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Abstract

Many cellular populations cooperate through the secretion of diffusible extracellular resources, such as digestive enzymes
or virulence factors. Diffusion of these resources leads to long-range intercellular interactions, creating the possibility of
cooperation but also the risk of exploitation by non-producing neighbors. In the past, considerable attention has been
given to game-theoretic lattice models of intercellular cooperation. In these models, coexistence is commonly observed
between cooperators (corresponding to resource producers) and cheaters (corresponding to nonproducers). However,
these models consider only interactions between direct competitors. We find that when individuals are allowed to interact
non-locally through the diffusion of a shared resource coexistence between cooperators and cheaters is lost. Instead, we
find population dynamics similar to simple competition, either neutral or biased, with no balancing selection that would
favor coexistence. Our results highlight the importance of an accurate treatment of diffusion of shared resources and argue
against the generality of the conclusions of game-theoretic lattice models.
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Introduction

A vast array of species employ diffusible extracellular factors to

alter the local environment of their cells. Most multicellular

organisms secrete digestive enzymes and acids in their digestive

tracts. Both healthy and cancerous human cells secrete a host of

signaling factors to regulate growth processes [1]. Microbes living

in biofilms use diffusible molecules to degrade host tissues, digest

nutrients, chelate metals, neutralize antibiotics, and sequester

toxins [2–7] (Fig. 1a). In some cases, the processed substrate,

rather than the extracellular factor itself is what diffuses [6]. In

either case, diffusible resources help cells engineer their surround-

ings, providing the cells with a variety of benefits. However, in

addition to conferring benefits on the producers, extracellular

resources can confer a benefit on nearby, potentially unrelated

cells (Fig. 1b).

Diffusible extracellular resources can find and interact with

substrates that are inaccessible to the producing cell. For this

reason, they have the potential to perform functions that private

resources, even surface-bound extracellular factors, cannot. For

example, the opportunistic human pathogen Pseudomonas aeruginosa

exports the diffusible phenazine pyocyanin, which can act as a

rudimentary circulatory system [8], as well as attack both host

tissue and competing species of bacteria [9]. Notably, cells

coordinate their pyocyanin production in response to that of

other cells [10]. Other examples include the iron scavenging

pigment pyoverdine [11] and enzymes such as exoglycosidases,

which digest high molecular weight polysaccharides into simpler

sugars [12].

Clearly, if the diffusion length is long and the cost of production

is significant, nearby nonproducing cells can enjoy a competitive

advantage over producers. Hence, an invader or a nonproducing

mutant in a group of resource-producing cells may outcompete the

producers, eventually leading to the loss of extracellular resource

production in the population. How is it then that production of

diffusible resources is widely observed, even among microorgan-

isms in multispecies consortia [13–15]? In fact, the persistence of

high genetic diversity in such consortia (e.g. dental biofilms) over

long times suggests a mechanism for the coexistence of producers

and nonproducers.

Highly detailed, ad-hoc individual-based models (IBMs) have

been developed to study population dynamics in competitive

cellular populations. For example, Xavier and colleagues devel-

oped an IBM for growth of multispecies biofilms featuring cell-cell

adhesion and detachment, fluid transport, nutrient depletion and

the transport of extracellular particles [16]. Recently, Momeni and

colleagues explored a mutualistic interaction in yeast involving

diffusible extracellular resources using both computational and

experimental methods. Their IBM, which incorporated nutrient

uptake, diffusion, and release, as well as cell division, death, and
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rearrangement, predicted that strongly interdependent mutualists

would form alternating layers, consistent with their experimental

results [17].

These individual-based modeling approaches facilitate a mech-

anistic understanding of the interaction between cells in specific

microbial environments. For broader claims about the fate of

cooperating populations, theorists have generally turned to spatial

extensions of game-theoretic models. The two most broadly used

classes of game-theoretic models are the Prisoner’s Dilemma and

the Snowdrift Game. The Prisoner’s Dilemma (PD) is a pairwise

interaction, or ‘‘game,’’ nominally involving two accused criminal

confederates. In this game, the highest payoff goes to a defector

whose opponent cooperates (does not defect); a cooperator whose

opponent defects gets the lowest payoff. The second highest payoff

is achieved when both players cooperate [18]. This is a good

model for an interaction within which a resource is useful but not

strictly necessary. By contrast, in the Snowdrift Game (SG),

nominally based on a social impasse concerning who will shovel

the snow, the worst payoff goes to mutual defectors (non-

shovelers), and the second-worst payoff goes to a cooperator

(shoveler) whose opponent defects [19]. This is a better model for

situations in which a resource is essential for group survival, even

though its production may be costly to the individual producer.

For example, Gore and colleagues showed that SG is a good

model for a well-mixed population of yeast cells producing an

essential resource which is in part allowed to diffuse away from the

producer [6].

