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Abstract

Two theories have emerged for the role that stochasticity plays in biological responses: first, that it degrades biological
responses, so the performance of biological signaling machinery could be improved by increasing molecular copy numbers
of key proteins; second, that it enhances biological performance, by enabling diversification of population-level responses.
Using T cell biology as an example, we demonstrate that these roles for stochastic responses are not sufficient to
understand experimental observations of stochastic response in complex biological systems that utilize environmental and
genetic diversity to make cooperative responses. We propose a new role for stochastic responses in biology: they enable
populations to make complex responses with simpler biochemical signaling machinery than would be required in the
absence of stochasticity. Thus, the evolution of stochastic responses may be linked to the evolvability of different signaling
machineries.

Citation: Govern CC, Chakraborty AK (2013) Stochastic Responses May Allow Genetically Diverse Cell Populations to Optimize Performance with Simpler
Signaling Networks. PLoS ONE 8(8): e65086. doi:10.1371/journal.pone.0065086

Editor: Michael Polymenis, Texas A&M University, United States of America

Received March 19, 2013; Accepted March 25, 2013; Published August 7, 2013

Copyright: � 2013 Govern, Chakraborty. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by an NIH Director’s Pioneer award to AKC. The funders had no role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: arupc@mit.edu.

Introduction

Stochastic cellular responses have been observed in varied

biological contexts [1–4]. They are sometimes inferior approxi-

mations to deterministic responses [1,5,6], caused by noise in

biochemical reactions. But they are not always inferior. For

example, stochastic phenotype selection can help isogenic,

sensorless populations of bacteria survive in varying environments

[7–12]. The stochastic, and therefore diverse, phenotypes reduce

the population’s risk of extinction as the environment cycles

through states that are adverse to individual phenotypes. In

general, stochastic diversification is known to benefit various

populations that are isogenic and sensorless, or modeled as such

[7–15]. Stochastic responses are the only way for these populations

to diversify their responses, which can be beneficial for system-

specific reasons.

Many important biological systems are genetically (epigeneti-

cally) diverse, or have sensors for diverse environments. Cells in

such populations can exploit the differences in their genotypes or

in their receptor inputs to make diverse responses, making

stochasticity unnecessary. However, if genetic or environmental

diversity is limited (e.g. 99% of the cells are isogenic), stochastic

responses may be required to enhance diversification (e.g. obtain a

50–50 phenotypic split). Thus, Wolf et al. have demonstrated that

stochastic responses can optimize growth rate in bacterial

populations able to sense, with error, only a limited number of

different environmental states, even though the added noise

corrupts the information received through the sensors [12].

The role of stochastic responses in populations which utilize

considerable environmental or genetic diversity to diversify their

responses is less understood [1]. We use T cells, key orchestrators

of the adaptive immunity, as an important example in order to

consider the role of stochastic responses in such systems. Each T

cell has a receptor (or sensor), the T cell receptor (TCR), and most

T cells express a unique TCR. These different receptors bind with

varying strengths (e.g. affinity) to diverse peptides (p), derived from

pathogenic and self proteins, which are expressed on antigen-

presenting cells (APCs) in complex with host major histocompat-

ibility (MHC) proteins [16]. TCRs tend to bind self-derived

peptides weakly due to a developmental process, thymic selection.

T cells bearing TCR that bind strongly to self-pMHC in the

thymus are likely deleted from the host repertoire [17]. Conse-

quently, the strength of the interaction between a T cell’s receptors

and the pMHCs presented on an APC provides information to a T

cell about whether at least some of the pMHCs are pathogen-

derived, so the T cell should respond to clear infection, or whether

they are all self-derived, so the T cell should remain inactive to

prevent autoimmunity. Specifically, strong binding indicates an

interaction with pathogenic pMHC. Weak or intermediate

binding is less conclusive because thymic selection is imperfect

and because some pathogens exhibit peptides that bind relatively

weakly to TCR.
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Thus, T cells are an example of a population that utilizes

genetic (receptor) and environmental (diverse stimuli) diversity to

make cooperative responses within a host. It would appear that T

cells do not require stochasticity to diversify their responses.

However, over a range of TCR-pMHC binding affinity, or

strength of other stimuli such as that provided by cytokines, some

T cells fire and others do not, due to intrinsic stochasticity in the T

cell’s molecular signaling machinery and/or to external noise [18–

21]. Is the stochastic response of this important system just

‘‘noise’’? Consistent with the considerable genetic and environ-

mental diversity T cells utilize, the results of a mathematical model

suggest that it is [22].

However, by studying a model of T cells that captures complex

ways they interact with each other and their environment, we find

that their stochastic responses are not necessarily ‘‘noise.’’ The

environmental and genetic diversity available to T cells is sufficient

for them to make diverse responses, but the signaling machinery

required to implement these diverse responses deterministically is

exceedingly complex. We find that stochastic responses can enable

populations like T cells to achieve similar performance with

relatively simple signaling machinery. Thus, biological populations

that utilize considerable environmental and genetic diversity may

benefit from stochasticity because of limitations in biochemical

signaling machinery, not because stochasticity is necessary for

diversification or optimal performance, as in isogenic, sensorless

populations.

