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Abstract

Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic
planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly
incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different
models inspired by neural networks, namely, back propagation neural networks (BPNN), radial basis function neural
networks (RBFNN), and Elman recurrent neural networks (ERNN) were compared. The differences as well as the advantages
and disadvantages, among the SARIMA model and the neural networks were summarized and discussed. The data obtained
for 2005 to 2009 and for 2010 from the Chinese Center for Disease Control and Prevention were used as modeling and
forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE),
mean absolute percentage error (MAPE), and mean square error (MSE). The results showed that RBFNN obtained the
smallest MAE, MAPE and MSE in both the modeling and forecasting processes. The performances of the four models ranked
in descending order were: RBFNN, ERNN, BPNN and the SARIMA model.
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Introduction

Typhoid fever is a disease caused by the bacterium, Salmonella

enteric subspecies enteric serovar Typhi, and is common in

developing and underdeveloped countries [1]. Several typhoid

fever outbreaks have been reported by the World Health

Organization (WHO) over the past decades [2]. According to

the WHO, an estimated 22 million cases of typhoid fever occur

annually, with at least 200,000 deaths. More than 90% of these

cases are estimated to occur in Asia [3]. In some underdeveloped

areas of China, typhoid fever is still a serious infectious disease that

severely affects lives of the patients. Stringent measures should be

taken by the local government to decrease the occurrence of

typhoid fever and avoid major health problems for patients based

on the severity and high incidence rate of typhoid fever.

Therefore, the need arises for a modeling approach that can

provide decision makers early estimates of future typhoid fever

incidence based on the historical time series data. The goal is to

monitor and predict the trends in typhoid fever incidence to

facilitate early public health responses to minimize morbidity,

mortality and the adverse clinical outcomes of the patients.

Several complex statistical models have been proposed to

forecast the occurrence of typhoid fever and a typical example is

the type of mechanistic models proposed by Cvjetanovij [4,5].

Those mechanistic models assume that the population is composed

only of a few subgroups of key characteristics which are relevant to

the infection under consideration, such as the susceptible, the

infected and the immune. The models also make assumptions

about relation between the subgroups, for example, the change in

the number of infected during a short time interval is assumed to

be proportional to the number the susceptible. To explain the

course of the disease, the mechanistic models require epidemio-

logical information about the proportions of epidemiological

subgroups in the population and rates of transition between groups

to decide essential transmission parameters in order to establish an

explanatory model. Those assumptions may be too strong to hold

for the real world situation. In China and perhaps some other

developing countries, the current public health surveillance system

does not collect detailed essential epidemiological information as

they are often difficult to obtain. In contrast, time series forecasting

is applied as an effectively non-explanatory mean to predict future

epidemic behavior based on historical data. Time series are

relative simple to fit and require less epidemiological information.

Like many other infectious diseases, typhoid incidence time series

exhibit seasonal behavior, secular trend and rapid fluctuations.

Therefore it is reasonable to forecast epidemic incidence with time

series methods [6]. A good forecasting performance of time series

models will facilitate the understanding of the epidemic patterns by

public health officials so as to make early interventions.

There are five types of traditional time series models most

commonly used in epidemic time series forecasting and in other

forecasting areas. They are (1) autoregressive (AR), (2) moving

average (MA), (3) autoregressive moving average (ARMA), (4)

autoregressive integrated moving average (ARIMA), and (5)

seasonal autoregressive integrated moving average (SARIMA)

models. AR models express the current value of the time series

linearly in terms of its previous values and the current residual;
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whereas MA models express the current value of the time series

linearly in terms of its current and previous residual series. ARMA

models are a combination of AR and MA models, in which the

current value of the time series is expressed linearly in terms of its

previous values and in terms of current and previous residual series

[7]. The time series defined in AR, MA, and ARMA models are

stationary processes, which means that the mean of the series of

any of these models and the covariance among its observations do

not change with time. For non-stationary time series, transforma-

tion of the series to a stationary series has to be performed first.

ARIMA model generally fits the non-stationary time series based

on the ARMA model, with a differencing process which effectively

transforms the non-stationary data into a stationary one. SARIMA

models, which combine seasonal differencing with an ARIMA

model, are used when the time series data exhibits periodic

characteristics. SARIMA models have been widely used in

forecasting for infectious disease and other areas when data

exhibit a seasonal trend, with applications such as hemorrhagic

fever with renal syndrome [8], dengue fever [9], and tuberculosis

[10]. This model has been demonstrated as an effective linear

model that can grasp the linear trend of the series. However, the

assumption of linearity in many time series events may not be

satisfied in practice. The accuracy of the statistical forecasting

model therefore needs to be improved.