These game-theoretic models have the advantage of having a

well-defined optimal strategy for a single instance, greatly

facilitating analysis over repeated encounters. However, their

extension to space requires strong assumptions [20]. In non-spatial

models, where any individual is equally likely to interact with any

other individual, coexistence between pure-strategy cooperators

and defectors is commonly seen in the SG case, or in cases of

mutual dependence [6,21,22]. By contrast, stable coexistence of

pure-strategy cooperators and defectors is impossible in a non-

spatial PD interaction: defectors dominate cooperators, leading to

the collapse of cooperation [18,23–25].

Interestingly, these results are found to be nearly reversed in

spatially structured models within which individuals compete only

with their nearest neighbors. In these competitions, individuals are

arrayed on a lattice, and play a pairwise PD or SG with each of

their nearest neighbors; an individual’s fitness is a function of the

sum of its payoffs from each pairwise interaction. A subset of cells

are then replaced by fitter neighbors according to one of several

update rules: one cell may be chosen at random to replace a

neighbor (as in [26]), or each cell is replaced with a copy of the

fittest individual in its neighborhood (as in [27]). The results are

essentially equivalent. Namely, isolated PD cooperators are

extremely unfit and are eliminated, while PD cooperators with

at least some cooperator neighbors are able to survive. As a result,

nearest-neighbor spatial PD models display coexistence through

the formation of homogeneous cooperator groups. This coexis-

tence can last indefinitely, even in the presence of stochastic

fluctuations, and is often accompanied by the emergence of

definite spatial structures. The outcome is quite different for

nearest-neighbor SG competitions: the ability of individual SG

cooperators to survive hampers their overall survival in nearest-

neighbor spatial games. Unlike the original Nowak PD model

[27], for which ‘‘winners’’ were chosen deterministically on the

basis of greatest fitness, reproductive success in the Hauert SG

model is chosen randomly, with the transition probabilities

weighted by the payoffs. (Both pairwise interactions with a single

neighbor and the sum of payoffs with all neighbors were used, with

indistinguishable results.) Isolated cooperators are slightly less fit

than the surrounding cheaters, but if they reproduce, the resulting

cooperator pair is fitter than surrounding cheaters. These and

other local effects lead to the tendency of cooperators to produce

unstable dendritic structures that grow, collapse, and sometimes

vanish locally. As a result, cooperators remain rare in the nearest-

Figure 1. Diffusible resources. Microbes in biofilms often secrete extracellular resources despite the close proximity of unrelated cells. (a) A multi-
species biofilm isolated from an extracted human tooth. Streptococcus sp. are shown in yellow, other species in orange and red; cells of Streptococcus
oralis produce enzymes that release nutrients to all nearby cells [12]. Scale bar = 5 mm. Figure from Vincent Zijnge [42]. (b) Cells (blue) release
diffusible resources into the environment. These resources confer a growth benefit on all nearby cells, including non-kin nonproducer cells (red),
potentially leading to the risk of exploitation of producers at domain boundaries.
doi:10.1371/journal.pone.0063304.g001
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neighbor SG game, and can go entirely extinct for high cost-to-

benefit ratios [26].

Nearest-neighbor interactions are easy to simulate and analyze.

However, such models are unphysical in several ways with respect

to microbial populations. First of all, such models evolve by

winners replacing losers with copies of themselves. As such, no

evolution takes place at the interior of a homogeneous group;

rather, all competition must take place at the interface between

populations. One consequence is that, in the short term, the

dynamics in these models depend entirely on neighborhood

composition at the competing fronts. On a rectangular lattice, a

cell has only four neighbors, representing the totality of cells

affecting its fitness. As a result, the transition of even a single

neighboring cell can have a profound impact on the fitness of a cell

relative to a neighboring competitor, while a cell two spaces distant

is entirely irrelevant. While certain contact-dependent signaling

processes do indeed have a strong effect on the behavior of nearest

neighbors, most cooperative interactions involve alterations to the

environment, which have a more diffuse neighborhood effect.

Nowak and colleagues addressed this problem by weakening the

dependence of fitness on local composition by randomizing the

connectivity within the lattice in a PD model. They also examined

interactions on a random lattice, in which cells were ‘‘neighbors’’ if

they lay within a defined radius of one another. They found that

coexistence was preserved, even when the effective group of

‘‘neighbors’’ extended to a larger area in this manner [28,29].

These alternative topologies allow cells to compete with individ-

uals who are not nearest neighbors. However, cell fate still depends

entirely on fitness interactions with direct competitors. What

happens when two individuals can affect one another’s fitness,

even though they are not direct competitors?

To address this question, we developed a model in which cells

interact within a diffuse neighborhood, but still compete for space

with nearest neighbors as in previous studies. This model is

intended to test the relevance of existing game-theoretic models to

the problem of coexistence of producers and nonproducers in

microbial communities. In our model, the producers (equivalent to

the cooperators in a game-theoretic model) affect the fitness of

nearby cells through the production of a diffusible resource. The

resource confers a benefit both on the producing cell and on

nearby individuals; additionally, there is a cost to the producer.