Materials and Methods

To study responses based on environmental and genetic

diversity, we consider a model of T cell interactions and their

outcomes which abstracts general features observed in experi-

ments. Motivated by experiment, we focus on naive T cells and

their decisions to activate, as opposed to other T cell subsets or

lineage commitment decisions. The naı̈ve T cells scan APCs that

may or may not present pathogenic pMHC. In each encounter

with an APC, a T cell makes a stable binary decision to either

activate or not [18,23]. These decisions are determined by the T

cell’s intracellular signaling machinery based on inputs from the

many receptors on the T cell’s surface, including TCR and

cytokine receptors. For now, we focus on inputs to the T cell from

the many (identical) TCRs, which engage peptides on an APC’s

surface with varying affinities during the course of an APC-T cell

interaction; we discuss cytokine signals later. For clarity, we

summarize the many inputs from individual TCRs to the T cell’s

signaling network with a single stimulus strength, x, which may

represent the concentration of a membrane proximal signaling

molecule that integrates the input of all bound TCR [6].

T cells’ decisions, based on inputs to their signaling network, are

observed to be stochastic: the probability of activation (s(x) in

Fig. 1A) increases from approximately zero to approximately one

over a finite range of stimulus strengths [18,23]. For example, the

Ras-SOS signaling pathway, a critical T cell signaling pathway,

exhibits this non-deterministic behavior. We refer to the proba-

bilities of activation s(x), determined by the intracellular signaling

machinery, as the T cells’ decision rule. The T cells’ stochastic

decision rule contrasts to deterministic decision rules, for which the

probabilities of activation s(x) are always either 0 or 1. The

particular deterministic decision rule T cells would obtain by

suppressing stochasticity in their signaling machinery is a simple

sharp threshold, which prescribes activation whenever the stimulus

is strong enough (Fig. 1b; [18]).

How do these different decision rules compare in terms of the

ultimate outcome for a host? The decisions made according to a

decision rule influence outcomes in two ways: 1] Certain

outcomes, like autoimmunity and persistent infection, depend on

whether the decisions are correct or not in response to APCs

bearing only self or also pathogenic pMHC. If too many T cells

activate upon interactions with self pMHC, autoimmunity would

ensue. If too few T cells activate in response to a pathogen’s

pMHC molecules, persistent infection or death could result. 2]

Other outcomes depend only on which decision is made,

regardless of whether it is correct. For example, a decision to

activate incurs a metabolic cost.

To compare qualitatively dissimilar outcomes (e.g. infection and

autoimmunity), we quantify outcomes by a cost C. Then, one

decision rule is better than another if it would lead, on average, to

outcomes with a lower cost to the host, as quantified by the

expected cost, E[C] [24,25]. As in isogenic, sensorless populations

that have been studied (e.g. [9]), it is necessary to compare average

outcomes. Diverse stochastic processes intrinsic to an immune

response make the exact outcome for the host variable: two hosts

may have different success clearing infection and avoiding

autoimmunity even though their T cells make decisions according

to the same decision rule (i.e. have the same intracellular signaling

machinery).

We express the expected cost in terms of quantities directly

related to the decision rule: the stimulus strengths a population of

T cells receive through their receptors during an infection (x), the

decisions (d) they make based on them, either to activate (di = 1) or

remain inactive (di = 0), and whether these decisions are correct or

errors (e) (Fig. 1c). Note that x, d, and e are all vectors. Each

element of the vectors corresponds to the stimulus strength,

decision, and error in an individual T cell-APC interaction during

the course of an infection. The number of interactions during the

course of an infection, N, may itself be stochastic. Then, the

expected cost can be written as:

E½C�~Ee,d,x,N E CDe,d,x½ �½ � ð1Þ

The inner expectation is independent of the decision rule. It

quantifies how the outcome, on average, depends on the actual

Figure 1. T cells make stochastic decisions. (A) A T cell’s activation
probability,s, is governed by a stochastic decision rule (red), not a sharp
deterministic threshold (grey; [18–21]. (B) The variable si denotes
whether the interaction is with self or pathogenic pMHC; xi is the
stimulus strength (e.g. TCR-pMHC binding strength); di is the actual
decision made (yes, activate; no, remain inactive); and ei specifies
whether the decision is correct (check) or not (x) against self (blue) or
pathogenic (green) pMHC (four possibilities). (C) An isolated T cell
should activate whenever the expected or average cost of not
activating (e.g. blue) is greater than the expected cost of activating
(green), corresponding to an optimal deterministic decision rule,s � ,
where activation occurs above a sharp threshold stimulus strength.
doi:10.1371/journal.pone.0065086.g001
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decisions that are made (e.g. metabolic costs) and whether or not

they are errors (e.g. infection and autoimmunity), as described

above. We assume below that the outcome does not depend

directly on the stimulix, writing the inner expectation as E[C|e,d].

The outer expectation is taken over the joint variability of the

decisions and errors that are made and the stimuli that are seen (d,

e, and x), which is described by a probability distribution,

P(e,x,d,N). The specific form of this probability distribution is

partly determined by the decision rule: by definition, the decision

rule is the probability of activation (di = 1) given a stimulus strength

xi, P(di = 1|xi). Detailed work on stochastic effects in the immune

system, separate from the stochasticity of the T cell response itself,

suggests other features of the probability model that we describe

later. For example, detailed models of the interaction between T

cells and APCs suggest certain features of probability models for

the stimulus strength, xi [6].

For clarity, we introduce s, the APC type, a vector that lists

whether each interaction is with an APC bearing only self- (si = 0)

or also pathogenic- (si = 1) pMHC. Then, whether a T cell makes

an error, ei, can be determined by comparing its decision di to the

correct decision, determined by the APC type si (if an APC bears

pathogenic pMHC, si = 1, then the correct decision is to activate.)

