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Abstract

Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two
oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The
firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft
involvement in mouse fertilization assessed by cholesterol modulation using methyl-b-cyclodextrin. Cholesterol removal
induced: (1) a decrease of the fertilization rate and index; and (2) a delay in the extrusion of the second polar body.
Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these
effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is
mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed
that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane
of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures,
by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows
characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by
cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase
proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling
complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its
dependence on cholesterol.
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Introduction

At the time of fertilization, when a spermatozoon encounters an

oocyte, it first binds to its membrane and then, both membranes

fuse together. Drastic oocyte membrane reorganization occurs (for

review [1]). Concerning the proteins of the oocyte membrane

clearly involved in the process of gametes adhesion/fusion, one is

the tetraspanin Cd9 [2,3,4], the other is, at least, one but still

unknown, glycosylphosphatidylinositol-anchored protein (GPI-

anchored protein) [5,6]. We have already hypothesized on the

links between these two proteins and in particular on the

membrane reorganization at the time of gametes adhesion/fusion

[7]. The basic structure of cell membranes is the lipid bilayer,

composed of two apposing leaflets, forming a two-dimensional

liquid with fascinating properties designed to perform the

functions cells require [8]. To coordinate these functions, the

bilayer has evolved the propensity to segregate its constituents

laterally to form specialized functional microdomains permitting

membrane subcompartmentalization and the formation of signal-

ing platforms [9]. Among these microdomains are the tetraspanin

enriched microdomains (TEM), caveolae, and lipid rafts. These

last ones combine the potential for sphingolipid-cholesterol self-

assembly with protein specificity to focus and regulate membrane

bioactivity [8]. Moreover, one of the lipids known to promote raft

association is the GPI anchor, and as said above at least one

protein anchored to GPI is essential in gamete adhesion/fusion

[5,6]. Another lipid constituting the rafts is the ganglioside GM1,

which is expressed on the mouse oocyte and cleaving embryos [10]

showing a differential distribution with respect to monosialylGb5-

Cer-enriched membrane rafts in preimplantation embryos [11].

However, little data have been published on the comportment and

role of membrane rafts during mammalian fertilization, neither on

their associated proteins such as flotillins and caveolins [12,13] or

tyrosine kinases involved in oocyte activation (for review [14]).

Thus, the aim of this work was to study membrane raft domains to

characterize their components and evaluate their functional

significance in relation to mouse oocyte fertilization.
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Materials and Methods

1- Gamete Preparation and in vitro Fertilization
Oocyte recovery. This work submitted for ethical evaluation

to the ‘‘Comité d’Ethique pour l’Expérimentation Animale, Paris

Descartes’’ has been approved and registered under the number

CEEA34.BL.006.12.

B6CBA F1 female mice (5–8 week old) purchased from Janvier

Laboratories (France) were ovary stimulated with 5 IU PMSG and

5 IU hCG (Intervet, France) 48 hours later. Twelve to 14 hours

after hCG injection, female were sacrificed by cervical dislocation.

Cumulus oophorus were collected by tearing the ampulla’s wall of

the oviduct and placed in Ferticult Medium (FertiPro, Belgium) at

37uC under 5% CO2 in air under mineral oil (Sigma). When

needed, cumulus cells were removed by a brief exposure to

hyaluronidase (Sigma) (0.01%) and zona pellucida (ZP) dissolved

with acidic Tyrode’s solution (pH 2.5) (Sigma) under visual

monitoring. The ZP-free eggs were rapidly washed five times

and kept at 37uC under 5% CO2 in air for 2 recovery hours.

Sperm preparation. Mouse spermatozoa were obtained

from the epididymis caudae of B6CBA F1 male mice (8 to 13-

week-old) and capacitated at 37uC for 90 minutes in a 500 ml drop
of Ferticult Medium with 3% BSA at 37uC under 5% CO2 in air

under mineral oil.

