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Abstract

Deficiencies in the ATM gene are the underlying cause for ataxia telangiectasia, a syndrome characterized by neurological,
motor and immunological defects, and a predisposition to cancer. MicroRNAs (miRNAs) are useful tools for cancer profiling
and prediction of therapeutic responses to clinical regimens. We investigated the consequences of ATM deficiency on
miRNA expression and associated gene expression in normal human mammary epithelial cells (HME-CCs). We identified 81
significantly differentially expressed miRNAs in ATM-deficient HME-CCs using small RNA sequencing. Many of these have
been implicated in tumorigenesis and proliferation and include down-regulated tumor suppressor miRNAs, such as hsa-
miR-29c and hsa-miR-16, as well as over-expressed pro-oncogenic miRNAs, such as hsa-miR-93 and hsa-miR-221. MicroRNA
changes were integrated with genome wide gene expression profiles to investigate possible miRNA targets. Predicted
mRNA targets of the miRNAs significantly regulated after ATM depletion included many genes associated with cancer
formation and progression, such as SOCS1 and the proto-oncogene MAF. While a number of miRNAs have been reported as
altered in cancerous cells, there is little understanding as to how these small RNAs might be driving cancer formation or
how they might be used as biomarkers for cancer susceptibility. This study provides preliminary data for defining miRNA
profiles that may be used as prognostic or predictive biomarkers for breast cancer. Our integrated analysis of miRNA and
mRNA expression allows us to gain a better understanding of the signaling involved in breast cancer predisposition and
suggests a mechanism for the breast cancer-prone phenotype seen in ATM-deficient patients.
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Introduction

The ataxia telangiectasia mutated (ATM) protein plays a critical

role in a vast array of cellular responses including cell cycle

regulation, apoptosis, and DNA damage responses. Individuals

with complete deficiencies in ATM suffer from severe ataxia,

immunological disorders, and have elevated risk for developing

lymphoproliferative cancers [1]. In addition to complete loss of

ATM functionality, it is estimated that as many as 1% of the

United States population carry one mutated copy of ATM [2,3]

and are subject to the consequences of haploinsufficiency. While

heterozygous carriers do not suffer from ataxia telangiectasia

syndrome, they have an increased risk of developing heart disease,

diabetes, and cancers, specifically breast cancer, compared to

individuals with normal ATM expression levels [2,3]. More recent

epidemiological studies have shown that ATM mutations, which

cause ataxia telangiectasia in the homozygous state, are also breast

cancer susceptibility alleles in heterozygous carriers

[4,5,6,7,8,9,10]. Additionally, it has been implicated that epige-

netic silencing of ATM through methylation may also play a role

in breast cancer susceptibility [11,12]. Despite this link between

reduced ATM levels and breast cancer, deficiencies in the ATM

protein are not frequently observed in non-familial breast cancer

populations [13]. This observation suggests the possibility that

signaling pathways or gene expression patterns that are under

ATM control might be a plausible mechanism linking ATM

expression status to breast cancer predisposition. Here we propose

ATM-dependent changes in epigenetic regulation, in particular

miRNA regulation of gene expression, play a role in the formation

of breast cancer.

MicroRNAs (miRNA) are a large regulatory class of small

RNAs that have been described to post-transcriptionally modify

gene expression. The high level of conservation in miRNA

sequences across species emphasizes their important regulatory

role. The primary mode of action for miRNA regulation of gene

expression is binding to the 39UTR region of the messenger RNA

(mRNA), leading to a decrease in the amount of mRNA available

in the cell, through either RNA degradation or prevention of

translation. MicroRNAs play critical roles in development,
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differentiation and disease progression, and are predicted to target

more than 60% of mRNAs in humans [14]. More recently,

miRNAs have been used in the diagnosis, identification and

prediction of therapeutic responses of cancers [15,16,17,18,19,20].

MicroRNA profiling of different types of cancer has been used to

identify cancer-causing miRNAs, termed oncomirs, as well as

tumor suppressor miRNAs [20,21,22]. Many different groups

have generated miRNA profiles in breast cancer cells in order to

develop potential biomarkers in diagnosis and treatment [23].