We refer to the APC type, si, and the resultant stimulus strength, xi,

as jointly specifying the T cell’s ‘‘encounter.’’ In terms of this

notation, the expected cost can be rewritten as:

E½C�~
X
s:d:N

ð
dxE CDe,d½ �P s,x,d,Nð Þ ð2Þ

where we have expanded the outer expectation in Eq. 1.

Eq. 2 provides a general framework to which biological detail

can be added to compare the performance, E[C], of stochastic and

deterministic decision rules. Although we have motivated Eq. 2 by

describing T cell biology, its form is general enough to consider

decisions by cooperative populations utilizing environmental or

genetic diversity.

This framework has in common with canonical frameworks in

statistics and decision theory that all decision-makers or players

have a single payoff function (cost) and their interactions may be

uncorrelated. It has in common with game theory that decision-

makers do not necessarily share the same information or

communicate it fully, and they can make different decisions. It

has in common with sequential decision theory (e.g. dynamic

programming) that P(s,x,d,N) may describe a process. Stochastic

decisions at the population-level are familiar in these larger

contexts (see [24] for stochastic decision making in sequential

decision theory; and [26] for a discussion in game theory). In these

contexts, the results below illustrate how stochastic responses can

emerge under the particular conditions relevant to biological

systems.

Results

A stochastic decision rule can outperform simple
deterministic decision rules, but only in strongly coupled
populations

We first compare T cells’ stochastic responses to the relatively

simple deterministic decision rule experiments suggest they would

obtain by suppressing noise in their signaling machinery, a

deterministic sharp threshold [18]. We consider several models of

increasing complexity. If the stochastic response outperforms the

simple deterministic response even for a simple model, we reason

that this will also be the case for more complicated models, as

explained below.

A simple deterministic decision rule optimizes the

response of isolated T cells. Consider the simplest case of

an isolated T cell in a single interaction (x, e, d, and s are now

scalars). For a given stimulus strength, x, the expected cost E[C|x]

is the expected cost of activating,E[C|x,d = 1], weighted by the

probability of activation (s(x)), and the expected cost of not

activating, E[C|x,d = 0], weighted by the probability of not

activating (1-s(x)):

E CDx½ �~E CDx,d~1½ �s(x)zE CDx,d~0½ � 1{s(x)ð Þ ð3Þ

Note that d = 1 and d = 0 correspond to decisions to activate and

remain inactive, respectively.

Because of thymic selection, self-peptides are more likely to

stimulate T cells weakly than strongly, as noted above [6,17].

Therefore, the expected cost of activating for very weak stimuli is

higher than for very strong stimuli. For simplicity, we initially

assume the expected cost for activation is a strictly decreasing

function of the stimulus strength x, whereas the expected cost of

not activating increases with x. As illustrated in Fig. 1C, the

expected cost for not activating then exceeds that of activating at a

single stimulus strength. Eq. 3 shows that the choice of the decision

rule s that minimizes the expected cost is s= 0 (never activate) if

the expected cost of activation exceeds the expected cost of not

activating, and s= 1 (always activate) if the opposite is true.

Therefore, the optimal decision rule for isolated T cells is a

deterministic sharp switch from not activating to activating and

could be implemented by the existing T cell signaling machinery if

noise was suppressed (e.g., with more molecules). The same

conclusion holds even if the expected costs are not strictly

increasing (decreasing), as long as they do not intersect more than

once. Why do T cells not suppress this ‘‘noise’’?.

T cells are coupled at the population level. T cells, like

other cells that make population-level responses, do not act in

isolation. Function is determined by the response of the entire

population, interacting with each other and the host to produce an

outcome. We use T cell biology to motivate the qualitatively

different ways in which individual cells can be coupled to others in

a population.

One form of coupling arises because T cells collectively

contribute to the common outcome for the host. Mistakes or

actions by one T cell can be exacerbated or recovered by the

actions of others. In terms of the model, the cost incurred by one T

cell’s decision depends on the decisions of other T cells (Fig. 2A).

For example, the cost of a T cell mistakenly not activating in

response to a pathogenic pMHC is lower if many T cells have

been activated in response to the infection since only a certain level

of activation is required to clear infections. Also, the cost of

activating against an APC bearing only self pMHC is higher if

similar events have already occurred since peripheral tolerance

mechanisms can tolerate only some autoimmune responses. The

coupling of T cell responses through the common outcome means

that the expected cost C to the host associated with the

population’s collective decisions d and errors e is not just the

sum of costs, Ci, incurred in individual interactions i:

E CDe,d½ �=
X

interactions

E Ci Dei,di½ � ð4Þ

Stochastic Responses in Diverse Cell Populations
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Another form of coupling arises because T cells reside in, and

sense, the same environment (i.e. they are in the same host

confronting the same infection.) For example, many infections

present multiple immunodominant epitopes. T cells that respond

to different immunodominant epitopes in an infection will receive

similarly strong stimulus strengths in their interactions. Alternate-

ly, when an infection successfully suppresses expression of

pathogenic peptides on APCs, all T cells are less likely to

encounter a pathogen-bearing APC. Thus, the stimulus strengths

different T cells receive through their receptors, x, are not

independent (Fig. 2B), and neither are the APC types they

encounter. Then, the joint probability of the encounters is not just

the product of probabilities of individual encounters:

P s,x,dDNð Þ= P
N

i~1
P si,xi,dið Þ ð5Þ

We have included the decisions, d, in Eq. 5, for comparison

with Equation 2.