In vitro fertilization. Treated or not treated ZP-free eggs

were inseminated with 16105 capacitated spermatozoa per ml for

1 hour in a 100 ml drop of medium. Then, they were washed and

directly mounted in Vectashield medium with DAPI (Vector

laboratories, CA, USA) for observation under UV light (Nikon

Eclipse E600 microscope). Only oocytes showing at least one

fluorescent decondensed sperm head within their cytoplasm were

considered fertilized and according to this the fertilization rate

(FR) was evaluated. To assess the fertilization index (FI), the

number of decondensed sperm heads per oocyte was recorded as

well as the extrusion of the second polar body (PB).

2- Cholesterol Depletion and Repletion
Methyl-b-cyclodextrin (MbCD; Sigma) was used to deplete

cholesterol from ovulated oocytes. A stock solution (1M) in

Ferticult medium was stored at 4uC in a glass tube. The stock

solution was vortexed 30 minutes at room temperature (RT)

before preparing working solutions (5, 15 and 30 mM). After the

recovery period, ZP-free oocytes, were treated with MbCD during

30 minutes at 37uC, and then washed in Ferticult medium and

inseminated or assessed for fluorescence staining. Only those

oocytes that survived MbCD treatment were inseminated or

selected for fluorescence staining.

To evaluate the reversibility of cholesterol removal, cholesterol

repletion was performed just after washing depleted oocytes.

Oocytes were bathed during 30 minutes at 37uC in MbCD/

Cholesterol (molar ratio 8:1) in Ferticult prepared according to

Christian et al. [15]. Briefly, cholesterol (Sigma) in chloroform:-

methanol 1:1 (v:v) was completely dried under a stream of

nitrogen. An MbCD aqueous solution at the adequate concentra-

tion was subsequently added to the dried material. The mixture

was clarified by vigorous mixing and incubated in a rotating water

bath at 37uC overnight.

3- Sequestration of Cholesterol with Nystatin
Nystatin dihydrate (Sigma) was used to disrupt membrane rafts.

A stock solution (5 mg/ml) in DMSO was aliquoted in dark tubes

protected from light and stored at 220uC. After the recovery

period, ZP-free oocytes were treated with nystatin in Ferticult

medium (200 mg/ml) during 1 hour at 37uC, and then washed and

inseminated. To exclude for any effects of this solvent the control

cells were incubated in the same dilution of DMSO. Nystatin at

this concentration did not compromise cell viability.

4- Fluorescence Staining of Mouse Oocytes
Cholesterol imaging in living oocytes. A stock solution

(5 mM) of BODIPY-Cholesterol (BPY-Chol; Avanti Polar Lipids)

was prepared in ethanol and stored in a dark glass tube under

nitrogen at 220uC. Working solutions (1 mM) were obtained

diluting the stock in M2 medium (amount of ethanol less than 1%).

Pulse-labeling was performed incubating cumulus-free ZP-intact

oocytes with the fluorescent lipid probe for 15 minutes at 37uC. To
achieve a high and selective plasma membrane labeling, oocytes

were immediately washed and subsequently imaged in cold M2

medium to avoid internalization of the lipid probe. On the

contrary, to follow the fluorescent cholesterol internalization, cells

were imaged at different chase times after labeling and removal of

the lipid probe by washing. Quantification of fluorescence

intensity was measured outlining regions of interest (ROI) using

ImageJ software. The integrated density and area of a given ROI

and the mean fluorescence value of three background selections

were measured to calculate the corrected total cell fluorescence

(CTCF) [16] according to the formula:

CTCF= Integrated Density - (Area of selected cell 6 Mean

fluorescence of background readings).

Detection of molecular raft markers. The presence on the

oocyte membrane of three different molecules, caveolin-1, flotillin-

2 and the ganglioside GM1, known to participate in membrane

rafts constitution was verified.