Models based on artificial neural networks can effectively

extract nonlinear relationships in the data. They have been widely

used in time series predictions because of their characteristics of

robustness, fault tolerance, and adaptive learning ability [11].

Unlike the SARIMA model of linearity, neural network models

have nonlinear functions that constitute the linkage between the

value at time t and its previous value at p time points. The

prediction model is expressed in the general form,

Xt~f (Xt{1,Xt{2,:::Xt{p), where Xt represents the value at time

t and f is a nonlinear function. Among artificial neural networks,

the back-propagation neural networks (BPNN), radial basis neural

networks (RBFNN), and Elman neural networks (ERNN) are the

most commonly used methods [12]. All these three types of neural

networks have successfully shown their usefulness in various types

of classification and nonlinear regression problems.

BPNN use a type of backward propagation of errors and

multilayered feed-forward neural networks [13]. The neural

network is trained by historical data to capture the characteristics

of this time series. The connection weights are adjusted iteratively

by a process of minimizing the forecast errors. BPNN are widely

used in economic areas [14], engineering [15], and weather

forecasting areas [16]. They have also been introduced into

forecasting the incident cases of Hepatitis A [17]. Many of these

studies showed that the BPNN is a useful tool in time series

forecasting.

RBFNN are a popular alternative approach to BPNN which use

a radial basis function as its activation function [18]. RBFNN is

proposed to overcome the main drawback of BPNN of easily

falling into local minima in the training process. RBFNN have also

been used in various forecasting areas and achieve good

forecasting performance, with demonstrated advantages over

BPNN in some applications [19,20]. However, few studies have

discussed the application of this type of neural network in

infectious disease forecasting [21].

ERNN use a type of recurrent neural network, in which one or

more additional context layers storing the delayed hidden layer

values are augmented [22]. With the addition of the context layer,

ERNN are more effective in learning dynamic information

contained in the series. ERNN have not been applied in

forecasting of infectious diseases, although they have been proven

to be efficient in other forecasting applications [23].

In summary, classical traditional time-series forecasting models

such as SARIMA differ from artificial neural networks time series

models in both theoretical and practical aspects. Comparative

studies of different forecasting techniques can facilitate the

selection of the best time series model for forecasting future

epidemic behavior in specific types of diseases [24]. In the present

study, we address this problem by comparing the forecasting

performance of the SARIMA model and three typical artificial

neural networks, namely, BPNN, RBFNN and ERNN in short-

term forecasting for typhoid fever, using typhoid fever incidence

data for Guangxi province, China, for illustration. The theoretical

and practical aspects of the four models are also explored. We

found that the neural network based models outperformed the

traditional SARIMA model in forecasting the typhoid fever

incidence. The performances of the different types of neural

networks were also different, with the RBFNN outperforming

others in the study. Advantages and limitations of these models in

forecasting of typhoid fever incidences are discussed.

Materials and Methods

Materials
We gathered available monthly incidence data of typhoid fever

from the Chinese Center for Disease Prevention and Control

(CDC). Guangxi province was chosen as the study area because it

has one of the highest typhoid fever records in China. Guangxi is

located in southwest China (20u 54’-26u 24N, 104u269-112u04’ E),

occupying an area of 236,700 km2 with a population of over 45

million people in 2010. The typical year-round climate is

subtropical rainy, which consists of long, hot summers and short

winters. The annual mean temperature and rainfall are 16uC to

23uC and 1080 mm to 2760 mm, respectively.

The data were collected from the Chinese National Surveillance

System (CNSS) established in 2004 [25]. The time series data for

typhoid fever incidence in Guangxi showed a strong seasonality

trend, with higher incidence rates from April to September (see

Figure 1). The mean annual incidence of typhoid fever in Guangxi

Province was 2.17 cases per 100,000 inhabitants over a six-year

period from 2005–2010. In 2009, 977 cases of typhoid fever were

reported in Guangxi. The rate of reported typhoid fever in

Guangxi was 1.66 cases per 100,000 people in 2010, 3.07 in 2005,

2.06 in 2006, 1.63 in 2007, 1.69 in 2008, and 2.02 in 2009. The

incidence dataset between 2005 and 2009 was used as the training

sample to fit the model, and the dataset in 2010 was used as the

testing sample.

SARIMA Model
The SARIMA model was developed from AR, MA, and the

combination of AR and MA, the ARMA models [7]. In the AR

model, the current incidence of the time series xt is a linear

function of its previous incidence (xt21, xt22…) and the current

incidence residual et. The model can be expressed as [26]:

xt~w1xt{1zw2xt{2z:::zwpxt{pzet ð1Þ

In the MA model, the current incidence of the time series xt is a

linear function of both its current and previous incidence residuals

e(t),e(t{1),:::. The model can be expressed as:

Comparative Study of Forecasting Methods
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xt~et{h1et{1{h2et{2{:::{hqet{q ð2Þ

The ARMA model combines AR and MA models, in which the

current incidence of the time series xt is a linear function of its

previous incidence (xt21, xt22…) and current and previous

incidence residuals et,et{1,:::[26]. The model can be expressed

as:

xt~w1xt{1z:::zwpxt{pzet{h1et{1{:::{hqet{q ð3Þ

The ARIMA model deals with non-stationary time series with a

differencing process based on the ARMA model.