Finally, T cells are coupled because they can change their

common environment. For example, if a T cell activates in

response to a particular pMHC expressed upon infection by a fast

– mutating virus, the resulting immune pressure will cause the

outgrowth of a mutant strain that will present pMHC that may

strongly stimulate another T cell. Thus, the decision of one T cell

(di) can affect the encounters (s, x) of other T cells. The two are not

independent:

P s,x,dDNð Þ=P s,xð Þ P
N

i~1
P di Dxið Þ ð6Þ

Other features of the immune system provide additional

motivations for each of these types of coupling when viewed at

the level of coarse-graining in our model. For example, in addition

to the canonical TCR-pMHC stimulus, T cells receive cytokine

stimuli that influence their responses. The model accounts

generically for these cytokine stimuli by incorporating them in

the stimulus strength x (possibly by making x a vector for each

encounter.) Then, the encounters (e.g. strengths of a particular

cytokine stimulus) of different T cells are coupled because they are

in the same cytokine environment; and the decision of one T cell

to activate (consuming and releasing cytokines) affects the

interaction (cytokine stimulus) of other T cells.

Importantly, however, these other features of the immune

system, not explicitly considered, are unlikely to decouple the T

cells. We use Eqs. 4 through 6, motivated by the T cell population,

to study the effects of coupling in population-level responses that

utilize environmental and genetic diversity.

A simple deterministic decision rule optimizes the
performance of populations coupled only through a
common outcome

As described above, T cells are coupled. We considered whether

adding different forms of coupling to our model of the T cells

changes the effect of suppressing noise in their signaling

machinery, again comparing the T cells’ stochastic response with

a simple deterministic sharp threshold.

For isogenic, sensorless populations, coupling through the

common outcome (population growth) is critical to the optimality

of stochastic response (i.e. population growth is nonlinear)

[2,15,27]. Therefore, we added this to the model of the T cell

population (Eq. 4). However, without other forms of coupling,

each T cell makes an error (activates against self or does not

activate against pathogens) independently. The overall probabil-

ities of a T cell making an error are:

p0~P s~0ð Þ
ð

dxP xDs~0ð Þs(x) = probability of incorrectly

activating (7a)

p1~P s~1ð Þ
ð

dxP xDs~1ð Þ 1{s(x)ð Þ = probability of incor-

rectly not activating (7b)

The integral in Eq. 7a,

ð
dxP xDs~0ð Þs(x), is the probability of

mistakenly activating against an APC bearing only self, calculated

as the probability the stimulus strength in the encounter activates

the T cell, s(x), averaged over the probability the stimulus strength

is x in encounters with APC bearing only self, P(x|s = 0). The

probability of mistakenly activating is then this probability times

the probability a T cell encounters an APC bearing only self,

P(s = 0). A similar logic leads to Eq. 7b. Note that these

probabilities are obtained by integrating the probability model in

Eq. 2 over all other variables. The form of the probabilities in Eq.

7 is analogous to the form considered in the Neyman-Pearson

lemma (e.g. type 1 and type 2 errors; [28]). The Neyman-Pearson

lemma states that the decision rule jointly minimizing the

probabilities of error in Eq. 7, and therefore the expected cost in

Eq. 2, is a single deterministic sharp threshold, when the likelihood

of one action being correct increases with the stimulus, as for T

cells.

Specifically, any candidate decision rule leads to particular

values of the probabilities in Eq. 7. Consider a particular candidate

decision rule that is not of a single sharp threshold form.

According to the Neyman-Pearson lemma, one can find a single

sharp threshold decision rule that has the same probability of

incorrectly not activating but a lower probability of incorrectly

activating. This single sharp threshold, therefore, will have a lower

cost due to errors, on average. Furthermore, the single sharp

Figure 2. T cells are coupled at the population level. (A) T cell
decisions are coupled through the common outcome for the host. For
example, the cost of a T cell mistakenly not activating (green x) against
a pathogenic pMHC depends on the correctness of other T cells’
decisions. If enough others activate (green check) in response to this
pathogen, the mistake has minimal impact since the infection will be
cleared (low cost). Conversely, if other T cells have not been activated,
there is a high cost for the T cell not activating as the pathogen will
proliferate unchecked. (B) T cell decisions are coupled because they
sense the same environment, residing in the same host and confronting
the same infection. For example, if an infection expresses a peptide
with a particularly strong cognate interaction (dark green), then all T
cells of the same clonotype will receive similarly strong stimulus
strengths in their interactions. If an infection expresses a peptide with a
relatively weak cognate interaction (light green), then the stimulus
strengths received by T cells during that infection will all be relatively
weak. T cells are also coupled because they can change their
environment, but this is not illustrated.
doi:10.1371/journal.pone.0065086.g002
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threshold has a lower probability of activating (since it activates

correctly just as often, but activates incorrectly less often), and so

incurs a lower cost due to resource consumption, on average.

Regardless of the structure of the cost function, then, the single

sharp threshold will have a lower cost, on average. Since this is

true regardless of the candidate decision rule, the optimal decision

rule must have the form of a single sharp threshold. The particular

location of the threshold will depend on the exact form of the cost

function and the probabilities.

