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Abstract

Background: As a result of past practices, many of the dry coniferous forests of the western United States contain dense,
even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have
received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to
reduce biomass through fuel reduction (i.e., thinning of trees) are often opposed by public interest groups whose objectives
include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk,
Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers
adequate conservation of avian forest diversity is unknown.

Methodology and Principal Findings: We use a multi-species occurrence model to estimate the habitat associations of 47
avian species detected at 742 sampling locations within an 880-km2 area in the Sierra Nevada. Our approach, which
accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking
species occurrence models into one hierarchical community model, thus improving inferences on all species, especially
those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to
canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species
distributions.

Conclusions and Significance: Environmental parameters estimated through our approach emphasize the importance of
within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species
would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation
concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of habitats across
environmental gradients and minimizing urbanization may have a greater benefit to ecosystem functioning then a single-
species management focus.
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Introduction

Biodiversity is integral to ecosystem functioning [1,2,3] and

services that are essential for human well-being [4,5]. Although the

importance of biodiversity conservation is recognized, it remains

one of the key challenges of land stewardship [6,7,8] due to several

ecological and practical limitations [9]. First, the distribution,

abundance and habitat requirements of all species in a particular

area are rarely known, rendering optimal management solutions (if

they exist) nearly impossible to discern. Second, management

interventions that improve habitat conditions for one species can

decrease the quality of habitat for others [10]. Lastly, how a

species responds to a particular set of habitat conditions may vary

spatially and temporally based on site-specific biotic and abiotic

factors. These complexities, along with limited financial resources

to monitor the impact of various management practices, have

resulted in a reliance on single-species measurements and the hope

that individual species can serve as indicators for the response of

other species in the community [11].

Forested ecosystems support over 80% of terrestrial biodiversity

worldwide and have high species diversity for many taxonomic

groups, including birds [12,13]. Although many of the earth’s

forested landscapes are being lost due to conversion to agriculture

and urban development, large stand-replacing fires are of

additional concern in forested ecosystems in the mixed dry conifer

forests of the western United States [14]. Prior to European

influence these fire-adapted systems were structurally variable,

with tree clusters of different size classes interspersed with open

gap conditions [15,16,17]. However, over the past 100 years

actions such as logging [18,19], livestock grazing [20,21], reduced
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burning practices by Native Americans [22], and fire suppression

[23] have resulted in markedly different contemporary conifer

forests [17,24,25]. These modifications have resulted in a decrease

in forest structural variability at the stand and landscape levels.

The forest is now characterized by high density, even-aged stands

of more shade tolerant species such as firs and an understory with

overall lower levels of shrub cover and higher amounts of downed

woody material. Much attention from the management commu-

nity has been placed on the increased risk of high-severity fire

associated with changes in forest structure and composition [26];

however, these changes have also altered resource availability for

forest-associated wildlife species with potentially substantial

consequences for species occurrence and community structure.

Managing these uncharacteristically high fuel loads in dry

coniferous forests throughout the western United States dominate

discussions of public forest land management policy [23,27,28].

Fuel reduction treatments are increasingly being applied in an

attempt to reduce the risk of high-severity fire and increase forest

resiliency [27,29,30]. Fuel reduction treatments are primarily

designed to decrease fire intensity and the probability of crown fire

through a reduction of fuels on the forest floor, increased height to

the live crown, decreased crown density, and reduced densities of

fire prone tree species [27]. Although many studies have

demonstrated that fuel reduction treatments reduce the risk of

high-severity wildfires [31,32], there is continued public concern

regarding the potential effects of these treatments on wildlife.

Much of the conflict regarding forest management practices

surrounds their potential impact on habitat for several species of

concern, such as the spotted owl, Strix occidentalis [33,34], the

Pacific fisher, Martes pennanti [35,36] and the northern goshawk,

Accipiter gentilis [37]. In dry conifer forests in particular, the

California spotted owl, Strix occidentalis occidentalis, and Pacific fisher

are typically associated with denser, closed-canopy, multi-storied

stands. Modification of these habitats to reduce the threat of fire is

perceived to decrease habitat suitability for these old-growth forest

associated species and fuel treatments in the Sierra Nevada are

required to make special considerations for them. For instance,

stands within spotted owl protected activity centers around known

nests are required to be managed to maintain a minimum of 70

percent tree canopy cover and to retain dominant and co-

dominant trees that are at least an average of 61 cm in diameter at

breast height (DBH) [38]. Although suitable habitat for old-forest

associates can span a range of characteristics, in general terms old

forests in montane ecosystems of the Sierra Nevada are

characterized as having a minimum of 60 percent tree canopy

cover and minimum of 61 cm average DBH [39,40].