For the two proteins, the monoclonal antibodies used were anti-

flotillin-2 (clone B-6, Santa Cruz Biotechnology Inc.) and anti-

caveolin-1 (clone 2297, BD Transduction Laboratories). The

secondary antibody was a goat-anti-mouse-Alexa Fluor 488

(AF488, Invitrogen). Immunodetection was carried out on cumu-

lus- and ZP-free oocytes fixed in 2% PFA diluted in PBS 1% BSA

for 20 minutes at RT. For caveolin-1, oocytes were permeabilized

in PBS supplemented with 1% BSA and 0.1% Triton during 15

minutes at RT. They were then incubated in a blocking solution

(PBS containing 10% goat serum) during 1 hour at RT and with

the primary antibody (1:50; anti-cav-1 or anti-flot-2) for 1 hour at

RT and then, with the secondary antibody (1:200; goat anti-mouse

AF488) for 1 hour at RT. Controls were prepared by omitting the

primary antibody. The oocytes were washed in PBS 1% BSA and

directly mounted in Vectashield/DAPI for observation under UV

light (Nikon Eclipse E600 microscope).

The glycosphingolipid GM1 was detected on living cumulus-

free ovulated oocytes by using the fluorescent-labeled cholera toxin

B subunit (CTB-AF488, Molecular Probes), which binds specifically

to the ganglioside. Oocytes were incubated at 37uC for 10 minutes

in M2 medium (Sigma) supplemented with CTB-AF488 (20 mg/
ml), mounted in cold M2 medium and transferred on ice to the

microscope to avoid rapid internalization of the toxin-GM1.

Taking into account that membrane rafts are associated to Src-

kinases, we verified on cumulus-free ovulated, fixed and

permeabilized oocytes the presence of the tyrosine kinase Src by

immunofluorescence, using the monoclonal antibody anti-c-Src

(clone H-12, Santa Cruz Biotechnology Inc.). Immunodetection

was carried out on oocytes fixed in 2% PFA diluted in PBS 1%

BSA for 20 minutes at RT and permeabilized in PBS

supplemented with 1% BSA and 0.1% Triton during 15 minutes

at RT. Oocytes were then incubated in a blocking solution (PBS

containing 10% goat serum) during 1 hour at RT and sub-

sequently incubated with the primary antibody (1:50; anti-c-Src)

for 1 hour at 4uC. Incubation with the secondary antibody (1:200;
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goat anti-mouse AF488) was performed for 1 hour at RT. Controls

were prepared by omitting the primary antibody. Oocytes were

washed in PBS 1% BSA and directly mounted in Vectashield/

DAPI for observation under UV light. To evaluate the effect of

cholesterol depletion on c-Src localization, oocytes were pretreated

with 15 mM MbCD as indicated above.

Detection of the non-raft protein Cd9. Expression levels of

a non-raft protein tetraspanin Cd9 was evaluated in ovulated

oocytes by immunofluorescence after 30 minutes treatment with

MbCD 15 mM compared to non-treated oocytes. Oocytes were

incubated with anti-Cd9 (1:50; KMC8, BD Pharmingen, USA) for

45 minutes at RT. Incubation with the secondary antibody (1:200;

goat anti-mouse AF488) was performed for 45 minutes at RT. The

oocytes were washed in PBS 1% BSA and directly mounted in

Vectashield/DAPI for observation under UV light (Nikon Eclipse

E600 microscope).

5- Western Blot Analysis
Whole oocyte proteins were resolved by SDS-PAGE. Proteins in

the gel were transferred to a polyvinylidene difluoride (PVDF)