Accordingly, optimization of the quantities (7a) and (7b) in a

detailed modeled of T cell interactions is consistent with many

aspects of the T cell immunology, but not their stochastic response

[22].

A simple deterministic decision rule optimizes the
performance of populations coupled only through
sensing a common environment

Additional types of coupling are possible in populations that

utilize environmental or genetic diversity, so we considered the

effect of adding one of these to the model, the fact that they sense a

common environment (Eq. 5). If T cells were coupled only

through residing in a common environment the inequality in Eq. 4

would not hold, and the resulting linearity makes treating the

coupling through the environment easy. We find that the expected

cost in Eq. 2 depends linearly on the decision rule s(x) (see below):

E½C�~
ð

a(x)s(x)dx ð8Þ

where a is a function that depends on the probability model and

cost function but not on the decision rule. Arguments analogous to

those for the isolated T cell (see below) suggest that the optimal

decision rule for T cells is a single sharp threshold (not stochastic).

Specifically, under coupling through the environment alone, the

expected cost in Eq. 2 can be simplified. The following steps,

resulting in Eq. 9, consist of simple algebraic manipulations,

exploiting: (1) the linearity of the cost function (Eq. 4), so that any

dependencies in the observations are integrated out in the

expectation; and (2) the independence of the ith decision from all

encounters other than the ith encounter, so that the decision rule

s(x) can be isolated from the probability P(x,s).

First we consider the number of interactions N to be fixed

(given). We adopt the notation:

C e,dð Þ~E CDe,d½ �

Also, let (*) denote the conditional expectation:

( � )~Es,x,dDN C e,dð ÞDN~n½ �

Then, using the assumed linearity of the cost function (from Eq.

4 with equality):

( � )~Es,x,dDN

XN

i~1

�CC ei,dið ÞDN~n

" #

where we have written Ci as �CC to emphasize that it depends on i

only through its arguments. Bringing the expectation inside the

summation (since N is given):

( � )~
Xn

i~1

Es,x,dDN �CC ei,dið ÞDN~n
� �

Then, because �CC depends only on one interaction at a time (the

ith), the expectations can be taken trivially over all variables not

associated with the ith interaction:

( � )~
Xn

i~1

Esi ,xi ,di DN
�CC ei,dið ÞDN~n
� �

Expanding the expectation as a sum/integral over the variables

xi, si, and di, weighted by their probabilities:

( � )~
Xn

i~1

ð
dxi

X
si~0,1

X
di~0,1

�CC ei,dið ÞP xi,si,di DN~nð Þ

Recruiting the assumption that the encounters are independent

from the total number of interactions, since the population is

coupled only through its environment:

( � )~
Xn

i~1

ð
dxi

X
si~0,1

X
di~0,1

�CC ei,dið ÞP xi,si,dið Þ

Because, by assumption, the decisions do not affect the

encounters (Eq. 6 with equality, integrated over all variables but

those corresponding to the ith interaction):

( � )~
Xn

i~1

ð
dxi

X
si~0,1

X
di~0,1

�CC ei,dið ÞP si,xið ÞP di Dxið ÞExpanding

the summation over di:

( � )~
Xn

i~1

ð
dxi

X
si~0,1

�CC ei,di~1ð ÞP si,xið ÞP di~1jxið Þz

�CC ei,di~0ð ÞP si,xið ÞP di~0jxið Þ

Applying the definition of s(x):

( � )~
Xn

i~1

ð
dxi

X
si~0,1

�CC ei,di~1ð ÞP si,xið Þs(xi)z

�CC ei,di~0ð ÞP si,xið Þ 1{s(xi)ð Þ

Grouping terms according to s(x) and compacting the notation

(the dependence on i comes only because the coarse-grained

probability may depend on i):

( � )~
Xn

i~1

ð
dx
X

s~0,1

�CC e,d~1ð Þ{�CC e,d~0ð Þ
� �

Pi s,xð Þs(x)z

Xn

i~1

ð
dx
X

s~0,1

�CC e,d~0ð ÞPi s,xð Þ

Stochastic Responses in Diverse Cell Populations
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The second term does not depend on s(x) and therefore does

not affect the optimization over s(x). For compactness, we

suppress it in what follows:

( � )~

ð
dx
X

s~0,1

�CC e,d~1ð Þ{�CC e,d~0ð Þ
� � Xn

i~1

Pi s,xð Þ
 !

s(x)

To derive these previous equations, we assumed N was given.

This assumption can be relaxed:

Es,x,d,N C e,dð Þ½ �~EN Es,x,dDN C e,dð ÞDN½ �
� �

Substituting the expression that was derived for (*) into the right

hand side:

Es,x,d,N C e,dð Þ½ �~
ð

dx
X

s~0,1

�CC e,d~1ð Þ{�CC e,d~0ð Þ
� �

EN

XN

i~1

Pi s,xð Þ
" # !

s(x)

In principle, Pi(s,x) can depend on i in two ways: through

Pi(x|s = 0) and Pi(x|s = 1) or through Pi(s = 0) and Pi(s = 1). In the

following we assume that the dependence comes at most through

Pi(s = 0) and Pi(s = 1); that is, the stimuli from self and pathogenic

pMHC come from stationary processes (in the sense that the initial

conditions are also averaged over). We make this assumption

because more complicated behavior in the coarse grained model

would seem to implicate one of the other forms of coupling (e.g.

decisions affecting observations), which we have excluded in this

proof by assumption.When Pi does not depend on i, this previous

equation can be simplified to the following, which is the main

result of the preceding manipulations:

E C e,dð Þ½ �~
ð

dxa(x)s(x)zb

a(x)~E½N�
X

s~0,1

P(x,s) �CC(e,d~1){�CC(e,d~0)
� �

b~E½N�
X

s~0,1

ð
dxP(x,s) �CC(e,d~0)

ð9Þ

When Pi depends on i, but as above, the proof follows similarly.