Conservation of upper-trophic level species, such as the spotted

owl, is thought to provide an umbrella of protection to other

species that have similar habitat associations but have smaller area

requirements [41,42]. Land management planning commonly

focuses on a few key species as a composite function of regulatory

requirements, parsimony, and cost efficiency. The concept that

management directed at one or a few species can meet the needs of

the full suite of species with similar habitat associations is

attractive, but the utility of this concept as a conservation tool

has been questioned [43–46]. Managing for multiple species and

subsequently validating outcomes pose many challenges [47],

including the difficulty of estimating the abundances of all species

within a community (or even a large subset). For instance,

adjusting count data for observational bias in large-scale multi-

species surveys is often difficult because a single adjustment

method (i.e., distance sampling, double-sampling, removal meth-

ods, etc.) will not perform well for all species [48]. Additionally,

methods that estimate population densities that account for

imperfect detection are often limited to the most abundant species

for which there is sufficient sample size [49]. Although a selection

of some manageable number of species (e.g., N= 10) may help

strengthen inferences about biodiversity, it is still likely to suffer

from some of the same pitfalls as a single-species focus.

In this study, we use a multi-species occurrence model to

address the habitat associations of an avian community in an 880-

km2 conservation area, the Lake Tahoe Basin, located in the

central Sierra Nevada Mountains (Figure 1). Our approach

estimates the occurrence probability of all species in a community

by linking multiple single-species occurrence models into a single

model, thus improving inferences on all species, especially those

that are rare or observed infrequently [50,51,52]. The purpose of

this study is to understand the relationship between forest

structural variables and the probability of species occurrences

and to make inferences regarding the impacts that a management

focus on umbrella species may have on conserving avian diversity.

We address this question by modeling how the avian community is

influenced by covariates related to canopy cover, tree size and

shrub cover while accounting for other abiotic variables known to

impact species distributions (elevation, precipitation and urban

development). In light of our results, we discuss how future

management strategies may better serve diversity-focused conser-

vation objectives.

Methods

Study Area
The Lake Tahoe Basin is located on the eastern crest of the

Sierra Nevada straddling the states of California and Nevada

(Figure 1). Elevation and precipitation vary markedly in the basin

and both environmental gradients are known to have large effects

on productivity [53]. Elevation ranges from 1900 m at the surface

of Lake Tahoe to 3400 m at the highest mountain peak. Mean

annual precipitation is 150 cm, varying greatly with elevation and

latitude, with the west shore experiencing 50% higher precipita-

tion than the east shore [54]. The majority of precipitation occurs

as snow and falls between the months of December and March.

Approximately 67% of Basin’s forests were clear-cut during the

last third of the 19th century with less intensive harvesting

continuing into the 20th century [55]. Barbour et al. [15] suggested

that less than 3% of the land in the Tahoe Basin remains

unmodified since European influence in the early 1800’s.

Common tree species today include Jeffrey pine (Pinus jeffreyi),

white fir (Abies concolor), red fir (A. magnifica), incense-cedar

(Calocedrus decurrens), lodgepole pine (P. contorta), and sugar pine

(P. lambertiana).

Avian Sampling
Avian point counts were conducted at 742 locations in the

upland forested areas of the Lake Tahoe Basin Management Unit

during the course of the breeding season (mid-May to early July) of

2002 to 2005 [56,57]. Data from point counts used in this analysis

came from two separate studies investigating wildlife-habitat

relationships conducted over the same time period [58,59]. Both

studies used similar point count protocols in which all birds

detected (seen or heard) in a 10-minute period within 100 m from

the sample location were recorded. The majority of sites (72%)

were sampled three times during the course of a breeding season,

with the remaining sites limited to two sampling occasions due to

logistical constraints. Visits to the same location were separated by

approximately one week. Within a season, stations were visited by

multiple observers (2 to 3 each year) to limit observer bias across

study sites. Although locations were visited repeatedly within a
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season, each station was only visited in a single year. Point counts

were located on federal, state and private lands. Although no

formal permits were required, we received written or verbal

permission from the corresponding landowners to sample at all

sites.