Several miRNAs appear in many of the miRNA profiling

experiments as being deregulated in breast cancer. However, the

majority of these studies were conducted in cancerous cells and

tumors. Here we investigate the role of ATM on the expression

levels and composition of miRNAs in normal non-cancerous

human mammary epithelial cells (HME-CC). We are interested in

understanding how changes in miRNA expression due to ATM

deficiency may contribute to cancer predisposition and elicit

alterations in normal physiological pathways. Utilizing Illumina

Next-Generation Sequencing, we performed genome-wide se-

quencing of small RNAs from normal wild type (WT) and ATM-

deficient HME-CCs. In addition to deep sequencing of the small

RNAs, we performed whole genome gene expression analysis

using Agilent whole genome microarrays. The combination of

both gene expression and miRNA profiles allowed us to identify

possible gene targets for significantly regulated miRNAs. By

understanding the composition and expression of miRNAs in

ATM-deficient mammary epithelial cells we hope to gain insight

into the mechanisms and underlying physiology through which

breast cancer tumor formation proceeds.

Materials and Methods

Cell Culture
The HME-CC-LacZ (wild type) and HME-CC-ATM1 (ATM-

deficient) human mammary epithelial cell lines were derived as

described [24]. Cells were grown and maintained in HuMEC

Ready Media (Invitrogen 12752010) with 4 mg/mL blasticidin

(Invitrogen 46–1120).

Cell Harvest and RNA Extraction
Wild type and ATM-deficient human mammary epithelial

logarithmically growing cells were harvested using 0.25% trypsin-

EDTA (Invitrogen 25200072), which was neutralized using TNS

(Lonza CC-5002). Total RNA was isolated using the Ambion

mirVana miRNA isolation kit using the standard protocol for total

RNA isolation. The isolated total RNA was then split in aliquots so

that the same RNA was used for small RNA sequencing and for

gene expression analysis.

Illumina Small RNA-sequencing
Triplicate biological samples of total RNA were submitted to

the NIH Intramural Sequencing Center. Libraries of Small RNA

cDNA were created using the Illumina Small RNA Sample

Preparation Alternative v1.5 Protocol with only small deviations

from the manufacturer’s protocol. These cDNA libraries were

then sequenced on the Illumina Genome Analyzer IIX with 35

base pair reads according to the manufacturer’s instructions. Each

library was run on a single lane in the flow cell with 36 cycles using

Illumina version 5 chemistry. After alignment to the genome, read

counts were normalized calculating miRNAs per million miRNA

alignments. The list of significantly regulated miRNAs was created

using a t-test analysis (p#0.05) and fold change ($1.5) cut-off

between ATM-deficient cells compared to wild type cells.

Agilent Whole Genome Array
Isolated total RNA was submitted to the NIEHS Microarray

Core facility for microarray analysis. Gene expression analysis was

conducted using Agilent Whole Human Genome 4644 multiplex

format oligo arrays (Agilent Technologies, 014850) following the

Agilent 1-color microarray-based gene expression analysis proto-

col. Starting with 500 ng of total RNA, Cy3 labeled cRNA was

produced according to the manufacturer’s protocol. For each

sample, 1.65 ug of Cy3 labeled cRNAs were fragmented and

hybridized for 17 hours in a rotating hybridization oven. Slides

were washed and then scanned with an Agilent Scanner. Data was

obtained using the Agilent Feature Extraction software (v9.5),

using the 1-color defaults for all parameters. The Agilent Feature

Extraction Software performed error modeling, adjusting for

additive and multiplicative noise. The resulting data were

processed and analyzed using Partek Genomics Suite (PartekH
Genomics Suite software, version 6.6beta, Copyright � 2009,

Partek Inc., St. Louis, MO, USA). A t-test was performed between

the wild type and ATM-deficient samples, generating associated p-

values. Combined with a fold change of +/21.5, a p-value of

#0.05 was used to generate a list of differentially expressed genes.

Integration of MicroRNA and Gene Expression Data
Using TargetScan 5.2 [14,25,26], a list of biologically predicted

targets of ourdifferentially expressedmiRNAswasdetermined.That

list of targets was then compared to our list of differentially expressed

genes to determine possible miRNA –mRNA interactions.