Recall that e is a function of d and s, and so is fully determined in

the expressions for a(x) and b in Eq. 9.

Because Eq. 9 is a linear functional of s(x), the optimization of

s(x) in Eq. 9 can be done at each value of x separately.

Specifically,

s � (x)~
1 a(x)v0

0 a(x)w0

�
ð10Þ

Note that for a(x) exactl y equal to 0, s*(x) can take any value.

We have assumed here that the set of such x is insignificant (e.g. a

set of 0 measure.) With simple algebra, the requirement that a is

negative corresponds to:

P(x,s~1)

P(x,s~0)
w

�CC(e01,d~1){�CC(e00,d~0)
�CC(e10,d~0){�CC(e11,d~1)

ð11Þ

where the notation esd denotes the value of e when the correct

decision is s and the actual decision is d. (The numerical value of esd

is arbitrary, so long as �CC is defined consistently.) By assumption, as

described for isolated T cells, the left hand side in Eq. 11 is strictly

increasing with x. Therefore, if �CCis independent of x, Eq. 11

corresponds to a single sharp threshold, as described for an

isolated T cell. When �CC depends on x, it is harder to draw general

conclusions. However, the best solution will still be a single sharp

threshold as long as the difference in the expression for a(x) in Eq.

9 changes sign only once. The arguments in this section recall the

Neyman-Pearson lemma (21).

Thus, stochastic optimality is not a generic feature of coupled

populations, as suggested by populations which lack environmen-

tal and genetic diversity. Populations that utilize diverse informa-

tion from their receptors and genome and which are only weakly

coupled (only through residing in a common environment or only

through a collective impact on the outcome) can benefit from

suppressing noise in their signaling machinery. Strong coupling, in

the ways described above, is a necessary condition for stochasticity

to be useful in biological populations that are neither isogenic nor

sensorless.

Stochastic decision rules can outperform simple
deterministic decision rules in strongly coupled
populations

We have argued that, regardless of the specific details included

in a model, T cells are not merely weakly coupled. Therefore, to

understand stochasticity in populations that are strongly coupled,

we considered the effect of suppressing stochasticity in a model of

the T cells as a strongly coupled population. We explicitly model

their collective contributions to the outcome and their common

environment (Eqs. 4 and 5). Their collective contributions to the

outcome are treated by noting that the cost incurred by the host

over the course of a single infection decreases nonlinearly with the

amount of activation against APCs bearing pathogenic pMHC

and increases with the amount of activation to APCs bearing only

self pMHC. Thus the average cost C associated with the T cell

errors e and decisions d is:

E½CDe,d�~c3 ec0f0(e,d){1
� �

z
1

1zc1f1(e,d)
ð12Þ

which satisfies Eq. 4, where f0 and f1 denote the fractions of APCs

bearing only self or also pathogenic pMHC to which T cells

activate, respectively; these fractions are determined by the

decisions d and the errors e. Our qualitative conclusions do not

depend on specific nonlinear form of Eq. 12 or the particular

values of the constants c1, c2, and c3, which weight the cost of

activation against APCs bearing only self-pMHC against the cost

of failing to activate against APCs bearing pathogenic-pMHC (see

Text S1 and Figure S1 for different parameters).

The common environment is treated by choosing a probability

model that satisfies Eq. 5. The probability model incorporates

many possible infections, Ik, each of which corresponds to a

different environment, characterized by distributions of stimulus

strengths x-i in encounters between T cells and APCs bearing

pathogenic-pMHC (s-i = 1): P(xi|si = 1,Ik) (Fig. 3A). Independent of

the infection, APCs bearing only self pMHC (si = 0) lead primarily

to weak stimulus strengths xi as described by P(xi|si = 0) (Fig. 3A).
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(For very weak stimuli, the distributions of stimulus strengths from

foreign- and self-pMHC are likely to be similar since negative

selection does not affect the distributions of weak stimuli from

either pathogenic or self pMHC; we assume T cells never activate

for these stimuli and so do not include them in our model.) A

simple probability model for the APC types s, the stimulus

strengths x, and the decisions d is (consistent with Eq. 5):

P(s,x,djN)~
X

infectionsk

P(Ik)P(s,x,djN,Ik)~

X
infectionsk

P(Ik)P interactionsiP(si,xijIk)P(dijxi)
ð13Þ

Eq. 13 weights the probability distributions for s, x, and d in

each infection Ik by the infection’s probability, P(Ik), summed over

all infections. The probability distribution for the APC types s and

the stimulus strengths x during an infection, P(si,xi|Ik), is

determined by the distributions P(xi|si = 0) and P(xi|si = 1,Ik),

described above, and by the overall probabilities that an APC

bears only self (si = 0) or also pathogenic (si = 1) pMHC during an

infection. The probability that the infection confronted is the kth

one, P(Ik), is chosen so that it is unlikely that the immune system

confronts an infection that leads only to weak stimulus strengths.

