent study has shown that OR are being dynamically

regulated by H3K9me3, where the choice of expression is

mediated via derepression of this histone mark [20]. Our results

may then shed light on novel functional roles for this group of

genes in cocaine-regulated transcriptional perturbation in nucleus

accumbens. In the following, we briefly discuss some other genes

that we found to be potentially interesting:

N SYNE1 is a multi-isomeric modular protein that forms a

network between organelles and the actin cytoskeleton to

maintain the subcellular spatial organization [21]. This could

also be important for synaptic development, although there is

no literature to indicate a role in cocaine responsiveness.

N HDAC2 has been implicated in dendritic/synaptic regulation

in adult brain, both in the context of learning and memory and

stress behaviors [22]. Also, it has been observed to increase in

expression in response to cocaine self-administration [23].

N RASGRF1 could also be interesting, as Ras signaling (which is

induced by increased BDNF signaling in nucleus accumbens)

has been shown to be important for cocaine behaviors [24].

RASGRF1 is induced by cocaine, which promotes Ras-Mapk

signaling in the nucleus accumbens [25] and is important for

phospho-CREB signaling [26] and DFosB accumulation [27],

both of which are important for cocaine behavior.

In summary, the hotspot-detecting program allows us to identify

the chromatin regions that are being heavily regulated. Applying

this method to ChIP-seq analysis of H3K9me3 from a drug

administration study in mouse brain reveals cocaine-mediated

regulation on several genes which may turn out to be novel targets

in the future. Therefore, the hotspot-detecting program can be a

useful research tool for those who are interested in dynamic

regulation of chromatin modifications.

Figure 6. IGV [34] genome browser screenshots of two example genes that contain alternative promoter usage and alternative
splicing events. The top two tracks are normalized genomic coverage of H3K4me3 in K562 and hESC cell lines. They are overlaid by diffReps-specific
sites shown as solid bars. The bottom track is the gene model with two representative isoforms. (A) Gene MICU1 contains alternative promoter usage
between two isoforms. The inset is a magnified figure of the differential sites at TSS; (B) Gene FANCI contains alternative splicing with a variant exon
being preferentially included in K562 vs. hESC.
doi:10.1371/journal.pone.0065598.g006
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Figure 7. The number of differential sites found by different methods as p-value cutoff varies from 1E-2 to 1E-8 on the brain
H3K9me3 ChIP-seq data. NB = negative binomial test. GT = G-test. X-axis represents the different p-value cutoffs. Y-axis represents the number of
differential sites. (A) Sensitivity curves based on the H3K9me3 ChIP data; (B) Specificity curves based on the DNA input mock data; (C) Venn diagrams
of NB vs. GT using diffReps based on its default cutoff (p,1E-4).
doi:10.1371/journal.pone.0065598.g007
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Materials and Methods

Algorithms and Workflow of diffReps
The brief workflow of diffReps has been described above.

diffReps accepts BED (http://genome.ucsc.edu/FAQ/

FAQformat#format1) files as input. BED is a simple text format

that can be conveniently converted from any alignment format.

For convenience, the diffReps package includes two scripts to

convert from SAM [6] or Illumina’s ELAND export/sorted

formats to BED. We have also allowed a user to set the average

fragment size (–frag) in his/her ChIP-seq libraries. This argument

will be used to shift the position of each short read towards the 39

end by half of the average fragment size. Because the short reads

are measured from both ends of the sequenced DNA fragments,

this process can improve the accuracy of read count for each

sliding window. This design is similar to the ones that have been

implemented in other peak calling programs such as MACS [28].

The reference genome typically contains large blocks of

unmappable regions such as repetitive regions. In addition, the

majority of the genome often does not show significant ChIP

enrichment. To increase statistical power and save computational

cost, diffReps performs a prescreening of the genome and filters

those regions with low read count. To set a reasonable cutoff,

diffReps estimates the background mean and deviation using

robust statistics, which are implemented by right-trimmed mean

(controlled by option –alpha) and median absolute deviation

(MAD, with center = right-trimmed mean). This is motivated by

the observation that certain genomic regions may contain

abnormally high read counts. High read counts can be caused

by a few factors, such as uneven chromatin structures or biased

PCR amplification. Therefore, using robust statistics can prevent

them from distorting the background estimation. In addition, we

randomly sample 100,000 non-overlapping windows without

replacement from the genome to calculate the above statistics.