Nonproducers enjoy the benefits of the resource without the

production cost. Surprisingly, we find that this model exclusively

exhibits the dynamics of simple neutral or biased competition. In

particular, long-term coexistence of producers and nonproducers

is never observed. This follows from the smoothing effect of

diffusion on resource access, resulting in a homogenization of

benefit. We conclude that non-local interactions among cells

mediated by diffusible resources in a birth-death model can lead to

qualitatively different dynamics than those observed in corre-

sponding nearest-neighbor models. Our results highlight the

importance of an accurate treatment of diffusion when modeling

microbial populations.

Model & Methods

The model is an adaptation of the fully occupied lattice models

used in, e.g., [20,26–28]. It consists of two coupled processes: the

birth and death of individual cells, and the production and

diffusion of a shared resource. To facilitate comparison with local

competition models [20,26–28], we model cells and resource

concentrations on the same two-dimensional square lattice. To

avoid edge effects, the lattice features periodic boundary condi-

tions. Every lattice site is occupied by one of two cell types:

"producer" (P) cells and "nonproducer" (NP) cells; no lattice site is

permitted to be vacant. The cell types differ in their production of

a diffusible resource. The resource is created only by P cells, but

confers a benefit on both P and NP cells.

All cells have a basal growth rate g0, but P cells incur a

reduction in growth rate, {gC , due to the cost of production.

Hence the growth rates for P and NP cells, respectively, are given

by:

gP(x,y)~g0zcc(x,y){gC , ð1Þ

gNP(x,y)~g0zcc(x,y), ð2Þ

where c(x,y) is the concentration of the diffusible resource at the

discrete lattice site (x,y). (Since resource concentration is

represented on a lattice, c(x,y) represents the mean resource

concentration over the area of the cell at (x,y).) Thus, the

diffusible resource leads to a trade-off between the P cells, which

have greater access to the resource, and the NP cells, which do not

incur the production cost. Benefit from resource access is linearly

proportion to resource concentration, with proportionality con-

stant c. As shown in the Discussion, this assumption of linearity

does not affect the behavior of the system.

Each producer generates a total flux a of the resource, which

has diffusion constant D, and is subject to first-order consump-

tion/degradation at a rate b. (Since all lattice sites are occupied, b
is a constant.) Hence the resource field resulting from a single P

cell at (x0,y0) satisfies

Lc(x,y)

Lt
~D+2c(x,y)zadx,x0

dy,y0
{bc(x,y): ð3Þ

Here +2 corresponds to the discrete 2D Laplacian:

+2c(x,y)&
c(x+Dx,y)zc(x,y+Dy){4c(x,y)

DxDy
, ð4Þ

where Dx~Dy~ cell length.

In general, for biologically relevant regimes, the time scale of

cell division greatly exceeds that of diffusion. Consider, for

example, diffusion through the hydrogel matrix of a microbial

biofilm. Diffusion constants for enzymes or other globular proteins

through water are on the order 100 mm2/sec; through the

hydrogel matrix of a microbial biofilm they are on order

1 mm2/sec [30]. One cell is on the order of 1 mm. Hence, even

for diffusion length ‘ on the order 10 cell lengths, a diffusion

process would reach steady state in seconds to minutes

(‘2=D*1{100 sec). By comparison, bacterial cell division takes

tens of minutes to hours or longer, depending on conditions.

Therefore, for each configuration of cells, we solve Eq. 3 in steady

state, Lc=Lt~0. For a single P cell, we obtain a resource

distribution that decays exponentially, with characteristic length

l~
ffiffiffiffiffiffiffiffiffi
D=b

p
. By linearity, the total resource concentration c(x,y) for

a given configuration of producers is the superposition of such

fields (Fig. 2b).

In the simulation, the configuration of cells changes stochasti-

cally as individual cells are chosen to divide and replace one of

their four cardinal neighbors (Fig. 2a). Since replacement of a cell

by another cell of the same type does not lead to a change in the

configuration of cells, in practice, only ‘‘boundary’’ cells, which

have at least one cardinal neighbor different from themselves, are

Non-Local Interaction via Diffusible Resource
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allowed to divide. This is a spatial analog of the Moran process

[31]. Algorithmically, we describe the process as follows:

1. Replace one cell with the daughter of a neighboring

competitor. The probability of each possible replacement

event is proportional to the growth rate of the dividing cell.

2. Calculate the stochastic waiting time since the previous event,

based on the growth rate of all boundary cells in the system.

3. Recalculate the steady-state distribution of the diffusible

resource, and the growth rates of all boundary cells via Eqs.

(1–2).