As an extension of the ARIMA method, the SARIMA model

not only captures regular difference, autoregressive, and moving

average components as the ARIMA model does but also handles

seasonal behavior of the time series. In the SARIMA model, both

seasonal and regular differences are performed to achieve

stationarity prior to the fit of the ARMA model.

The SARIMA model is usually termed as SARIMA (p, d, q) 6
(P, D, Q)S. In the expression, P is the seasonal order of the

autoregressive part, p the non-seasonal order of the autoregressive

part, Q the seasonal order the moving average part, q the non-

seasonal order of the moving average part, d the order of regular

differencing and D the order of seasonal differencing. The

subscripted letter ‘‘s’’ indicates the length of the seasonal period.

For example, in a daily data time series a weekly cycle will be

expressed as s = 7, whereas in a monthly data time series an annual

cycle be expressed as s = 12. In the present study, typhoid fever

varies in an annual cycle, so s = 12. The model degenerates into an

AR model when p is the only nonzero constant and into a moving

average (MA) model when q is the only nonzero constant.

SARIMA is applied in the present study because typhoid fever

exhibits a seasonal pattern (see Figure 1).

The SARIMA modeling procedure for seasonal pattern,

introduced by Box and Jenkins, consists of three iterative steps:

identification, estimation, and diagnostic checking [27]. In

addition, one needs to make sure that the data are stationary.

This can be achieved by performing an appropriate seasonal

difference in addition to the regular difference of the ARIMA

model. Stationarity can be tested using Augmented Dickey-Fuller

(ADF) method [28]. The identification step involves the process of

determining seasonal and non-seasonal orders using the autocor-

relation functions (ACF) and partial autocorrelation functions

(PACF) of the transformed data [29]. The ACF is a statistical tool

that measures whether earlier incidence in the series have some

relation to later ones. The PACF captures the amount of

correlation between the incidence at time t and the incidence at

time t+k with the linear dependence of the incidence at time t+1

through to the incidence at time t+k21 removed. After the

identification step, parameters in the SARIMA model(s) are

estimated using the conditional least square (CLS) method [30].

Finally, the adequacy of the established model for the series is

verified by employing white noise tests [31] to check whether the

residuals are independent and normally distributed. It is possible

that several SARIMA models may be identified, and the selection

of an optimum model is necessary. Such selection of models is

usually based on the Akaike Information Criterion (AIC) and

Schwartz Bayesian Criterion (SBC) [32] defined respectively as

follows:

AIC~{2 ln Lz2k and SBC~{2 ln Lz ln (n)k

where L represents the likelihood function, k is the number of free

parameters (k~pzqzPzQ) and n is the number of residuals

that can be computed for the time series. The choice of each

parameter calls for a minimization of the AIC and SBC.

The entire SARIMA modeling process can be realized using the

ARIMA Procedure in SAS 9.2 [33].

Neural Networks Based Models
Artificial neural networks were designed to mimic the charac-

teristics of the biological neurons in the human brain and nervous

system [34]. In the case of modeling the epidemic time series, the

historical incidence are sent into the input neurons, and

corresponding forecasting incidence is generated from the output

neurons after the network is adequately trained. The network

‘‘learns’’ the information contained in the incidence time series by

adjusting the interconnections between layers. The structure and

interconnections change with the variation of the time series data

in a typical data-driven and adaptive learning process. Artificial

neural networks can only be viewed in terms of the input, output

and transfer characteristics. The specific interconnections cannot

be seen even after the training process. There is no easy way to

interpret the specific meaning of the parameters and interconnec-

tions within networks trained using the real epidemic time series

Figure 1. Monthly typhoid fever incidence series of Guangxi province in China from 2005 to 2010.
doi:10.1371/journal.pone.0063116.g001
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data. However, the advantages of neural networks for forecasting

time series data are twofold: (1) they can fully extract the complex

nonlinear relationships hidden in the time series, and (2) they have

no need to assume the underlining distribution for the data

collected [35]. The basic theories of the three types of neural

networks are introduced as follows:

(1) Back-propagation neural networks (BPNN). BPNN

are a type of feed forward artificial neural networks. In feed-

forward neural networks, the data flow is in one direction and the

answer is obtained solely based on the current set of inputs. BPNN

consist of an input layer, a hidden layer, and an output layer. Each

layer is formed by a number of nodes, and each node represents a

neuron. The upper- and lower-layer nodes are connected by the

weights vij andvj , where i = 1, 2,…, n, j = 1, 2,…, m, n the number

of input layer neurons, and m the number of hidden layer neurons.