Sliding windows with read counts smaller than this formula are

then filtered:

meanznsd|mad

where ‘‘nsd’’ is a tunable integer parameter (option –nsd). Two

default modes have been defined for histone marks with sharp

(nsd = 20) and broad (nsd = 2) peaks.

Normalization is accomplished by calculating a numeric factor

for each sample so that each raw read count can be linearly scaled

using its corresponding factor. Assume all samples and windows

are identified by subscript i and j, respectively, we calculate these

factors by two steps: 1. At each window j, we calculate a factor fij
for each sample i using the following formula:

fij~

raw read count in sample i for window j

geometricmean (raw read count over all samples for window j)

2. We use the median of all fij (which are larger than zero) over

subscript j as a representative factor for each sample i. Here,

median is used instead of mean to avoid outliers. By default, the

normalization is only done on the windows that pass the

aforementioned low count cutoff. This default behavior can be

overridden by using all windows on the genome (option –nrpass).

When there are biological replicates in a dataset, negative

binomial test is the recommended approach for differential

analysis. We have implemented an exact negative binomial test

in diffReps, which follows that of Anders and Huber [10]. Let’s use

subscript ‘‘tre’’ and ‘‘con’’ to denote the treatment and control

groups. Given summed raw read counts ktre and kcon from the

treatment and control groups, and ktre+kcon = ktotal, the p-value of

Figure 8. Venn diagrams of the differential sites of diffReps, DESeq and edgeR on H3K9me3 comparing cocaine- and saline-treated
mouse nucleus accumbens. The priority for number reporting is set to be: edgeR.DESeq.diffReps. (A) Increased sites; (B) Decreased sites.
doi:10.1371/journal.pone.0065598.g008

Figure 9. Genomic distribution of the H3K9me3 differential
sites identified by diffReps.
doi:10.1371/journal.pone.0065598.g009
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(ktre, kcon) is the summation of the probabilities of all pairs with

probabilities less than or equal to p(ktre, kcon) among all combina-

tions, i.e.

p~

P
azb~ktotal

p(a,b)ƒp(ktre ,kcon)

p(a,b)

P
azb~ktotal

p(a,b)

where p(a,b)~p(a)p(b) assuming the two groups are independent;

p(x) is computed using a negative binomial distribution.

Because negative binomial distribution models discrete count

data and over-dispersion among different replicates, it appears to

be an ideal model for ChIP-seq data. However, many studies to

date have used T-tests on normalized counts for differential

analysis. This is sub-optimal because normalized counts are not

normally distributed. As a result, detection power can be

significantly degraded. Another caveat about T-tests is that regions

with very small counts may be picked up. Those regions should

never pass cutoff because small counts are associated with very

little confidence and they are very likely to be background noises.

T-tests simply ignore this fact because they treat normalized

counts as continuous values. Di et al. [29] have evaluated negative

binomial test, Poisson test and T-test on RNA-seq data and found

the negative binomial test to be vastly superior. We provide T-tests

in diffReps package mainly for comparison purposes.

If an experiment does not contain biological replicates, users

can choose between G-test and x2 test for differential analysis. The

two tests give similar results but G-test is more preferred and has

gained in popularity recently [30]. When these two tests are

chosen, diffReps performs a goodness-of-fit test on the normalized

counts of the treatment and control groups. G-test or x2 test can

also be used on data with biological replicates. An incentive of

doing this is that it may increase sensitivity though it can incur

more false positives. When this approach is being used, diffReps

automatically combines the biological replicates and generates a

probability vector accordingly. Assume the summation of the

normalized counts for the treatment and control group is otre and

ocon, respectively; the number of replicates is rtre and rcon,

respectively. We first calculate a probability vector as

Ptre~
rtre

rtrezrcon
,Pcon~

rcon

rtrezrcon

� �

Then we need to calculate the expected counts for the treatment

and control group as

etre~ptre|(otrezocon)

econ~pcon|(otrezocon)

If x2 test is being used, we calculate the statistic as

x2~
X

i~ftre,cong

(oi{ei)
2

ei

If G-test is being used, we calculate the statistic as

g~2|
X

i~ftre,cong
oi ln

oi

ei

� �

The significance for the above two statistics is evaluated by

p~1{pchisq(x2 or g,1)

Where pchisq is the cumulative distribution function of a x2

distribution and here the degree of freedom is always 1 (because

we only have two groups).

diffReps performs statistical tests on sliding windows and the

significant windows are selected by a predefined cutoff (option –

pval). The significant windows that overlap with each other are

then merged and the differential sites are used to perform the

statistical tests again. Finally, the p-value for each differential site

and the best p-value for the sliding window within each differential

site are reported. P-values are adjusted by the Benjamini-Hochberg

(BH) method [31].