Sample locations were selected using a combination of

systematic/grid sampling and stratified random sampling. Four

points were randomly selected from within a hexagonal grid laid

across the Lake Tahoe Basin using spacing parameters of the

Forest Inventory and Analysis program (N=98). An additional 74

locations were randomly selected across a range of urban

development classes. At each of these primary sampling locations,

a cluster of additional sampling points was conducted 200 m from

each primary point count station. Sampling locations for each year

of the study were selected randomly. Combined, these sampling

designs ensured that data points were distributed across the basin

and adequately addressed the influence of urbanization. There

was a minimum distance of 200 m between all sampling points.

Habitat and Environmental Covariates
We characterized habitat using several explanatory variables

with Geographic Information Systems (GIS) for the area within a

Figure 1. Location of the study area in California/Nevada, USA with 172 primary sample points indicated. Sampling points were
distributed across forested areas (green) using systematic random sampling. Cluster sampling was conducted within 200 m of each primary sample
point. Each of these 742 sites was sampled multiple times within a year for a total 2021 data points over the four-year study.
doi:10.1371/journal.pone.0063088.g001
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150-m radius of the survey locations. Although birds were

recorded only when detected within 100 m of a sample point,

we selected a 150-m radius to define our habitat variables as birds

on the edge of the sampling radius are likely responding to

surrounding forest conditions. Habitat parameters were derived

from a GIS vegetation layer (30-m630-m raster cell) based on

IKONOS satellite imagery collected in 2002 [60]. Forest habitat

parameters at our sample points included tree size (DBH) mean

(range: 37–76 cm) and standard deviation (range: 0–12 cm),

percent canopy cover mean (range: 2–66%) and standard

deviation (range: 0–27%), and shrub cover mean (range: 9–

66%). These parameters were selected to represent forest structure

because they are components of the forest known to impact avian

diversity [61,62,63] and these variables had low pairwise

correlations (r #0.5) in our dataset. In addition, we extracted

three environmental variables from remotely sensed databases that

we hypothesized also would affect the probability of species

occurrence: urban development, elevation and precipitation. The

percentage of the area in urban land development was extracted

from impervious surface data collected in 2003 and ranged in

value form 0–79% across sample points [64]. Elevation (range:

1898–3160 m) was extracted from digital elevation maps and

mean annual precipitation (range: 47–181 cm/yr) from 1997–

2000 was used to interpret the gradient of variation in

precipitation across the Basin [65].

Data Analysis
We analyzed the data using a hierarchical multi-species

modeling approach developed in Dorazio and Royle [66] and

Dorazio et al. [50] to estimate species-specific occupancy proba-

bilities relative to the abiotic and biotic (e.g., forest structure)

variables. To do this, we combined individual species occurrence

models in a single model by assuming that species covariate effects

come from a common distribution, allowing for more precise

estimates of occupancy [67,68]. For species-level models, we

assumed that the occurrence of species i, zi, is a Bernoulli process

where the probability that species i is present at location j (zi,j~1 )

is yi,j [69]. We then modeled the occurrence probability for each

species i at location j using the logit link function and the relevant

covariates such that:

logit(yi,j)~a0iza1i:develjza2i:elevjza3i:elev
2
j

za4i:precjza5i:prec
2
j za6i:DBHj

za7i:DBH2
j za8i:DBHsdjza9i:�c�o�v�e�rj

za10i:�c�o�v�e�r
2
j za11i:�c�o�v�e�rSDj

za12i:s�c�o�v�e�rjza13i:s�c�o�v�e�r
2
j

where a0i is the intercept and a1i{a13i are the effects of the

habitat covariates on species i. Parameters a1i{a5i are the abiotic
covariates that measure the effect of urban development (linear

term), elevation (linear and squared terms), and precipitation

(linear and squared terms) on the occurrence probability of species

i. The parameters a6i{a13i are effects related to the forest

structure at location j (i.e., the forest within a 150-m radius of the

point where the survey was conducted): a6i{a8i are the effects of
the average diameter at breast height (DBH) of trees (linear and

squared terms) and the standard deviation of DBH (linear term);

a9i{a11i are the effects of percent forest canopy cover (linear and
squared terms) and the standard deviation of forest canopy cover;

a12i and a13i are the effects of percent forest shrub cover (linear

and squared terms). We chose to include squared terms for some

covariates, but not all, based on our hypotheses of the relationships

of covariates to species occurrences. All covariates were standard-

ized to have a mean of zero and a standard deviation of one.