We assume that the number of encounters during an infection is

large enough for the T cell population to sample the probability

distributions of stimulus strengths well. Given the model in Eqs. 12

and 13 with the specified parameter values and assumptions, the

expected cost incurred to the host for any decision rule (Eq. 2) can

be evaluated numerically (see Text S1). We find that a stochastic

decision rule outperforms any deterministic sharp threshold that

could be obtained by suppressing stochasticity (Fig. 3B).

A threshold stimulus strength sharply separating decisions to

always activate and to never activate enforces all-or-nothing

immune pressure over different regions of stimulus strength. This

is unlikely to be the appropriate balance between the risk that

some self-peptides will generate strong stimuli or that some

infections will lead only to relatively weak stimuli (e.g. via immune

evasion techniques) (Fig. 3C). Any infection which leads only to

stimulus strengths weaker than the threshold will proliferate

without inducing a T cell response. The T cell population could

lower this risk by reducing the threshold for activation. However,

this would produce a commensurate response against self-peptides

that lead to stimulus strengths below, but close to, the threshold. A

stochastic decision rule achieves a balance between the risks of

autoimmunity and infection, critical for the host’s survival, by

ensuring some response to sub-threshold infections while not

risking a full response against self-peptides.

Just including coupling between T cell decisions via the incurred

costs and interactions in a simple way results in stochastic decisions

being beneficial, suggesting that this would definitely be so if

additional sources of coupling between T cells were included (e.g.

coupling through cytokines), though these may provide new

qualitative explanations in addition to the explanation in the

previous paragraph. Even in our simple model a single free

parameter – the location of the sharp threshold – does not give the

T cell population enough flexibility to optimize its response. The

increased degrees of freedom available with a stochastic response

(how often to activate at each of many values of the stimulus) are

required. It would be remarkable if adding further complexity to

the model (e.g. more interactions among its components)

decreased the number of degrees of freedom required to optimize

the response. These arguments suggest that the conclusions are

robust to specific features of the model.

Stochastic responses are not necessary for diversification
but enable complex functions with simpler signaling
machinery

Could T cells obtain the same performance deterministically,

albeit with a different signaling machinery or is stochasticity

necessary for diversifying the response? We searched for deter-

ministic decision rules, more complicated than a single sharp

switch, which are as good as the optimal stochastic solution. The

Dvoretzky-Wald-Wolfowitz (DWW) theorem suggests that it is

always possible to find such a deterministic solution, for a model

such as that described by Eqs. 12 and 13, as long as the probability

distributions of stimuli observed by T cells are continuous [29,30].

Figure 3. A simple model demonstrates that stochastic
decisions can enable T cells to achieve complex goals with a
simpler signaling network than that required for an optimal
deterministic decision rule. (A) The probability distributions for the
stimuli T cells receive from self (P(x|s = 0), upper) and pathogenic
(P(x|s = 1,Ik), lower) pMHC, where Ik denotes the kth infection. For weak
stimulus strengths, the probability densities are expected to be similar
(and high) for self and pathogenic pMHC; m denotes an intermediate
stimulus strength, above which the probability distributions are
different. The numbers on the abscissa are in arbitrary units. The six
possible infections (distributions of pathogenic stimuli) occur with
probability 0.001, 0.049, 0.15, 0.25, 0.3, and 0.25, from I1 to I6, so that
infections which lead only to relatively weak stimuli are unlikely.
Similarly, strong stimuli from self are unlikely. (B) For the probability and
cost models in the main text, the best single sharp threshold (grey) has
a higher expected cost (E[C]) than a stochastic decision rule (red).
Reported E[C] is normalized by the expected cost of the stochastic
decision rule. The stochastic decision rule is piecewise constant because
the stimulus-strength probability distributions are discretized (see panel
A). The orange curve helps visualize the stochastic solution. (C) The best
stochastic decision rule (red) can be created from a sharp threshold
(grey) by shifting immune pressure (red arrow) from strong stimuli to
weaker stimuli. This shift helps balance the risk that some self pMHC
lead to strong stimuli and some pathogens lead only to relatively weak
stimuli. (D) A complex deterministic decision rule that alternates
between never activating (s = 0) and always activating (s = 1) performs
as well as the best stochastic one (panel B). Implementing this decision
rule would require a complex signaling network.
doi:10.1371/journal.pone.0065086.g003
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The latter should be true because two T cells are unlikely to see

exactly the same stimulus due to abundant genetic (different

TCRs) and environmental (different pathogens) diversity. By

searching for optimal deterministic solutions that are not restricted

to being a single sharp switch (see Text S1), we obtain a

deterministic optimal decision rule (Fig 3D) that performs as well

as the stochastic solution. The deterministic solution hedges the

risk that an infection will lead to only weak stimuli, or that self

peptides will lead to strong stimuli, by alternating between always

activating and never activating as the stimulus strength increases

from the lower end of the intermediate stimulus range to the upper

end. Then, although one T cell may receive an intermediate

stimulus that leads certainly to activation, other T cells will receive

similar (but not identical) stimuli which lead certainly to remaining

inactive. On average, the result is the same as the stochastic

decision rule. (The deterministic solution in Fig. 3D is not unique

for our model, but all solutions share the features we describe; see

Text S1.)

The DWW theorem makes precise the intuition that, in contrast

to isogenic, sensorless populations, stochasticity is not needed for

diversification of the response when there is considerable genetic

or environmental diversity to draw on, as for the T cell population.