Functions Analyses in Ingenuity
Significantly regulated miRNAs and mRNAs were analyzed with

Ingenuity Pathway Analysis (IPA) [25,26]. Networks and functional

analysesweregeneratedbasedon the40 significantmiRNAsand202

significant predicted gene targets annotated in IPA. A right-tailed

Fisher’s exact test was used to calculate a p-value determining the

probability that each biological function and/or disease assigned to

that data set is due to chance alone. Functions with a p-value of less

than 0.01 were considered significant.

Data Access
Data from microarrays and Small RNA sequencing used in this

study have been archived at the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/geo/).

The GEO accession number for the small RNA sequencing is

GSE36267 and can be reviewed at http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token = jxezrakumucekru&acc =GSE36267.

The GEO accession number for the Agilent whole genome

expression array data is GSE36082 ad can be reviewed at http://

www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?token= jvixzkwsaqiqwps&acc =GSE36082.

Accompanying Supplemental data consists of 7 tables that can

be found online.

Results

Sequencing and Data Analysis
Illumina deep sequencing was used to generate small RNA reads

from3biological replicateseachofwild typeandATM-deficientnon-

cancerous HME-CCs. Filtering based on quality scores and

sequencing artifacts allowed for selection of only robust sequence

reads (Figure1A).UsingtheFastXtoolkit [27], theadaptor sequences

wereclippedfromthe39endof thesequencereadsandsequenceswith

no adaptor sequence or with less than 16 nucleotides remaining after

adaptor removal were excluded from further analysis. Clipped reads

were alignedusingBowtie [28] to thehg19humangenomebuild.We

miRNA and Cancer Susceptibility in Mammary Cells
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allowed nomismatches in the 15bp seed region of the sequence reads

and allowed up to 3 alignments per sequence read. Alignments were

annotated with the UCSC small genome track (WgRNA) on hg19.

Read countswerenormalizedby calculating tags permillionmiRNA

alignments (TpM). Sequence filtering, adaptor clipping, and Bowtie

alignment were performed using a combination of command line

programs and the open web based platform Galaxy [29,30,31].

Summary statisticsofall 6 sampleswere tracked toensure similarity in

the sequencing runs, alignments, and annotations (Figure1B).

Composition of miRNA in Wild Type and ATM-deficient
Cells
Next generation deep sequencing allows for a large dynamic

range in detecting miRNAs (Table S1). When considering all of

our samples, we identified 390 miRNAs present in two out of three

samples in either the wild type or ATM-deficient samples with at

least 1 TpM (Figure 1B). To restrict our analysis to only the most

robust miRNAs, we considered only miRNAs with at least 10

TpM in two out of three samples in either the wild type or ATM-

deficient samples in further analysis. 259 miRNAs were considered

present in all samples and moved to the next stage of analysis

(Table S2). Sequence tags per million miRNA alignments (TpM)

were imported into Partek Genomics Suite for further analysis

(PartekH Genomics Suite software, version 6.6beta, Copyright �
2009 Partek Inc., St. Louis, MO, USA). A precursory look at the

expression levels of the 259 miRNAs highlights the broad dynamic

range of expression detected by next generation deep sequencing.

We were able to detect miRNAs with only a few transcripts as well

as miRNAs with robust expression, such as hsa-miR-21, which has

an average WT expression of 113,949 TpM. A high level review of

the preliminary miRNA profile reveals specific effects of the

Figure 1. Process Map and Summary of Next Gen Sequencing data. A) Small RNA Sequencing pipeline overview. B) Summary statistics of
Small RNA sequencing data at different stages of data analysis.
doi:10.1371/journal.pone.0064779.g001
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depletion of ATM on expression. We observed not only miRNAs

who’s expression was affected by the loss of ATM, but we were

also able to identify miRNAs that appear to be unaffected by

ATM depletion.

Changes in Expression Profiles of miRNAs after Depletion
of ATM
To evaluate the magnitude and significance of the change in

miRNA expression after the depletion of ATM, we conducted a t-

test on 259 miRNAs considered present in both the wild type and

ATM-deficient samples. Associated p-values were calculated and

combined with a fold change to generate a list of significantly

differentially regulated (p#0.05; fold change $1.5) miRNAs. This

identified 81 miRNAs as significantly differentially expressed

between the two HME-CC genotypes (Figure 2 & Table S3), thus

more than 30% of the miRNA considered present in our analysis

are significantly differentially regulated after the depletion of

ATM. We found several well characterized miRNAs that were

statistically unchanged after the depletion of ATM, including the

let-7 family and hsa-miR-21. Among the 81 significantly regulated

miRNAs, there are 55 miRNAs with higher levels of expression

and 26 with lower levels of expression as compared to the wild

type HME-CCs. Interestingly, these regulated miRNAs include

several that have been implicated in cancer formation or

metastasis. Utilizing the TAM tool for annotating miRNAs [32]