Because species are detected imperfectly during sampling [69],

we assumed that true occurrence, zi,j , is a latent process that is

only partially observable. If an observer detected species i at

location j during sampling occasion k, denoted xi,j,k~1, then it can

be determined that zi,j~1. However, if a species is not detected it

could be that the species was absent or that the species was missed

during sampling. To account for detection biases, we used a

repeated sampling protocol, assuming that the species pool was

closed and that xi,j,k ~BBern pi,j,k:zi,j
� �

where pi,j,k is the detection

probability for species i at location j during sampling occasion k

given that the species was present. We similarly modeled species

detection probabilities using the logit link function:

logit(pi,j,k,t)~b0izb1i:datej,kzb2i:date
2
j

zb3i:year2003jzb4i:year2004jzb5i:year2005j

where b0i is the intercept, b1i{b2i are the linear and squared

effects of sampling day (Julian day 145–217, standardized to have

mean zero and standard deviation of one) and b3i{b5i are year

effects on detection as measured relative to a baseline year of 2002.

Thus, our assumption is that the species pool was closed over the

four-year sampling period (2002–2005) and similarly, that

‘‘occurrence’’ in this case is defined as species use of a location

on at least one occasion during this time frame. We believe our

occurrence estimates are robust to this assumption because each

location was sampled in only one of the survey years and within a

period of a few weeks. For the community-level component, we

assumed that each of the species-specific parameter values from

the occurrence (a0i{a13i) and detection (b0i{b5i) models were

drawn from parameter-specific community-level distributions

[50,66]. Thus we assumed that each of the covariate estimates

(e.g., all the ai estimates) came from a normal distribution with a

common mean and variance across all i species (e.g.,

ai ~NN mai ,sai

� �
).

Parameters were estimated using a Bayesian approach with

Markov chain Monte Carlo (MCMC) implemented in the

programs R and WinBUGS with flat priors for each of the

community-level parameters. We ran three chains of the model for

15000 iterations after a burn-in of 10000 iterations and saved

every fifth estimate (resulting in 1000 values for each parameter).

We assessed that the model had convergence using the R-hat

statistic [70] with max R-hat values less than 1.04 for all

parameters. We did not perform a formal assessment of model

fit to our data. Model assessment and selection is complex in

hierarchical models in general, and in multi-species models in

particular. As such, there is no well-established method to

determine model fitness for community models [71]. However,

because of the low correlations between our covariates and the

number of nonzero parameter estimates (e.g., posterior intervals

that did not overlap zero), we believe that our model is adequate in

describing our data in that it balances the inclusion of relevant

factors while maintaining parsimony relative to the amount of

available data.

Results

We recorded 61 species of birds during 2021 visits to 742 point

count stations. Of these 61 species detected, we excluded five

Avian Conservation in the Sierra Nevada
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species from our models as they typically breed at lower elevations

(Anna’s hummingbird Calypte anna, blue-gray gnatcatcher Polioptila

caerulea, bushtit Psaltriparus minimus, lazuli bunting Passerina amoena,

and orange-crowned warbler Oreothlypis celata) and were considered

vagrants or non-breeding periodics (all sighted fewer than 10

times). The house finch Carpodacus mexicanus and mourning dove

Zenaida macroura were also excluded from our analyses as their

presence in forests is dependent upon urban development (i.e. they

are not expected in forests lacking urbanization). These species

were excluded from the model because they would not be

representative of the community. Seven additional species

considered very rare, Calliope hummingbird Stellula calliope,

Hammond’s flycatcher Empidonax hammondii, lesser goldfinch Spinus

psaltria, Pacific-slope flycatcher Empidonax difficilis, purple finch

Carpodacus purpureus, ruby-crowned kinglet Regulus calendula, and

yellow warbler Dendroica petechia), were observed fewer than 20

times, and they were included in our hierarchical model but not in

our presentation of covariate estimates for individual species

because their covariate estimates could be misleading. The mean

and standard deviation of the occurrence and detection probabil-

ities for all species included in the model are presented in

Appendix S1. Mean covariate estimates for the occurrence model

are presented for all species (except the seven very rare species) in

Appendix S2.