The waiting time is determined via the exact Doob-Gillespie

(DG) algorithm [32]. In a DG process, the waiting time between

events Dt is Poisson distributed with a mean equal to the sum of all

individual event rates:

p(Dt)~Ce{CDt, ð5Þ

where C~
P

events g(x,y)=4 and g(x,y) is the growth rate of the

dividing cell in each replacement event in the sum. (Since each cell

can initiate up to four events, the 1=4 factor normalizes the per-

event occurrence rate to the per-cell growth rate.)

Parameters
The parameter space is simplified in several ways. First, we note

that overall benefit from resource equals the concentration of

resource c(x,y) times the per-unit benefit c. Since resource

production rate a just sets the magnitude of c(x,y), without loss of

generality we can take a~1 to be a basic unit of the system,

leaving c as a free parameter with which to adjust the resource

benefit. Next, the model has two very different time scales - the

time scale for division and the time scale for the equilibration of

the resource. As discussed previously, cell division is far slower

than resource diffusion (i.e. b&gP,gNP). Hence we assume that the

solute distribution instantly relaxes to a new steady state after each

cell division. As such, we reduce consideration of the diffusion

constant D and decay rate b to a single dimensional combination:

the diffusion length l~
ffiffiffiffiffiffiffiffiffi
D=b

p
. Without loss of generality,

therefore, we may choose b~1.

We measure growth rate in units of the basal growth rate in the

absence of any resource, i.e. g0~1. Next, we consider the cost of

production gC . This parameter determines the upper bound on

Figure 2. Model mechanics. (a) Stochastic birth-death model. Cells of two types - producers (blue) and nonproducers (red) - occupy all sites of a
square lattice. Each time a cell divides, it replaces a randomly chosen neighbor with a daughter of its own type, leading to a stochastically evolving
boundary between producers and nonproducers. (b) Steady-state distribution of diffusible resources around single producer cells, from Eq. 3 with

l~
ffiffiffiffiffiffiffiffiffi
D=b

p
~5.

doi:10.1371/journal.pone.0063304.g002
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the fitness difference between producers and nonproducers. When

gC%1, producers and nonproducers with similar resource access

have essentially equivalent growth rates. Since resource diffusion

smooths resource concentration at the competitive front, gC%1
will lead to a trivial, nearly neutral dynamic, in which the two cell

types are essentially equivalent and one will eventually fix due to

enetic drift. To look for coexistence, we therefore consider the

largest possible gC , with the constraint that the growth rate for

producers in the absence resource should not become negative.

Hence we take gC~g0~1.

Neutral Model
As a negative control, in which long-term coexistence of cell

types is impossible, we simulated a neutral birth-death model. In

our framework, neutrality is achieved by setting the production

rate a and the production cost gC to zero, so there is no resource,

and every replacement event has equal probability.

Mutualism Model
As a positive control for coexistence, we consider two symmetric

cell types each of which produces a diffusible resource that

increases the growth rate of the other cell type. The growth rate of a

cell at site (x,y) is therefore

g(x,y)~g0zc�cc(x,y) ð6Þ

where �cc(x,y) is the concentration of the resource produced by the

complementary cell type. In this model, the fastest growing cells

are those nearest to the complementary cell type, leading to

selective pressure toward a balanced, intermixed population. This

control is a two-dimensional analog to the mutualism model of

[33].

Radial Distribution Function
To characterize spatial structure, we evaluated the radial

distribution function. Specifically, for a given configuration of

cells, the distribution of cell types was considered as a function of

distance from each NP cell. The RDF is the fraction of cells that

are NP, as a function of Euclidean distance from the central NP

cell, averaged over all NP cells. Typically, the RDF was averaged

over multiple configurations, with each configuration weighted by

its number of NP cells. For the neutral and mutualism models,

since both types of cells are equivalent, the central cell type for the

RDF was chosen arbitrarily.

Results

In nearest-neighbor spatial games, such as [26,27], individuals

can only affect the fitness of direct competitors. For a broad range

of conditions, these nearest-neighbor games give rise to coexis-

tence between cooperators and cheaters, including definite spatial

structures of cooperators and cheaters. However, in cellular

populations such as bacterial biofilms and multicellular tissues,

individual cells engineer their environment by exporting diffusible

extracellular factors. These factors affect the fitness of not just a

producer’s direct competitors, but of many cells in its vicinity.

When individuals are allowed to interact at long range with non-

competitors is coexistence preserved? More specifically, what is the

effect of diffusible resources on the spatial structure of the

population?

In order for long-term coexistence of producers (P) and

nonproducers (NP) to occur in a competition model, a conditional

selection bias must act whenever the distribution of cells deviates

from a coexistent steady state. This sort of selection bias, called

‘‘balancing selection,’’ necessarily leads to a growth bias in favor of

the underrepresented cell type. That is, when P cells become too

frequent (i.e., the fraction of P cells exceeds the preferred fraction),

NP growth would be favored; conversely, when P cells become too

infrequent, P cells would be favored. Furthermore, this balancing

selection must be strong enough to overcome the tendency of

random fluctuations to drive the system toward the fixation of one

cell type. In our lattice model, only cell divisions at the boundary

between producers and nonproducers affect the distribution of

cells (Fig. 2a), so any balancing selection must act at the

boundaries.