The common structure of a BPNN model is illustrated in Fig. 2

(Schematic of BPNN).

BPNN are trained with a back-propagation algorithm, in which

incidences of training samples are entered from the input layer,

and the outputs are calculated through the operation of

corresponding functions and connection weights between the

nodes. The output error is obtained by comparing the calculated

values with the target outputs. The smaller the output error the

better fit of the model. If the error does not meet the accuracy

requirements set previously, the network weights will be adjusted

along the opposite direction of the network until the required

minimum network error is eventually achieved [36].

BPNN training includes three steps: (1) the forward feeding of

the input training pattern, (2) the calculation and back-propaga-

tion of the associated error, and (3) the adjustment of the weights.

With n input neurons, m hidden neurons, and one output neuron,

the outputs of all hidden layer nodes are calculated as follows:

netj~
Xn

i~0

vijxi(i~0,1:::,n; j~1,2,:::,m) ð4Þ

yj~f (netj)(j~1,2,:::m) ð5Þ

where netj is the activation value of the jth node, vij the connection

weight from input node i to hidden node j, xi the ith input, yj the

corresponding output of the jth node in the hidden layer, and f the

activation function of a node, which is usually a sigmoid function

f (x)~
1

1z exp ({x)
ð6Þ

The outputs of all output layer neurons are expressed as

O~f0(
Xm

j~0

vj ,yj)(j~0,1,2,:::m) ð7Þ

where f0 is the activation function, which is usually a line function;

vj is the connection weight from the hidden node j to the output

node, and yj is the corresponding output of the jth node in the

hidden layer. All the connection weights are initialized randomly,

and then modified according to the results of the BP training

process. Several methods have been proposed for the adjustment

of the connection weights, such as the steepest descent algorithm,

Newton’s method, Gauss–Newton’s algorithm, and Levenberg–

Marquardt algorithm [37]. These algorithms are complicated, and

an introduction and comparison work can be found elsewhere

[38]. In the current study, the Levenberg–Marquardt algorithm,

which blends the steepest descent method and the Gauss–Newton

algorithm, is selected [39]. This algorithm inherits the speed

advantage of the Gauss–Newton algorithm and the stability of the

steepest descent method. The Matlab software provides an

effective toolbox for the realization of neural networks. BPNN

with various training algorithms can be easily realized using the

newff() function. The use of the Matlab neural network toolbox

was introduced by Beale [40].

(2) Radial Basis Function Neural Networks

(RBFNN). RBFNN are a special type of feed-forward neural

network that uses a radial basis function as their activation

function. The connections between the input and hidden layers

are not weighted, and the transfer functions on the hidden layer

nodes are radial basis functions in the RBFNN, which is different

from those in BPNN [41]. RBFNN generally train faster than

BPNN due to the use of the radial basis functions. The common

structure of an RBFNN is illustrated in Fig. 3 (Schematic of

RBFNN). Similar to BPNN, an RBFNN is composed of three

Figure 2. Schematic of BPNN. (Note: xi is the ith sample of the input layer, vij is the connection weight between the ith input node and the jth
node of the hidden layer, f is the activation function of the hidden layer, vj is the connection weight between the jth node to the output node, O is
the output of the network.)
doi:10.1371/journal.pone.0063116.g002
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layers: the input, hidden, and output layers. Each node in the

hidden layer corresponds to a basis function, whose activation is

evaluated by the distance between an input vector and the center

of the basis function. The output of the network is a linear

combination of the radial basis functions. Since the choice of the

basis function is not very crucial to the performance of the

network, the most common choice is the Gaussian function. An

input vector is placed into each node of the hidden layer, and each

node calculates the distance from the input vector to its own

center. The resulting distance value is transformed via the

Gaussian function, and output from each node. The output value

from the hidden layer is multiplied by weighting values. The

product is placed into the output layer node, which sums all the

products [42].The output of RBFNN with the Gaussian basis

functions is:

O~
Xh

i~1

vi exp ({
1

2s2
xp{ci

���� ) ð8Þ

where xp is the pth input sample of the network. p is the number of

the radial basis functions, ci the center of the basis functions, and s
the spread of the radial basis functions. vi is the connection

weights between the hidden and output layers.