Mean occurrence probabilities varied substantially across

species from ,2% to 98% (Appendix S1) when all abiotic and

biotic covariates were held at their mean values. Urban

development had the strongest, most consistent effect on the

probability of species occurrence. The mean covariate estimate on

urban development (a1) was negative for 37 species (indicating a

decline in occupancy with higher levels of development for 80% of

species) with the posterior intervals of 27 species not overlapping

zero (Table 1). As predicted, avian species were also significantly

(posterior interval did not overlap zero) influenced by elevation (29

species) and precipitation (9 species) with similar numbers of

species responding positively and negatively to these parameters

(Table 1).

In general, mean parameter estimates for any single structural

aspect of the forest were small relative to the abiotic variables

suggesting that species within the basin may be more restricted by

these factors than by variability in forest structure (Appendix S2).

Of the modeled habitat covariates, percent canopy cover

significantly influenced the occurrence probability of 16 species,

DBH for five species and percent shrub cover for 13 species

(Figure 2, Table 1). Increases in the standard deviation in canopy

cover were associated with an increase in the probability of

occurrence for six species and a decrease in occurrence probability

for one species. Standard deviation in DBH affected fewer species,

but higher variance was consistently associated with higher

occurrence probability for two species (Figure 2, Table 1).

Variation in the response across species for each environmental

variable underscores both the consistent effect of development and

the importance of heterogeneous habitat for maintaining species

diversity (Figure 2). Changes in forest structure associated with

past management practices have typically led to a denser and more

homogenized forest structure in both tree size and spacing. On

average, many of these changes appear to have less impact on, or

have led to an increase in, the more commonly occurring avian

species (Figure 2). When investigating the combination of habitat

variables that results in the highest probability of occurrence for

each species we found that species-specific occurrence probabilities

tended to be maximized within the range of 30–50 percent canopy

cover, greater than 40 percent shrub cover and at the largest

average tree sizes found within the basin (Figure 3). We also found

that only six species reached their highest occurrence probability

within the general domain of old forest conditions (minimum 60

percent tree canopy cover and minimum of 61 cm average DBH).

Discussion

Effective conservation approaches and efficient management of

forests are central biodiversity challenges. The results of our study

suggest that a single-species-driven conservation approach, even

one that targets a species that has the potential to serve an

umbrella function, could lead to the prevalence of less suitable

habitat for a sizeable percentage of the passerine birds using

forested habitat in the Lake Tahoe Basin. For example, managing

this landscape to maximize habitat for an old forest associate could

decrease occurrence probabilities for nearly 90 percent of all

species including the less commonly occurring species. Conversely,

managing this landscape to maximize the probability of occur-

rence for the most species (i.e., maximizing species richness) is

likely to decrease the occurrence probabilities for old-forest

associates. Further, our results also underscore the consistently

negative impact of urban development on many avian species in

the Lake Tahoe Basin and suggest that actively managing the

extent and placement of urban development to minimize

biodiversity impacts is as important as considerations of forest

structure.

Forest thinning projects have frequently been opposed by those

concerned with maintaining suitable habitat for old-forest

associated species of concern, such as the spotted owl, which

require old forest conditions, namely high canopy cover and large

trees [28,33,34]. Thinning of trees in fire-suppressed forests could

increase the probability of occurrence of many avian species as

gaps in the tree canopy have many beneficial ecological effects,

including increasing plant diversity and shrub cover [72] and can

provide a variety of microhabitat for shrub nesting birds and

foliage gleaners [73]. Although fuel reduction projects using

mechanical removal of trees may be able to open up the canopy

quickly, shrub and tree growth will only occur over larger time

scales. This is an important consideration as many of the modeled

species had higher occupancy estimates associated with higher

Table 1. Number of species in which the species-specific
parameter estimate was positive or negative.