and the human miRNA disease database [33], we identified 4

repressed miRNA tumor suppressors and 7 over-expressed

oncomirs [21,22,34] in the ATM-deficient cells (for examples,

see Figure 3). This observation of deregulation of miRNAs

important in cancer formation or suppression suggests ATM-

dependent miRNA expression changes may alter biological

pathways and functionalities that promote cancer formation.

Based on miRNA cancer profiling projects, several ATM-

dependent miRNAs merited closer examination (Figure 3). For

example, loss of ATM results in a decreased expression of the

tumor suppressive miRNAs, miR- 96, which is known to target

KRAS [35], and the miR-29 family, which includes miR-29b-1,

miR-29b-2, and miR-29c. A decrease in expression of all three

members of the miR-29 family has been implicated in many types

of cancer [36] and has a correlation with prognosis [37].

Additionally, loss of ATM results in an increase in expression of

miR-10b, which is highly expressed in metastatic breast cancers

[38,39] and miR-221, which can induce proliferation and cell

survival [40]. In order to further understand the biological effects

of the miRNA expression changes, we undertook whole genome

gene expression analysis.

Expression of Genes Predicted to be miRNA Targets
Using the Agilent human whole genome microarray, we

gathered gene expression data from the same WT and ATM-

deficient HME-CC samples. With a combination of p-value

(#0.05) and fold change ($1.5) cut-offs, we identified 1086

Figure 2. Differential expression of 259 present miRNAs in both wild type and ATM-deficient HME-CCs. Differential miRNA expression
between wild type and ATM-deficient HME-CCs obtained from three independent replicates of each. The y-axis displays the ATM-deficient to WT
expression ratio, the x-axis displays the average expression of each miRNA; both axes are in logarithmic scale. Differentially expressed miRNAs of p-
value #0.05 and at least 1.5 fold change are blue. Representative significant miRNAs are labelled. Each sample had a separately generated
sequencing library and was run in an individual sequencing lane.
doi:10.1371/journal.pone.0064779.g002
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significantly changed probes representing 988 genes or genetic

areas (Table S4). In order to identify genes possibly targeted by

changes in miRNA expression, we utilized TargetScan 5.2 to

predict mRNA targets of the 259 significantly regulated miRNAs.

We limited the predicted mRNA targets, first based on genes

significantly regulated in our gene expression analysis and second

on targets either experimentally proven or highly predicted by

TargetScan. Additionally, based on the knowledge that miRNAs

predominately regulate gene expression through an inhibition of

expression, we only retained miRNA-mRNA combinations that

are inversely correlated, recognizing we may be excluding

functionally important regulatory interactions of mRNAs. Begin-

ning with our 81 significantly regulated miRNAs, we identified 40

that had highly predicted mRNA targets with significant changes

in associated gene expression. We identified 202 significantly

regulated mRNA targets that were inversely correlated with the

miRNAs predicted to target them (Table S5). Many of the

miRNAs are predicted to target multiple significantly regulated

mRNAs and many of the mRNAs are potentially targeted by more

than one ATM-dependent miRNA. These phenomena might

suggest functional redundancy in the miRNA regulation of target

genes.

Using Gene Set Enrichment Analysis (GSEA) [41], we

determined the gene families represented by the genes predicted

to be targeted by miRNAs in an ATM-dependent manner

(Figure 4A). This approach gives a functional overview of the

genes in our list using the Molecular Signatures Database [41].