Three main parameters in RBFNN need to be estimated in the

training algorithm of the networks. They are the center of the basis

function ci, the spread of the basis function s, and the weights

between the hidden layer and the output layer vi. In the hidden

layer, each neuron has an activation function. Different training

algorithms, such as the unsupervised k-means cluster [43] and the

supervised Orthogonal Least Squares (OLS) methods [44], have

been proposed during the past decades to select the center of the

basis function. The Matlab neural network toolbox includes the

newrb() function to realize the RBFNN with OLS algorithm. The

OLS algorithm jointly optimizes all parameters of the network,

similarly to BPNN. The mathematical theory of the OLS training

algorithm was introduced by Sherstinsky [45]. An appropriate

spread constant must be chosen in RBFNN training. A small

spread constant results in a steep radial basis curve, which forces a

small number of neurons to respond to an input. A large spread

constant results in a smooth radial basis curve, which allows more

neurons to respond to an input. Therefore, the spread constant

must be chosen to ensure that enough radial neurons respond to

an input, but not so large that all of the radial neurons respond

equally.

(3) Elman recurrent neural networks (ERNN). The

previous two types of neural networks are both feed forward with

all input signals flowing in one direction from input to output.

Feed-forward networks can perform static mapping between input

and output spaces. In contrast, recurrent networks are built in such

a way that the outputs of some neurons can be fed back to the

same neurons or to neurons in the preceding layers, which means

that signals can flow in both forward and backward directions

[46]. Recurrent networks have a dynamic memory: their outputs

reflect the current input, as well as previous inputs and outputs.

ERNN are one of the typical recurrent neural networks that can

reflect the dynamic changes in the considered systems. Compared

with BPNN, ERNN have a context layer that can send the

feedback from the output connections to the hidden layer [47].

The context layer functions in storing internal states in ERNN, as

previously mentioned. Fig. 4 (Schematic of ERNN) illustrates the

ERNN structure, where u(k21) and y(k) are the input and output of

the network, respectively, at a discrete time k; xc(k) and x(k) are the

nodes of the context and the hidden layers, respectively; and v1,

v2, v3 are the weight matrices for the context-hidden, input-

hidden, and the hidden-output layer, respectively. The dynamics

of ERNN are described by Equations (9) (10) (11):

y(k)~g(v
3
x(k)) ð9Þ

x(k)~f (v1xc(k)zv2(u(k{1))) ð10Þ

xc(k)~x(k{1) ð11Þ

where f is a hyperbolic tangent function. The training of ERNN is

similar to BPNN, for example using the back-propagation

algorithm. Different training algorithms have been developed

and compared previously [48]. For the present study, we chose the

Resilient Back Propagation method, which is reported as a fast and

robust algorithm in previous studies [49]. The Matlab neural

network toolbox includes the newernn() function to realize the

ERNN with various algorithms.

Figure 3. Schematic of RBFNN. (Note: xi is the ith sample of the input layer, y is the RBF function of the hidden layer, vj is the connection weight
between the jth node to the output node, O is the output of the network.)
doi:10.1371/journal.pone.0063116.g003
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Model Selection Criterion and Evaluation Index
Different parameters or network structures can be determined

each time for certain data in the SARIMA model and artificial

neural networks. For the SARIMA model, the AIC and SBC,

which were introduced in Section 2.2.1, act as the criteria for

selecting the best model. However, in neural networks, no criteria

for model selection similar to AIC and SBC exist. Usually, the

modeling sample is divided into two parts: the training sample,

which is used for training the sample, and the validation sample,

which is used to test the efficacy of the built structure. The

selection of a best structure is based on the minimization of the

bias between the values obtained from the training and validation

samples and their corresponding observed values from the raw

data.

Furthermore, the contrast between the observed value of the

raw series and the predicted values obtained through the four

methods were compared to determine the efficacy of the four

forecasting methods used in the present study. The mean absolute

error (MAE), mean absolute percentage error (MAPE), and the

mean square error (MSE) were selected as the measures of

evaluation because as empirical methods they are widely used in

combining and selecting forecasts for measuring bias and accuracy

of models [50]. These measures were calculated using Equations

(12), (13), and (14). Pt is the predicted value at time t, Zt is the

observed value at time t and T is the number of predictions

MAE~
1

T

XT

t~1

DPt{ZtD ð12Þ

MAPE~
1

T

XT

t~1

D
(Pt{Zt)

Zt
D ð13Þ

MSE~
1

T

XT

t~1

(Pt{Zt)2 ð14Þ

Results

SARIMA Model
A SARIMA model was fitted to typhoid fever incidence data

from 2005 to 2009 and tested by predicting the incidence for 2010.

The series after seasonal differencing were tested to be stationary

(p,0.05) using the ADF test. Different SARIMA models were

tested to determine the best fitting model. Table 1 (Estimation of

available SARIMA models) presents the results of the estimations

using various SARIMA processes for typhoid fever incidence.

SARIMA (0, 0, 1)6(0, 1, 0)12 was selected as the most appropriate

model and was used to forecast the monthly incidence of 2010.