After the differential sites have been found, diffReps assigns

each of them to a nearby gene. This is implemented through a

‘‘refgene_getnearestgene’’ program from the CisGenome package

[10]. If no gene is assigned, diffReps tries to associate the

differential sites with a heterochromatic region [32] through the

‘‘intersectBed’’ program from BEDTools package [33]. diffReps

then attaches these annotation information to its output for further

analysis.

Hotspot Detection
To detect hotspots of chromatin modifications, all differential

sites are first sorted according to their genomic coordinates in

ascending order and stored in a list as: d1,d2,…,dN where N is the

total number of differential sites. Any two differential sites, di and dj

(i,j), along with all the differential sites in between, form a so

called ‘‘site stretch’’. The number of segments of a stretch, defined

as j-i, can be approximated by a Poisson distribution if all

differential sites were positioned on the genome by random

allocation. diffReps finds the hotspots by three steps:

1. Look for a stretch that is most likely to be a hotspot by greedy

search;

2. Build a local Poisson model surround the stretch;

3. Test for its statistical significance.

One may think the number of differential sites per hotspot

should be used to define the ‘‘tightness’’ of the hotspot. However, it

becomes ambiguous to assign the sites on the boundaries to

hotspot or background. To avoid this ambiguity, we use the

number of segments inside a hotspot to define its tightness. This

basically equals cutting each site on the boundary into two halves.

diffReps searches for hotspots on a chromosome from left to

right using a greedy search strategy. If the p-value for a candidate

hotspot is significant, diffReps keeps it in memory and continues to

add another differential site on the right to see if the p-value can be

improved. Sometimes, this process may reach a local optimum

when a previously added site is more distant to the rest of the

hotspot than the most recently added site. To avoid this trap,

diffReps attempts to remove the left most site and test the p-value

again each time a new site is added. If the p-value is decreased, this

procedure can repeatedly remove the left most site so that we are
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always getting a ‘‘tightest’’ hotspot. This algorithm is summarized

in the following:

1. Initialize a hotspot by the first differential site and set p-value to

1.0;

2. Repeat the following procedure until all sites are exhausted:

2.1. Add a site to the right and calculate a p-value;

2.2. Compare this p-value with the previous p-value:

if current p-value ,previous p-value {.

Keep the new site;

Remove the left most site to see if the score can be improved;

if yes {.

Keep the change and repeatedly remove site from the

left until no improvement can be achieved.

} else {.

Add the left most site back into the candidate hotspot.

}.

} else {.

Pop the newly added site;

Output the current hotspot if it passes significance cutoff;

Initialize a new hotspot with the current site.

}.

3. Adjust p-values in the list and output all hotspots.

diffReps uses local Poisson model to describe the number of

segments in a stretch. This is achieved by first estimating the

number of segments per nucleotide in a genomic region of 200Kb

or 1Mb on each side of the site stretch, denoted as l200Kb and l1Mb.

diffReps also calculates a global value at the beginning using all the

differential sites on all chromosomes combined as a site stretch,

which is denoted as lglobal. The maximum of the three estimates is

used as

llocal~ max (l200kb,l1Mb,lglobal)

diffReps then calculates the number of expected segments in the

stretch by

sexp~llocal|dis(di,dj)

where dis is a function to calculate the number of nucleotides from

di’s center to dj’s center and always yields an infinite value if di and

dj are located on two different chromosomes. The statistical

significance for the tightness of the site stretch is evaluated by

p~1{ppois(sDsexp)

where s = j-i is the number of segments observed in the stretch and

ppois gives the cumulative distribution function of a Poisson

distribution. A predefined cutoff can be set at the beginning to

identify candidate hotspots. Upon completion, p-values are adjusted

by the BH method [31].

Upon completion, diffReps reports all the information about a

hotspot, such as its genomic coordinates, p-value, histone mark

types and the original record locations. In addition, diffReps can

accept more than one list of different histone marks as input. In

this case, diffReps merges all differential lists and sorts differential

sites in ascending order before searching. Users may use the

histone mark types in all hotspots to predict the interaction

between two or more histone marks.

Installation
Installing diffReps is just like a standard PERL module.

Basically users extract the package downloaded, go to the program

directory and type the following commands:

perl Makefile.PL (Optional, PREFIX = your_perl_directory).

make.

make test.

make install.