Gene families share common features such as biochemical activity

and homology. Interestingly, many of the predicted target genes of

the significantly regulated miRNAs are transcription factors

(shown in Table S6), suggesting that many of the ATM-dependent

miRNAs may control a large phenotypic response based on the

regulation of transcription factor expression. The involvement of

miRNA regulation of transcription factors has been predicted and

modeled in several different types of cancer [42,43,44]. Our

findings show changes in miRNAs as well as the alteration of

transcription factor expression that is occurring after the loss of

ATM. Additionally, our findings suggest this alteration of

transcription factors may be occurring before the cells become

malignant (Table S6). For example, increased expression of

Figure 3. Depletion of ATM leads to deregulation of miRNAs important in cancer formation. A) List of 4 known tumor suppressors and 8
oncomirs with significant expression changes after the depletion of ATM. B) Expression levels, tags per million (TpM), of four examples of deregulated
miRNAs. Dark gray bars represent wild type expression and light gray bars represent expression in ATM-deficient cells. Error bars are standard error
from the expression of 3 independent replicates of each genotype.
doi:10.1371/journal.pone.0064779.g003
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oncogenic transcription factors such as MAF and CEBPA indicate

miRNAs may regulate large networks of genes involved in cancer

formation. Furthermore, 6 oncogenes and one known tumor

suppressor, SOCS1, are predicted to be miRNA targets. This is

consistent with previous reports suggesting miRNAs can play a

critical role in the formation and progression in cancer.

Understanding the early effects of miRNAs in the regulation of

transcription factors and cancer formation may lead to insight into

prognostic and preventative treatments.

Figure 4. Depletion of ATM in non-cancerous cells reveals effects on miRNAs and target mRNAs that suggest an early event in
transformation to cancer. A) Gene Families representing the 202 significantly regulated genes determined using GSEA to give a functional
overview of the types of genes affected by changes in miRNA expression. B) Top Functions analysis of ATM-dependent correlated miRNAs and
possible mRNA targets by IPA. Only selected significant functional groups are depicted. The dashed line indicates a p-value of 0.01.
doi:10.1371/journal.pone.0064779.g004

miRNA and Cancer Susceptibility in Mammary Cells
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Pathway/functional Analysis of Predicted Targets
In order to gain additional insight into the biological functions

and networks being affected by the ATM–dependent changes in

miRNA expression, we utilized Ingenuity Pathway Analysis (IPA)

[45]. Functional analysis and network generation analysis through

IPA allows us to examine all the potential roles of significantly

changed miRNAs and their predicted gene targets by mining the

IPA Knowledge Base to identify connectivity and relationships

between our genes and miRNAs of interest. Five networks were

significantly affected after the depletion of ATM, including cellular

functions of morphology, cell cycle, cell growth and proliferation.

At least 76 large functions groups were significantly (p,0.01)

affected after the depletion of ATM, with several cancer and

tumor specific functions being highly affected (Figure 4B). The

most significantly affected biological function was cancer

(p,1610̂10), with other significantly affected functions including

tumor morphology, DNA damage and repair, and cell death.

(Table S7 shows representative genes in several of these functional

groups.) The deregulation of these biological functions in non-

cancerous cells suggests the loss of ATM, with associated changes

in miRNA expression levels, may predispose or drive the early

stages of cancer formation.

Discussion

Through genome-wide deep sequencing we have gained

information about essentially all the small RNAs present in both

wild type and ATM-deficient normal human mammary epithelial

cells, not just those that are highly expressed. We identified 259

robustly expressed miRNAs present in both wild type and ATM-

deficient normal human mammary epithelial cells. While ATM

has been implicated in the biogenesis of miRNAs after DNA

damage [46], a full investigation of the effect of ATM depletion in

HME-CCs reveals that the depletion of ATM itself has both the

expected down-regulation of miRNAs as well as a significant

number of up-regulated miRNAs. Only one-third of the signifi-

cantly regulated miRNAs have decreased expression after the

depletion of ATM. Based on the presence of up-regulated

miRNAs following ATM depletion, we speculate that ATM’s role

in effecting miRNA expression is not limited to miRNA biogenesis

and could be occurring via multiple mechanisms. Additionally, loss

of ATM has been associated with an increased level of oxidative

stress [47,48]. We speculate the higher level of oxidative stress

triggered by the constitutive loss of ATM may have an effect on

the expression levels of many miRNAs. The depletion, or loss, of

ATM may be driving changes in miRNA expression through the

increase in oxidative stress. Several miRNAs seen to have altered

expression after the depletion of ATM have also been shown to be

regulated by elevated oxidative stress, such as hsa-miR-200c [49].

Additional studies are needed to determine whether reactive

oxygen species scavengers can mitigate the miRNA changes or

phenotype changes seen with the depletion or loss of ATM.