The parameter significance test (t = 4.54, p,0.01) and the white

noise diagnostic check (x2~0:63, p = 0.36) for residuals obtained

by the selected model were made to ensure that the data was fully

modeled.

Development and Results of Neural Networks
Three different types of neural networks were employed to fit

the incidence trend of typhoid fever. The available incidence time

series was divided into three subsets. Typhoid fever incidence from

January 2005 to August 2009 was employed as the training set

used for training the network. The incidence from September

2009 to December, 2009 was employed as the validation set. The

optimum network was determined according to the least MSE

between the training and validation sets. The remaining set of the

series, namely the incidence of 2010 was used as the test set.

Figs. 2, 3, 4 illustrate the structures of the adopted models. The

number of inputs of the neural networks was determined by the

Figure 4. Schematic of ERNN. (Note: u(k21) and y(k) are the input and output of the network, respectively, at a discrete time k; xc(k) and x(k) are
the nodes of the context and the hidden layers, respectively; and v1 ,v2 , and v3 are the weight matrices for the context-hidden, input-hidden, and
the hidden-output layers, respectively.)
doi:10.1371/journal.pone.0063116.g004

Table 1. Estimation of available SARIMA models.

Model AIC SBC

SARIMA (1, 0,0)6(0,1,0)12 2144.88 2140.03

SARIMA (0, 0,1)6(0,1,0)12 2146.18 2144.33

SARIMA (2, 0,0)6(0,1,0)12 2145.62 2141.92

SARIMA (0, 0,2)6(0,1,0)12 2144.30 2140.60

doi:10.1371/journal.pone.0063116.t001
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seasonal period of the time series. The training of artificial neural

networks for learning seasonality in the data structure does not

require any transformation of the original incidence series [51]. In

the present study, the period of the incidence of typhoid fever

observed was twelve. Therefore, twelve was selected as the number

of the input layer for the three types of neural networks, in which

the last 12 months of data were reserved as the input for

forecasting the present data. The output layer of all three types of

artificial neural networks only contains one neuron representing

the forecast value of the incidence of the next month. Prior to the

training of neural networks, the proper transition of the data series

is always necessary to determine the input and the output data.

Supposing that Xt represents the value at time t, the input matrix

and the corresponding output matrix of the training and validation

sample used in our study are written as follows:

input matrix~

X1

X2

:::

Xt{12

X2

X3

:::

Xt{11

:::

:::

:::

:::

X12

X13

:::

Xt{1

2
666664

3
777775

corresponding output matrix~

X13

X14

:::

Xt

2
666664

3
777775
:

The input matrix is sent into the input layer for training, and its

corresponding output matrix is its training goal. The training

process starts after the input and output matrixes are placed into

the corresponding Matlab neural network functions and the

relevant parameters are properly set. Once the structure is

determined, it is used to forecast the incidence in 2010 iteratively.

Different learning rates, learning algorithms and the number of

neurons in hidden layers will affect computation efficiency in

BPNN. To date, no standard rules for selecting the number of

hidden neurons and layers exist. The specific network structure is

generally fixed by trial and error [52]. For BPNN, different

learning rate constants were examined, namely, from 0.025 to 0.5

with 0.025 increments. Different numbers of hidden layer neurons

were tested in the network from 2 to 50 with an increment of 1.

The BPNN 12-7-1 was selected as the optimum BPNN in the

paper using the trial-and-error method. For RBFNN, different

spread constants were examined in the study, namely, from 0.1 to

2.0 in 0.1 increments. The RBFNN performed best when the

spread was 0.2 using trial and error. For ERNN, different learning

rate constants were examined in the study, namely, from 0.025 to

0.5 at 0.025 increments. Different numbers of hidden layer

neurons were tested in the network from 2 to 50 at an increment of

1. The ERNN 12-28-1 was selected as the optimum ERNN in the

paper using trial-and-error.

Comparisons of Forecasting Performance
Table 2 (Incidence values for 2010 predicted by different

forecasting models) and Fig. 5 (Typhoid fever incidence and fitting

values for 2010 predicted by the four methods) present the

forecasting values of the four methods, as well as the observed

values obtained by surveillance data. The graphs indicated that the

predicted values by all the selected models reasonably matched the

obtained data. Table 3 (Comparison of the performances of the

four different models) and Fig. 6 (Comparison of the performances

of the four different models) show the modeling and prediction

performances of the four methods. It can be seen that the MAE,

MAPE and MSE measures are the lowest for RBFNN among the

four methods. ERNN had smaller MAE, MAPE, and MSE than

SARIMA and BPNN. The SARIMA model had the largest MAE,

MAPE, and MSE among the four methods. The fitting and

forecasting incidences of the four methods for over six years are

graphed in Fig.7 (Typhoid fever incidence and fitting values

predicted by the four methods). The overall performance of the

four models was ranked in descending order as follows: RBFNN,

ERNN, BPNN and SARIMA.