If a user has root privileges, diffReps.pl will most likely be

installed in/usr/bin/. If user specified PREFIX in Makefile, it will

be installed in user_perl_directory/. Add user_perl_directory/bin

to user’s PATH environmental variable, or copy diffReps.pl from

user_perl_directory/bin to a directory that is already in PATH,

such as/home/user_name/bin.

Alternative: If user has cpanminus installed, user can also install

diffReps with one line command:

cpanm diffReps-XXX.tar.gz.

it will try to satisfy all the dependencies for the user.

Availability and Future Directions
diffReps packages are available at https://code.google.com/p/

diffreps/under GPL v3 license. Future improvements include

support for BAM files, multi-threading for computationally

intensive routines and handling multi-reads.

Supporting Information

Figure S1 Overlap of the top differential site lists of
three methods: diffReps (negative binomial test), edgeR
and CCAT+DESeq on H3K4me3 comparing K562 and
hESC. (A) Top 2,500; (B) Top 5,000.

(PDF)

Figure S2 Distance density plot of all diffReps-specific
sites (10,025 in total with 3 on chrM excluded). The

distance is determined by first looking for the closest TSS or

alternative exon and then calculating the number of basepairs

between the boundaries of a site and a feature. 9,168 sites are

assigned to TSS, of which 7,783 are within 1Kb. 857 sites are

assigned to exon, of which 627 are within 1Kb. The density plots

are cut at 1Kb window size. (A) Distance to TSS; (B) Distance to

exon.

(PDF)

Figure S3 The number of differential sites found by
different methods as p-value cutoff varies from 0.5 to 0.1
on the ENCODE H3K4me3 ChIP-seq data. NB = negative

binomial test. GT = G-test. X-axis represents the different p-value

cutoffs. Y-axis represents the number of differential sites. (A)

Sensitivity curves based on the H3K4me3 ChIP data; (B)

Specificity curves based on the DNA input mock data.

(TIF)

Figure S4 Total size of the genomic regions that are
covered by differential sites from different methods as
p-value cutoff varies from 0.5 to 1E-8 on the ENCODE
H3K4me3 ChIP-seq data. NB = negative binomial test.

GT = G-test. X-axis represents the different p-value cutoffs. Y-

axis represents the genomic region size in Mb. (A) Sensitivity

curves based on the H3K4me3 ChIP data; (B) Specificity curves

based on the DNA input mock data.
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(TIF)

Figure S5 The number of differential sites found by
different methods as p-value cutoff varies from 0.5 to 0.1
on the brain H3K9me3 ChIP-seq data. NB = negative
binomial test. GT = G-test. X-axis represents the different p-

value cutoffs. Y-axis represents the number of differential sites. (A)

Sensitivity curves based on the H3K9me3 ChIP data; (B)

Specificity curves based on the DNA input mock data.

(TIF)

Figure S6 Total size of the genomic regions that are
covered by differential sites from different methods as
p-value cutoff varies from 0.5 to 1E-8 on the brain
H3K9me3 ChIP-seq data. NB = negative binomial test.

GT = G-test. X-axis represents the different p-value cutoffs. Y-

axis represents the genomic region size in Mb. (A) Sensitivity

curves based on the H3K9me3 ChIP data; (B) Specificity curves

based on the DNA input mock data.

(TIF)

Figure S7 An additional example of an H3K4me3
differential site (diffReps-specific) that may associate
with splicing. The top two tracks are normalized genomic

coverage of H3K4me3 in K562 and hESC cell lines. They are

overlaid by diffReps-specific sites shown as solid bars. The bottom

track is the gene model with two representative isoforms. Gene

ASUN contains alternative splicing with a variant exon being

preferentially excluded in K562 vs. hESC. SI = 20.1 for

ENST00000261191 and SI = 0.1 for ENST00000539625.

(PNG)

Table S1 Hotspot list identified from brain H3K9me3
ChIP-seq data. P-value ,0.01 is used as a cutoff.

(XLSX)

Table S2 Gene ontology terms enriched in the
H3K9me3 hotspots. The top one enriched category is

‘‘Nervous System Development and Function’’ which involves

52 genes. Here is a list of all the sub-terms under this category.

(XLSX)

Table S3 Numbers of overlapped genes between tran-
scriptional changes and differential H3K4me3 sites.
These numbers are used to derive the statistical significance in

Fig. 4 using Fisher’s exact test.

(XLSX)

Text S1 Supplemental materials and analysis.

(DOC)
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