membrane (Hybond-P; GE Healthcare Ltd., U.K) by using a Mini-

Trans-Blot electrophoretic transfer cell (Bio-Rad Life Science

Group, Hercules, SA) for 1.5 hours. Membranes were blocked for

1hour at 4uC with TBS buffer (20 mM Tris-HCl, pH 7.5,

150 mM NaCl) supplemented with 5% nonfat dry milk. Immu-

noblotting detection was performed using a 1:1000 dilution of anti-

flotillin-2 (clone B-6, sc-28320, Santa-Cruz Biotechnology Inc.) or

anti-caveolin-1 (Clone 2297, BD Transduction Laboratories) at

4uC overnight. Incubation with the secondary antibody was

performed at RT for 45 minutes using a 1:3000 dilution of rabbit

anti-mouse (Dako A/S, DK 2600 Glostrup) or a 1:30000 dilution

of goat anti-rabbit (Vector Laboratories, Inc. Burlingame, CA

94010) conjugated to horseradish peroxidase (HRP) in a TBS

buffer supplemented with 0.05% Tween-20 and 1% nonfat dry

milk. Immunoreactive bands were detected using the enhanced

chemiluminescent HRP Substrate Immobilon Western (Millipore

Corporation, MA 01821, USA).

6- Src Kinase Inhibition
To verify Src-family protein-tyrosine kinase involvement in the

fertilization process, MII oocytes were preincubated in Ferticult

medium containing pyrazolopyrimidine 2 (PP2; BD Biosciences,

France), a specific Src-family kinase inhibitor, at 0, 10 or 100 mM
during 30 minutes at 37uC, and then washed in Ferticult medium

and inseminated.

7- Ultrastructural Study by Electronic Microscopy
For transmission electron microscopy, cumulus-free oocytes

were washed and pre-fixed in a 100 ml drop of 0.25%

glutaraldehyde in PBS 1% BSA for 30 minutes and then washed

in PBS 1% BSA. After three washes, the oocytes were fixed in

2.5% glutaraldehyde in Sorensen buffer supplemented with 1%

BSA for 30 minutes at RT and 1 hour at 4uC. After three washes
in Sorensen buffer with 1% BSA the oocytes were post-fixed with

1% osmium tetroxide in 0.1 M phosphate buffer, and then

dehydrated in 70%, 90% and 100% ethanol. After 10 minutes in

a 1:2 mixture of epoxy propane and epoxy resin, the oocytes were

embedded in gelatin capsules with freshly prepared epoxy resin

and polymerized at 60uC for 24 hours. Samples were then

mounted into epon blocks and 70 nm thin sections were cut with

an ultramicrotome (Reichert ultracut S), stained with uranyl

acetate and Reynold’s lead citrate, and observed under a trans-

mission electron microscope (Philips CM10).

8- Statistical Analysis
All experiments were realized at least three times. Statistical

analysis was carried out using SPSS 15.0 software (Inc., Chicago,

IL). Analysis of variance (ANOVA) was used to determine

differences among mean values, which were then compared using

the post hoc tests of multiple comparisons Bonferroni or Fisher’s

Least Significant Difference (LSD). Student’s t test was used to

establish differences between two mean values. Differences were

considered significant at P,0.05.

Results

Effect of Cholesterol Depletion and Repletion on
Fertilization
The cholesterol-binding drug MbCD was used for oocyte

cholesterol modulation in order to evaluate functionality and

possible membrane raft involvement in mouse fertilization. If

membrane order is essential for fertilization then the possible

disruption of membrane microdomains by MbCD should inhibit

the sperm-induced response. To deplete cholesterol, ZP-free

ovulated oocytes were incubated with different concentrations of

MbCD (5–30 mM) and then fertilized with capacitated sperma-

tozoa. Oocytes treated with 15 mM MbCD registered 83% of

living oocytes (Fig. 1A,B) whereas none of the oocytes incubated

with 30 mM MbCD survived (Fig. 1A,B). As seen on Figure 1A,

only healthy oocytes demonstrating their viability by the trypan

blue exclusion were used to check their fertilizability. After

fertilization, oocytes were mounted and the FR and the FI were

recorded. The FR underwent a significant decrease (31%) in

oocytes treated with 15 mM MbCD (Fig. 2A). At this concentra-

tion, cholesterol removal also decreased by almost 3-fold the FI

(Fig. 2B) and significantly inhibited the extrusion of the second PB

in 50% of the cases (Fig. 3A). The latter effect was clearly observed

in the DAPI-stained image in which segregation of oocyte

chromatids was arrested with chromatids still within the ooplasm

(Fig. 3B). To assess the reversibility of cholesterol depletion and the

specificity of MbCD effects, cholesterol repletion was performed

using MbCD/cholesterol complexes. The high affinity of MbCD
for cholesterol can be used not only to remove cholesterol from