Discussion

The early recognition of epidemic behavior is significantly

important for epidemic disease control and prevention. The

effectiveness of statistical models in forecasting future epidemic

disease incidence has been proved useful [53]. Several researchers

introduced different approaches to forecasting epidemic incidence

in previous studies. Exponential smoothing [54] and generalized

regression [55] methods were used to forecast in-hospital infection

and incidence of cryptosporidiosis respectively. Decomposition

methods [56] and multilevel time series models [57] were used to

forecast respiratory syncytial virus. ARIMA and SARIMA models

have been widely used for epidemic time series forecasting

including the hemorrhagic fever with renal syndrome [8,58],

dengue fever [9,59], and tuberculosis [10]. Models based on

artificial neural networks were also applied to forecast hepatitis A

[60]. Unfortunately, few studies on typhoid fever time series

forecasting have been conducted [61]. Studies focusing on the risk

prediction of typhoid fever, as well as other infectious diseases, are

necessary to fill up the research gap. This is especially important in

areas where typhoid fever is common and brings serious social and

economic burden. Moreover, as there have been many different

time series models for prediction, the issue of which model will be

the ‘‘best’’ for the prediction of epidemic incidence attracts

increased attention. Where comparative studies on the accuracy of

different models for forecasting epidemic behavior were carried

out, inconsistence in model performance between studies has been

observed. For example, SARIMA model have demonstrated better

performance than generalized models in forecasting cryptosporid-

iosis cases in northeastern Spain [62], and better than regression

and decomposition models in forecasting campylobacteriosis in the

United States [63], but dynamic linear models showed better

performance than the SARIMA model in forecasting hepatitis A

and malaria [25]. In forecasting hepatitis A cases, the traditional

multilayer neural networks emerged as the better model than the

ARIMA models, radial basis neural networks and time-delayed

neural networks [22]. The different findings of these studies

suggest that further studies focusing on the comparison of different

kinds of predicting methods for different type of diseases are

necessary for the application in forecasting epidemic behavior. To

bridge the research gaps, we conducted a rigorous comparative

study of four time series investigations in the forecasting of the

epidemic pattern of typhoid fever, namely SARIMA, BPNN,

RBFNN, and ERNN, which is the first study of this kind for

infectious diseases to our knowledge. We have also compared the

differences among these methods in both principle and practical

aspects.

In principle, the SARIMA model can grasp the historical

information by (1) seasonal and regular differences to achieve

stationarity, (2) AR to take into account the past values, and (3)

MA to take into account the current and previous residual series.

The SARIMA model is popular because of its known statistical
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properties and the well-known Box–Jenkins methodology in the

modeling process [64]. It is one of the most effective linear models

for seasonal time series forecasting. In contrast, the artificial neural

network time series models capture the historical information by

nonlinear functions. With flexible nonlinear function mapping

capability, artificial neural networks can approximate any

continuous measurable function with arbitrarily desired accuracy.

In practical matters, the building of the SARIMA model

requires the determination of non-seasonal and seasonal differ-

encing orders (d, D), and operators (p, q, P, Q), as well as the

estimation of model parameters in the autoregressive and moving

average polynomials. BPNN and RBFNN are both feed-forward

neural networks. The construction of BPNN is based on the

algorithm of back propagation, whereas RBFNN generally uses a

linear transfer function and nonlinear transfer function (normally

the Gaussian function) for the output and hidden layers,

respectively. These characteristics provide RBFNN a number of

advantages over BPNN in terms of simple architecture, learning

scheme and fast training speed. ERNN also have a simple

architecture. The main difference between BPNN and ERNN is

the addition of the context layer in ERNN. The context units of

ERNN can memorize all the feed inputs such that the outputs of

the network depend upon the current input as well as the previous

inputs. ERNN can learn temporal patterns effectively with

memory and recurrent feedback connections. Neural networks

are nonparametric nonlinear models that impose fewer prior

assumptions on the underlying process from which the data are

generated. Given this property, the methods in general are more

tolerant to the data and less susceptible to model misspecification

problems than classical time series forecasting models.