Parameter Positive Negative

Development 10 (4) 37 (27)

Elevation 22 (8) 25 (13)

Elevation2 12 (0) 35 (13)

Precipitation 23 (11) 25 (10)

Precipitation2 22 (0) 25 (7)

Canopy cover 28 (10) 20 (4)

Canopy cover2 24 (0) 23 (3)

Canopy variance 21 (6) 26 (1)

Tree size (DBH) 23 (0) 24 (3)

Tree size (DBH)2 27 (2) 20 (0)

Tree size variance 24 (2) 23 (0)

Shrub cover 23 (7) 24 (4)

Shrub cover2 28 (1) 20 (1)

Values in parenthesis indicate the subset of species in which the posterior
intervals do not overlap zero.
doi:10.1371/journal.pone.0063088.t001
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shrub cover and larger trees. As such, these species may respond

negatively to fuel reduction treatments in the short term. However,

several recent reviews have suggested that many vertebrate species

respond neutrally or positively to fuel reduction treatments even

within this timeframe [74,75] suggesting that there may be

immediate benefits unrelated to forest structure. For instance,

avian species specializing on insects may benefit immediately from

the opening of the canopy as light penetration and intensity can

increase flying insect abundance and richness [76–79].

Parameters estimated through our multi-species model empha-

size the importance of within and between stand-level heteroge-

neity in meeting biodiversity objectives. At the stand level, some

species responded positively to higher variance in tree size and

canopy cover; thus, increasing forest heterogeneity in forest stands

would improve habitat suitability for these species (see [30,80]).

Species responses to the suite of abiotic and biotic variables were

variable with a similar number of species in our models responding

positively and negatively to the most influential abiotic and biotic

Figure 2. Mean parameter estimates and posterior intervals for the effect of A) percent canopy cover, B) standard deviation in
canopy cover, C) mean DBH, D) standard deviation in DBH, E) percent shrub cover for each of the 47 species included in our
analysis. Values indicate the change in occurrence predicted as a function of the change in one standard deviation of change in each response
variable. For purposes of illustration, species were classified as very common (occupancy probability $85%, N= 6), common ($50% and ,85%,
N=8), uncommon ($25% and ,50%, N=13), rare ($10% and ,25%, N= 8) and very rare (,10%, N=11) based on their mean probability of
occurrence for average environmental and habitat conditions in the Tahoe Basin (Appendix S1). Panels F-J show comparisons of the covariate
estimates across these groups.
doi:10.1371/journal.pone.0063088.g002

Figure 3. The intersection of covariate values for percent canopy cover (x-axis), mean tree DBH (y-axis), and percent shrub cover (z-
axis) for 47 species included in our analysis. Each pinhead reflects the DBH value, while pin placement on the x-y surface indicates the percent
canopy cover and percent shrub cover values that are predicted to result in the highest probability of occurrence for each species.
doi:10.1371/journal.pone.0063088.g003
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variables, suggesting the importance of heterogeneity between

forest stands. Additionally, both historical data and data from

forested areas that have lacked fire suppression suggest that 30

percent shrub cover values were typical (e.g., [81]) and below the

values of shrub cover that maximized occurrence probabilities for

many species in our models. Many of these shrub cover values are

also associated with canopy cover values that arguably would be

too high to allow for the preferred level of shrub cover suggested

by our results. This may reflect species, such as chipping sparrow

Spizella passerina, that specialize on forest edge habitats and require

both highly forested areas and shrub fields to meet their life history

requirements. The results of our model indicate that past practices

and management approaches that lead to increased homogeniza-

tion of the forest will have negative impacts on avian diversity.

Management approaches, such as fuel reduction treatments, or the

use of prescribed or managed wildland fire, may be designed to

restore at least some of the variability within and among stands

that existed during an active fire regime, thereby enhancing

habitat conditions for conserving avian biodiversity.

The link between habitat heterogeneity and biodiversity has

been well-established (reviewed in [82]) and studies have shown

that structurally complex landscapes can compensate for spatially

restricted high-intensity management [83]. Structurally complex

landscapes also increase resiliency and the capacity to recover

from a disturbance [84]. Management actions that are driven by

one or a few focal species do not appear adequate for maintaining

avian biodiversity if their protection results in decreased variability

in habitat conditions. An integrated approach that emphasizes

conserving a diversity of habitats across environmental gradients

and minimizing the extent of urbanization is likely to provide a

greater benefit to conserving and restoring biodiversity and

enhancing ecosystem functioning then a single-species focus. The

use of multi-species approaches to inform land management could

enhance biodiversity conservation by identifying habitat condi-

tions that support unique suites of species. Management

approaches that consider the extent and distribution of habitat

conditions across landscapes have the greatest likelihood of

conserving and restoring biodiversity and ecosystem functions.
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