In looking for this balancing selection, we found that, for a given

resource diffusion length l, there is a transition from P to NP

dominance around a critical benefit value c�. This fitness

transition does not depend on initial conditions. Fig. 3a shows

the effect of diffusion length l and benefit value c on the

probability of producer fixation, given a 50–50 initial distribution

of cooperators and cheaters. When the diffusion length is very

short (l *v 1 cell length), the resource is essentially private, and

producers are effectively not cooperating. This leads to a simple

fitness difference that depends only the cost-benefit ratio of

resource production. On the other hand, when the diffusion length

is long (l&1 cell length), resource distribution is nearly uniform.

Since nonproducers have only slightly less resource access than

producers, a change in c has a relatively small effect on individual

fitness at the front. As a result, the transition from P- to NP-

domination is gradual at long diffusion lengths, with intermediate

values having the potential for either outcome. Therefore, for a

given diffusion length l, we found the critical value of c at which

the two fixation states were equally probable, and identified this as

the most likely c value for balancing selection. An analysis of this

critical value of c versus l is given in the SI.).

Figure 3b shows the time evolution of a balanced P-NP

competition model, with l~5 and c~49, and a neutral model,

starting from either a well-mixed or a fully segregated initial

condition. In all cases, the initial frequencies of the two cell types

are equal. For the P-NP model, domains of like cells form through

random fluctuations at the boundaries. Smaller domains are

subsumed by larger ones until eventually the entire system

becomes a single domain of one cell type. This long-term behavior

is independent of initial conditions. Moreover, there is a strong

resemblance in dynamics between the balanced P-NP model and

the neutral model. In fact, the only distinguishing feature between

these two models is the time scale: in the absence of the diffusible

resource, the neutral system evolves roughly ten times more slowly.

This difference in time scales is due to the benefit conferred by the

diffusible resource: with the balanced benefit value c~49, one unit

of the resource speeds growth by a factor of 49 over the basal rate

g0. For zero diffusion, and with a~b~1, the resource concen-

tration is cP~1 for P cells and cNP~0 for NP cells; for infinite

diffusion, the concentration c scales with P fraction. Hence, for the

relatively long diffusion length l~5, we observe a concentration of

approximately c~0:5 for an initial 50–50 distribution. Hence,

given the balanced parameters l~5, c~49 described earlier, the

absolute growth rate for all boundary cells in the P-NP model is

around 25 times higher than for a neutral model.

The neutral-like population dynamics of the balanced P-NP

model are illustrated in Fig. 3c, which shows selection bias as a

function of NP frequency. The selection bias is defined as the

mean probability, given a specified NP population fraction, that an

NP cell will replace a P cell in the next replacement event. Note

that for balanced parameters the selection bias is &0:5, i.e.,

producers and nonproducers are equally favored, regardless of NP

fraction, until just before NP reaches fixation. This is true whether

Non-Local Interaction via Diffusible Resource
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Figure 3. Competition model results. (a) Dependence of probability of cooperator fixation on diffusion length l and benefit value c. Interpolated
from w6|105 simulations. Each simulation was initialized with equal numbers of randomly arranged P and NP cells in a 32632 system and run until
one cell type reached fixation. (b) Time series of simulations. Cell types begin at equal frequency, with either well-mixed (upper) or fully segregated
(lower) initial conditions. First and third rows show a diffusible resource model with producers (blue) and nonproducers (red). Parameters: diffusion
length l~5 and benefit multiplier c~49 for balanced competition. Second and fourth rows show a neutral model. Boundary cells are shown in dark
colors. The diffusible-resource model and the neutral model exhibit similar dynamics. (c) Selection bias, i.e. probability that next event will be a
nonproducer replacing a producer, as a function of nonproducer fraction. In the neutral case (dashed black curve), selection bias is exactly 0.5 by
construction. NP- and P-favored simulations began with a single invader cell of the favored type. Balanced results began with equal populations in
either the segregated (solid green) or well-mixed (dashed green) initial conditions shown in (b); the results are indistinguishable. Parameters: Blue
curve: l~1,c~75. Red curve: l~5,c~5. Green curves: l~5,c~49. Non-neutral curves are averaged over at least 500 simulations apiece. Radial
distribution function of nonproducers at (d) 25% and (e) 75% nonproducer fraction. Parameters as in (b). Initial conditions are a single nonproducer
invasion (solid curves) or two segregated equal populations (solid curves). Also shown is the radial distribution function for the neutral model for
both single-invader and segregated initial conditions. Results are averaged over at least n~40 observations in each case. Probability of nonproducer
fixation, starting from a single invading cell, as a function of linear system size. The neutral model (black) exhibits the expected fixation probability 1/
N for N equivalent cells. Diffusible-resouce model with balanced parameters also exhibits 1=N scaling (green curve: l~5, c~49, as in (b)). For NP-
favored case, fixation probability saturates as expected for a faster growing invader (red curve: l~5, c~25). Results are averaged over at least 15,000
simulations for neutral and balanced models, and 2,000 simulations for NP-favored. (g) Average time to fixation of a nonproducing invader (for cases
in which nonproducers fix), as a function of linear system size.
doi:10.1371/journal.pone.0063304.g003
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the cells begin segregated or well-mixed. By contrast, coexistence

requires a selection bias that acts to restore the system to a

preferred state.