As a reflection of the concepts discussed above, the present

study shows that artificial neural networks generally outperform

the conventional SARIMA model in forecasting typhoid fever

incidence. Although the SARIMA model has been proved an

effective linear model to effectively capture a linear trend of the

seasonal series, it may not work well for the occurrence of an

infectious disease such as typhoid fever which can be affected by

various factors, including many meteorological and various social

factors, namely, the occurrence of the disease not necessarily

associates with the historical data in linear relationship. Our study

suggested that nonlinear relationships may exist among the

monthly incidences of typhoid fever so that the SARIMA model

did not efficiently extract the full relationship hidden in the

historical data. Artificial neural networks have been widely

Figure 5. Typhoid fever incidence and fitting values for 2010 predicted by the four methods.
doi:10.1371/journal.pone.0063116.g005

Figure 6. Comparison of the performances of the four different models.
doi:10.1371/journal.pone.0063116.g006
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accepted as potentially useful methods of modeling complex

nonlinear and dynamic systems in various research fields. The

good performance of artificial neural networks in the present study

in forecasting typhoid fever has provided new evidence of such

properties of those models.

The types of artificial neural network may significantly affect the

forecasting accuracy. In the present study, three different types of

models were employed to forecast the incidence of typhoid fever,

and their forecasting efficacies compared based on the MAE,

MAPE and MSE empirical measures. The ERNN efficiently

captured the dynamic behavior of typhoid fever incidence

compared with the BPNN, resulting in a more compact and

natural internal representation of the temporal information

contained in the incidence series. The accuracy of forecasting by

ERNN could be further improved by optimizing data selection

strategies and training parameters. In comparison, the RBFNN

showed the best performance in term of accuracy and training

time. The proposed RBFNN can also overcome several limitations

of the BPNN and ERNN, such as highly non-linear weight update

and slow coverage rate. Those features of RBFNN together with

its natural unsupervised learning characteristics and modular

network structure make it a more effective candidate for fast and

robust incidence forecasting.

In conclusion, the SARIMA model has advantages in its well

known statistical properties and effective modeling process. It can

be easily realized through mainstream statistical software, such as

SAS, SPSS, and Stata, and can be used when the seasonal time

series are stationary and have no missing data. The disadvantage

of the SARIMA model is that it can only extract linear

relationships within the time series data. Artificial neural networks

are potentially useful endemic time series forecasting methods

because of their strong nonlinear mapping ability and tolerance to

complexity in forecasting data. They are especially useful when a

nonlinear relationship exists within the time series data. The

disadvantage of the artificial neural networks is their black-box

nature, in which the specific nonlinear functions within the time

series data may not be explained well in practice.

The limitations of the study should also be acknowledged. First,

we only obtained typhoid fever incidence data over a six-year

period because the Chinese National Surveillance System for

Infectious Disease was established only in 2004. The relatively

short length of the series may influence the forecasting efficacy of

the different methods. Second, we only predicted typhoid fever

Figure 7. Typhoid fever incidence and fitting values predicted by the four methods. (Note: The data were divided into modeling and
forecasting groups with a vertical line; the left is the modeling part, and the right is the forecasting part.)
doi:10.1371/journal.pone.0063116.g007

Table 2. Incidence values for 2010 predicted by different
forecasting models.

Time Observed SARIMA BPNN RBFN ERNN

January 0.06796 0.07290 0.07528 0.06246 0.06694

February 0.07208 0.12273 0.14331 0.06245 0.05294

March 0.07002 0.13935 0.12874 0.06558 0.11732

April 0.11738 0.18295 0.12012 0.10819 0.13274

May 0.14415 0.20787 0.14550 0.15385 0.14224

June 0.17916 0.27016 0.21092 0.18687 0.20285

July 0.23270 0.24524 0.21039 0.21122 0.21557

August 0.24300 0.28054 0.22534 0.22541 0.19463

September 0.17504 0.33868 0.22910 0.21241 0.19882

October 0.12562 0.18918 0.18288 0.17669 0.13338

November 0.11326 0.13104 0.18043 0.13958 0.12051

December 0.11944 0.17465 0.16272 0.10800 0.11732

doi:10.1371/journal.pone.0063116.t002

Table 3. Comparison of the performances of the four
different models.

Model Modeling performance Predicting performance

MAE MAPE MSE MAE MAPE MSE

SARIMA 0.03924 0.32906 0.00250 0.05796 0.46188 0.00498

BPNN 0.03581 0.28557 0.00224 0.03624 0.33610 0.00192

RBFNN 0.02751 0.20333 0.00127 0.01762 0.13162 0.00050

ERNN 0.03186 0.24814 0.00144 0.01790 0.14871 0.00056

doi:10.1371/journal.pone.0063116.t003
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incidence with the four forecasting methods. The findings based

on the specific disease may not be repeatable when used on other

cases. Similar research should be conducted on more infectious

diseases to ascertain performance of those models and possible

factors that will impact on the model performance in practice.

Typhoid fever epidemics pose a significant threat to human

health. Strategic health planning, such as vaccination costs and

stocks, can be efficiently implemented with accurate estimates and

help from the local government. Further research on the accurate

prediction of the incidence of more infectious disease should be

conducted, and more sophisticated forecasting techniques should

be introduced in practice.
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