However, Fig. 3D shows that the optimal deterministic decision

rule that exploits the environmental and genetic diversity is far

more complicated than the relatively simple, single sharp

threshold, requiring the intracellular signaling machinery to

frequently switch between always activating and never activating

over increasing intervals of the stimulus. These many sharp

thresholds could only be implemented by a complex signaling

network (e.g. many coordinated feedbacks; see Text S2 for an

example signaling network). By making stochastic decisions, T cells

can perform just as well with a far simpler signaling network (e.g. a

single positive feedback for this part of the T cell response), which

may be easier to control and evolve.

Discussion

The role of stochasticity in biological decisions has been viewed

in two ways. First, as a nuisance that is potentially costly to

suppress (‘‘noise’’) [5]. Second, as a way for populations with

limited environmental or genetic diversity to diversify their

responses, which, in turn, optimizes some measure of performance

(e.g. population growth in a varying environment) [9]. Many

biological systems can utilize considerable environmental and

genetic diversity to diversify their responses. In such systems, it

would appear that stochasticity is unnecessary and potentially just

‘‘noise.’’ To understand the role of stochasticity in such systems,

we studied general models motivated by T cell biology. The

models suggest that a population’s responses can indeed be

diversified without stochasticity, using deterministic signaling

machinery, if no two cells are exactly the same or receive exactly

the same stimulus. However, when cells in a population are

strongly coupled to each other, the signaling machinery that would

be required to diversify deterministically is exceedingly complex.

With stochastic responses, we find that populations like T cells can

achieve optimal diversification with relatively simple signaling

machinery.

This role for stochasticity is particularly important as experi-

ments reveal stochastic decision-making in ever more complex

mammalian cellular responses, like apoptosis decisions and NF-kB

responses to TNF-a [3,4]. Not only can mammalian populations

utilize environmental diversity to diversify their responses, they,

like T cells, can utilize genetic (or epigenetic) diversity, since they

coexist in the host to perform complex functions. In this respect,

they differ from canonical bacterial systems that cannot utilize

genetic diversity because different genotypes compete evolution-

arily.

Previous results, focused on the role of stochasticity in

diversification, have shown that stochastic responses optimize the

performance of certain systems in terms of an expected cost. Here

we have demonstrated a role for stochastic responses, in systems

utilizing environmental and genetic diversity, even though they are

not necessary to minimize the expected cost.

In populations that are only weakly coupled, we find that

relatively simple signaling machinery can diversify the response

deterministically. In such populations, stochastic responses may

merely be ‘‘noise.’’

Synthetic cellular signaling networks have been successfully

constructed in bacterial systems to test theoretical predictions in

biological systems (Bashor et al. 2010). These networks provide a

potential route for understanding how coupling between different

decision-makers in biological systems, under the conditions

described in this manuscript, can lead to stochastic decision

making, by engineering different types of coupling within bacterial

populations in evolutionary studies. In addition, bacterial systems

that can switch among different phenotypes can be used to test the

prediction that the deterministic decision rule in Fig. 3D is difficult

to implement with signaling machinery. Bacterial populations can

be presented sequentially with different concentrations of a

harmless chemical that they are able to sense; if the concentration

of the harmless chemical falls within one of the ranges in Fig. 3D

such that s(x) = 1, a chemical that is toxic to the high-growth

phenotypic state, but which the bacteria are unable to indepen-

dently sense, is also presented. To grow optimally in this

experiment, bacteria must evolve a phenotype-switching strategy

according to the decision rule in Fig. 3D; a stochastic strategy is

not equivalent. Thus, after allowing bacterial evolution, the

experiment would reveal how successfully bacteria can evolve

complicated decision rules like the one in Fig. 3D.

An implication of our results for T cell biology is that to

understand the design of an individual T cell’s signaling network

it is necessary to analyze the behavior of the T cell population.

Therefore, experimental studies to understand stochasticity in T

cell signaling machinery will require studying the immune

system in a systemic fashion in whole hosts subject to multiple

infections.

Supporting Information

Figure S1 Varying the cost function and probability
distributions does not change the qualitative results in
the main text. (A) An alternate model for the probability

distributions for the stimuli T cells receive from self (P(x|s = 0),

upper) and pathogenic (P(x|s = 1,Ik), lower) pMHC, where Ik

denotes the kth infection. For weak stimulus strengths, these

probability distributions are expected to be similar for self and

pathogenic pMHC with high values for P; m denotes an

intermediate stimulus strength, above which these probability

distributions are different. The numbers on the abscissa are in

arbitrary units. The six possible infections (distributions of

pathogenic stimuli) occur with probability 0.001, 0.099, 0.2, 0.2,

0.25, and 0.25, from I1 to I6, so that infections which lead only to

relatively weak stimuli are unlikely. Similarly, strong stimuli from

self are unlikely. (B) For the probability and cost models, the best

single sharp threshold (grey) has a higher expected cost (E[C]) than

a stochastic decision rule (red). Reported E[C] is normalized by

the expected cost of the stochastic decision rule. The optimal

decision rules reflect the discretization of the probability
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distributions describing stimulus strengths (see panel A). A

complex deterministic decision rule that alternates between never

activating (s = 0) and always activating (s = 1) performs as well as

the best stochastic one. Implementing this decision rule would

require a complex signaling network.

(TIF)

Text S1 Simple model of the T cell population.
(PDF)

Text S2 Implementing deterministic decision rules
with many sharp thresholds.

(PDF)
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