Balancing selection is absent even for very short diffusion

lengths, where one might have anticipated the existence of spatial

configurations that strongly favor each of the two cell types (Fig.

S3). Strong producer bias is only possible when the diffusion length

is short and the benefit of the resource is high compared to the

cost; otherwise, the behavior is essentially neutral or biased toward

nonproducers.

Does the absence of global selection bias in the balanced case

imply neutral-like spatial dynamics as well? It is conceivable that

the spatial configuration of cell neighborhoods could give rise to

locally frequency dependent non-neutral dynamics, even if the

population shows no overall selection bias. If this were the case,

one would expect the spatial structure of the balanced P-NP and

neutral models to differ. To investigate this possibility, we

evaluated the radial distribution function (RDF) of both the

balanced and neutral cases at the same producer fraction. The

remarkable similarity of the RDFs, shown in Figs. 3c,d, strongly

suggests that there is no significant difference in emergent spatial

structure between the two models. Namely, the RDF exhibits the

same approximately exponential decay with distance (Fig. S4) for

both models. Thus, the quantified spatial behavior exhibited by

the P-NP model in the balanced regime can be fully attributed to

neutral competition.

Next, we asked whether the initial condition had any effect on

the long-term spatial configuration of the system. To find out, we

measured the RDF in cases where a single NP invader had grown

to either 25% fraction or 75% fraction. These are relatively rare

events. By comparison, a 50–50 initial condition will always reach

either a 25% or 75% NP fraction eventually. Nevertheless, the

RDF curves for the rare cares where a single NP invader achieves

25% or 75% fraction are very similar to the corresponding curves

for a 50–50 initial distribution, indicating that initial conditions

have no effect on the long-term spatial configuration. Indeed, by

the time the single NP invader has taken over 75% of the system,

the RDFs for the single-invader and 50–50 initial conditions are

almost identical.

Could the similarity between the balanced and neutral spatial

dynamics be an artifact of small system size? To ascertain whether

this was the case, we characterized the long-term dynamics of the

balanced and neutral models, as well as of a weakly NP-biased

model, over a range of system sizes. Fig. 3f shows the probability of

NP fixation, starting from a single NP invader, as a function of

linear system size. We find that these dynamics are almost entirely

consistent with an equivalent well-mixed model, suggesting that

spatial configuration plays a negligible role in the dynamics. This is

consistent with our expectation that resource diffusion homoge-

nizes resource distribution along the competitive front.

Is the time to fixation in the balanced P-NP model also

consistent with neutral-like dynamics? In the neutral case, time to

fixation scales with linear system size (Fig. 3g). As discussed

previously, the diffusible resource increases the overall growth rate

of cells; however, with balanced parameters, the relative growth

rates of producers and nonproducers remain equal (Fig. 3d).

Hence, one expects time to fixation to exhibit the same scaling as

the neutral process, albeit with a smaller prefactor. This is

precisely what we see in Fig. 3g. Moreover, a weak NP advantage

leads to accelerated fixation time at large system sizes, consistent

with our expectation that invader growth is steady and determin-

istic once the establishment population of a faster-growing invader

is reached [34]. The results for the fixation time further

demonstrate that, far from enabling coexistence, diffusible

resources drive the system toward the fixation of one cell type.

The conspicuous absence of stable, finite-scale spatial structures

in the diffusible-resource model is striking. In previous local-

interaction models, producers and nonproducers have been

observed to self-organize into finite groups of like individuals that

persist for long times. Could we have somehow failed to recognize

stable coexistence in our model? To rule out this possibility, we

sought to establish that local competition with diffusible resources

can, under the right circumstances, lead to readily recognizable

coexistence within our modeling framework. To this end, we

developed a ‘‘positive control’’ for coexistence - a mutualistic

interaction with diffusible resources. In this mutualism model, two

cell types each produce a diffusible resource that confers a benefit

only on the other cell type. Cells at the boundary still compete, but

now their growth rate depends on the frequency of the other cell

type within the diffusion length of the resource. The two cell types

shown in Fig. 4 are equivalent but complementary: the cost of

production gc (set equal to basal growth rate g0) and resource

benefit c are identical. Strikingly, both coexistence and finite-scale

spatial structure are readily observed in the mutualism model. In

the example in Fig. 4a, the diffusion length is l~2 and the benefit

to complementary cells is c~10. The result is a definite spatial

structure consisting of finite-sized kin domains, independent of

initial conditions. This strong spatial patterning is evident in the

RDF (Fig. 4b), where cell type is strongly correlated at short

lengths and then uncorrelated at long lengths.