When we compared the miRNA expression between the wild

type and ATM-deficient HME-CCs we discovered that the

miRNAs dis-regulated after the depletion of ATM show an

unusually high correlation with miRNAs implicated in cancer. Of

the 81 significantly regulated miRNAs, the depletion of ATM

drove the repression of 4 known miRNA tumor suppressors and

the over-expression of 7 known oncomirs. This initial observation

suggests a means by which the loss of ATM might predispose cells

to cancer or increase cancer-susceptibility.

To further investigate the role of the miRNAs in the ATM-

deficient cells, we combined the significantly regulated miRNA

and gene expression data to predict and evaluate possible miRNA-

mRNA target combinations. Approximately half of the signifi-

cantly regulated miRNAs had predicted targets that were also

differentially regulated, as seen in our gene expression analysis.

When we further investigated these miRNA and possible targets

we highlighted additional evidence of a cancer-susceptibility

profile in ATM-deficient human mammary epithelial cells. This

includes the increased regulation of oncogenes MAF and CEPBA

as well as the decreased regulation of the tumor suppressor

SOCS1.

Understanding the genome-wide miRNA profiles of normal and

ATM-deficient non-cancerous mammary epithelial cells can help

us gain a better understanding of the roles of ATM and miRNAs

in the tumorigenesis of breast cancer and the transition from non-

cancerous to malignant breast tissue.

Of particular interest is the possibility of utilizing miRNA

expression levels to predict cancer susceptibility or formation

before it can be detected by conventional diagnostic methods. The

cells in our study are normal human mammary epithelial cells that

are not derived from cancerous cells. Therefore, the increased

expression of oncomirs and the repression of some tumor

suppressor miRNAs in ATM-deficient cells suggest that it may

be possible to develop biomarkers for breast cancer predisposition.

Utilizing miRNA biomarker profiles consistent with breast cancer

predisposition would allow early identification of patients who are

at risk and perhaps lead to earlier monitoring, detection, and

treatment.

Conclusion
In conclusion, 81 miRNAs with ATM-dependent expression

have been identified. These miRNAs, along with their putative

mRNA targets, suggest they may play a role in the early stages of

transition from normal to cancerous mammary epithelial cells.

This study provides the preliminary data to suggest that combining

microRNA and mRNA expression can be of value for developing

a biomarker for predicting predisposition to breast cancer. By

identifying cells and patients with an increased potential for breast

cancer formation, recommendations can be made involving

monitoring and early intervention.

Supporting Information

Table S1 Sequence count for all 939 annotated miRNAs.
Tags per million (TpM) sequence count for all 939 microRNAs

annotated in the hg19 WgRNA track of the UCSC Genome

browser.

(PDF)

Table S2 Sequence count for 259 present miRNAs.
Sequence count for the 259 miRNAs deemed present (above 10

TpM) in either 2 out of 3 wild type replicates or 2 out of 3 ATM-

deficient replicates.

(PDF)

Table S3 81 ATM-dependent miRNAs. 81 microRNAs

determined to have a significant change in expression in the ATM-

deficient cells compared to wild type controls. T-test p#0.05; Fold

Change +/21.5 or greater.

(PDF)

Table S4 1086 ATM-dependent mRNAs. 1086 mRNA

probes determined to have significant expression changes in

ATM-deficient cells compared to wild-type control cells. T-test

p#0.05; Fold Change +/21.5 or greater.

(PDF)
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Table S5 40 miRNA and 202 mRNA targets. List of 40

significantly regulated miRNAs with negatively correlated pre-

dicted mRNA targets and the 202 mRNA predicted targets with

significant changes in gene expression. The direction of change

(increase or decrease) of the ATM-deficient cells compared to the

WT cells is indicated for both the miRNAs (column 2) and the

gene (mRNA) targets (column 4).

(PDF)

Table S6 Potential target transcription factors. Tran-

scription Factors identified as possible targets of significantly

regulated miRNAs using the Molecular Signatures Database of

GSEA.

(PDF)

Table S7 Representative genes in specific functional
categories. Examples of target genes implicated in Cancer, Cell

Cycle Regulation and DNA Replication, Recombination and

Repair based on Ingenuity Pathway Analysis.

(PDF)
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