Discussion

We investigated the possibility that interaction via diffusible

resources can lead to long-term coexistence between producers

and nonproducers in a lattice model. We explored this hypothesis

using a model in which producers (P) and nonproducers (NP)

divide and replace one another, with a growth rate determined by

access to a resource produced only by P individuals. We compared

these results with a neutral model, in which cells are chosen to

divide and replace one another entirely at random, and with a

mutualism model, in which each cell type produces a diffusible

resource used only by the other cell type. We found that in the P-

NP model the population structure evolves by either a neutral or

biased drift process. For given parameters, either one cell type is

favored or the competition is neutral for all initial conditions and

population fractions. Balancing selection, which would restore the

system to a favored mixed state, i.e., a state of coexistence, is never

observed. Instead, cell groups fluctuate randomly in size until one

cell type takes over the system, in a manner essentially identical to

the behavior of a neutral or biased drift model. This outcome is

striking, because it lacks the persistent spatial structures observed

in previous ‘‘spatial game’’ models [20,26–29].

What causes this drift-like dynamic in our P-NP competition

model? The growth rate difference between P and NP cells is

greatest at the interiors of their respective kin domains. However,

all competition takes place at the boundaries. When diffusion

lengths are long compared to a cell length, spatial variations in

resource concentration are always gradual, meaning that the

difference in resource concentration on the P and NP sides of a

boundary is necessarily modest. Moreover, diffusion smooths out

variations in resource concentration due to boundary shape.

Critically, therefore, P and NP cells at the boundary receive nearly

identical benefits due to resource concentration. Since all

competition takes place among these boundary cells, spatial

structure plays no meaningful role in the dynamics of the system

for diffusion lengths long compared to a cell length.
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By contrast, when diffusion lengths are short, the difference in

resource access between P and NP cells can be substantial. In the

latter case, however, interior P cells are unable to provide

resources to their kin at the boundary. Instead, individual

producers keep most of the resource for themselves (in effect,

resources are no longer diffusible). Consequently, the competition

becomes essentially frequency-independent; producers have a

systematic advantage if and only if the resource benefit exceeds the

cost. In either regime of diffusion lengths, no long-term

coexistence is possible.

Consequently, the system evolves according to one of two

relatively simple dynamics: neutral drift or simple biased

competition. Simple biased competition can occur when either

the resource is very costly or diffusion lengths are short; in all other

cases, a neutral drift dynamic occurs. When the diffusion length is

long, producers can at best compete neutrally. If the benefit is low,

producers grow more slowly because of the cost of production; if

the benefit is high, producers gain little advantage because

nonproducers have almost as much access to the resource as

producers. When the diffusion length is short, the two strategies

represent a direct trade-off: P cells have greater resource access,

Figure 4. Mutualism model results. (a) Time series of mutualism model with diffusible resources. Initial conditions: single-cell invasion (upper)
and segregated, equal domains (lower). Parameters (both cell types): l~2, c~10. (b) Radial distribution function for the mutualism model at steady
state. Diffusion length l as shown; other parameters as in (a). Cell type is correlated and then uncorrelated for a longer interval, reflecting the spatial
structure of kin domains. Neutral RDF calculated at a 75%/25% distribution starting from a single-invader initial condition. Results are averaged over
200 simulations for each diffusion length l.
doi:10.1371/journal.pone.0063304.g004

Non-Local Interaction via Diffusible Resource

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63304



while NP cells have faster basal growth. In this case, the cost-

benefit difference determines a simple growth advantage for one

cell type or the other, while zero cost-benefit difference results in

neutral drift.

Could a saturating resource uptake curve, such as the Michaelis-

Menten model used in [6,17], facilitate coexistence? In fact, the

answer is no. Consider the following nonlinear variants of the

equations for diffusion (Eq. 3) and growth (Eqs. 1 and 2):

Lc(x,y)

Lt
~D+2c(x,y)zadx,x0

dy,y0
{bd(x,y), ð7Þ

gP(x,y)~g0zcd(x,y){gC , ð8Þ

gNP(x,y)~g0zcd(x,y), ð9Þ

where

d(x,y)~
c(x,y)

KMzc(x,y)
: ð10Þ

In the limit KM&max(c(x,y)), the equations revert to their

originals. At lower values of KM , for which uptake saturates, cells

near producers retain less of the resource. As a result, the solute

concentration gradient around each producer is even shallower,

resulting in an even more homogeneous solute distribution.

Ultimately, therefore, saturating resource uptake has the effect of

exacerbating the degeneracy of the dynamics.

Our results underscore a general shortcoming of neighborhood

competition models, including spatial game models [20,26–29]:

the interior of a cell group plays no dynamical role whatsoever. By

contrast, microbial systems in vivo often exhibit dynamics that are

driven by internal cells. For example, Xavier and Foster found that

extracellular matrix production by internal cells in biofilms drives

outer cells towards the resource-rich frontier, enhancing growth

rates [35]. More recently, Koschwanez and colleagues found that,

among yeast cells producing an extracellular shared good,

multicellular aggregates could survive at low-nutrient conditions

whereas free-living cells could not [36]. Finally, slow-growing

interior cells can drive the recovery of a microbial population

following antibiotic stress [37]. Consequently, the dynamics of

neighborhood competition models have little relevance to typical

microbial populations.

In fact, coexistence of social strategies may not depend on direct

interaction of ‘‘cooperators’’ and ‘‘cheaters’’ in general. Direct

interaction occurs only when individuals are in close proximity;

i.e., they compete directly. In a population of cells (e.g., a biofilm),

this occurs only where the population has reached such a density

that cells neighbor individuals of competing lineages. Within such

a densely populated area, cells are limited for nutrients and space,

with the result being that population dynamics are slow compared

with the dynamics of the growing frontier. As a consequence, in

many cases dynamics at the growing front are likely to drive the

evolution of the population overall.

Even if nonproducers have a local advantage in a saturated

population, producers may have an advantage during periods of

population expansion. Indeed, Chuang and colleagues showed

that bulk growth can favor producers even while local competition

favors nonproducers [38]. Importantly, as shown, e.g., by Korolev

and Nelson [39], mixed populations tend to segregate during

periods of spatial expansion. This segregation creates distance

between different growing lineages, reducing nonproducer access

to diffusible resources. As a consequence, the benefits of diffusible

resources can feed back primarily to producers, resulting in a

much greater fitness differential between the strategies that

ultimately favors producers.

It has also been suggested that intercellular signaling systems,

such as quorum sensing in bacteria, may facilitate the evolution of

cooperative behaviors [40]. What impact would quorum-sensing

regulation have on the population dynamics of our local

competition model? Our data suggest that quorum sensing is

unlikely to suffice on its own to favor cooperation in a saturated

habitat. For a saturated population, diffusible resources are least

useful at the interior of a producer group, where population

density is highest but growth is slowest. Meanwhile, at the edge of

the producer group, resource production also confers a fitness

advantage on nonproducers. In other words, neither positive nor

negative regulation of resource production in response to cell

density will facilitate the survival of cooperators in saturated

populations. Additionally, quorum sensing introduces an addi-

tional vulnerability to exploitation by cells that produce the signal,

but not the diffusible resource [40,41]. Instead, we predict that the

main advantages to producers of diffusible resources must accrue

during periods of overall population growth. In this regime,

quorum sensing can enhance producer fitness by reducing wasteful

production.

Conclusion

Competition between cooperators and cheaters at a cellular

level has been modeled via spatial analogues of game-theoretic

evolutionary systems. However, many well-known lattice models

are based on such games allow only nearest-neighbor interactions.

This restriction is unphysical in several ways. Most importantly,

cells at the interior of a homogeneous population are excluded

from contributing to the population dynamics, and the significance

of local geometry near the boundary between "cheaters" and

"cooperators" is exaggerated When these assumptions are relaxed

to allow non-local interactions via diffusion of resources, the most

notable features of these spatial games are lost. In particular, no

coexistence is possible under any parameter regime. As a

consequence, such spatial games may have less relevance for

physical populations than previously assumed.

Supporting Information

Figure S1 Resource distribution. Resource distribution

around a point source for l~5. Red curve: resource distribution

for the rectangular lattice used in the simulation. Dashed black

curve: analytical result from Eq. S6. As in the main paper,

b~a~1.

(TIFF)

Figure S2 Effect of initial condition on long-term
dynamics. Time series of producer-nonproducer competition

model with balanced parameters and short diffusion length l~2,

starting from multiple initial conditions. Producers shown in blue,

nonproducers in red; boundary cells shown in dark shades.

Parameters: l~
ffiffiffiffiffiffiffiffiffi
D=b

p
~2, c~10:71.

(TIFF)

Figure S3 Single producer invasion of nonproducers.
Time series of producer-nonproducer competition model starting

from a single producer cell. Parameters as in Fig. S2.

(TIFF)
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Figure S4 Selection bias versus nonproducer fraction.
Selection bias as a function of NP fraction at multiple values of c
and for three initial conditions. Hue indicates overall bias. Bright

red: c~1. Bright blue: c~80. Solid lines, segregated equal domain

initial condition. Dashed lines, single P invader. Dot-dash lines,

single NP invader initial condition. Results averaged over 500

simulations for each curve.

(TIFF)

Figure S5 Spatial correlation in neutral model. Radial

distribution function (RDF) for neutral model, with reference cell

type frequency at 75% (single invader curve from Fig. 3e). Fit line

is an exponential function.

(TIFF)

File S1 Analytical predictions.

(PDF)
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