biological membranes but also to generate cholesterol inclusion

complexes that donate cholesterol to the membrane [17]. The

molar ratio between cholesterol and cyclodextrin in the complex

determines whether it will act as cholesterol acceptor or as

cholesterol donor. Cholesterol repletion experiments performed at

15 mM MbCD/cholesterol showed a recovery of both FR and FI

of MbCD-treated oocytes, particularly of the FI in which

reversibility was close to the control level (Fig. 2A,B). Extrusion

of the second PB was also restored (Fig. 3B) suggesting that at this

concentration the drug is not toxic for oocytes. Increasing the time

of incubation with sperm in the absence of MbCD/cholesterol

complexes brought on a recovery of PB extrusion (data not

shown). This means that depleted oocytes actually show a delay in

the extrusion of the PB. Indeed, there was a time-dependent

recovery of the three parameters (FR, FI and PB extrusion). Under

our experimental conditions, MbCD-treated oocytes that were not

inseminated did not show activation indicating that the drug alone

does not reproduce this sperm induced response.

Cholesterol depletion effects induced by MbCD were compared

with those of another compound that can bind to cholesterol and

disrupt membrane rafts by directly inserting into membranes and

sequestering cholesterol into complexes but without removing it

(nystatin).

ZP-free ovulated oocytes treated with nystatin survived to the

treatment and fertilized. Cholesterol sequestration decreased by

Oocyte Rafts and Fertilization
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about 30% the FI (Fig. 2C) without affecting the FR or the

extrusion of the second PB. Control oocytes, maintained in the

culture medium supplemented with 5% DMSO, were similarly

fertilized than control oocytes maintained in the culture medium

only.

Subcellular Distribution of BODIPY-cholesterol in Mouse
Oocytes
To further investigate the effect of MbCD on oocyte cholesterol

and estimate the extent of cholesterol depletion and repletion, we

used a new available fluorescent probe, a cholesterol compound

with a boron dipyrromethene difluoride moiety referred to as

Figure 1. Effect of cholesterol depletion mediated by MbCD on oocyte survival. Zona-free mouse oocytes were incubated with different
concentrations of MbCD for 30 min at 37uC. (A) Differential interference contrast micrographs of depleted oocytes after MbCD treatment. Are also
illustrated by inserted pictures healthy and dead oocytes demonstrating or not their viability by the trypan blue exclusion test. (B) Percentages of
living oocytes after cholesterol depletion. Data represent the mean 6 SEM of at least 3 independent experiments from a total of 101 control oocytes,
49 oocytes depleted at 5 mM, 92 oocytes depleted at 15 mM and 29 oocytes depleted at 30 mM of MbCD. Comparison of mean values was
performed using Bonferroni test. Different letters (a-c) denote significant differences (P,0.05).
doi:10.1371/journal.pone.0062919.g001
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BODIPY-Cholesterol. When ZP-intact oocytes were imaged

immediately after a 15 minutes labeling at 37uC with the lipid

probe BPY-Chol, prominent labeling of the plasma membrane

was observed (Fig. 4A). Continuous exposition to the fluorescent

cholesterol for 50 minutes not only labeled plasma membrane but

also markedly labeled intracellular membranes (Fig. 4B,C). The

increased level of cholesterol incorporation after 50 minutes of

incubation also resulted in the accumulation of the fluorescent

probe in structures that resemble lipid droplets as judge by their

size, shape, distribution and function as storage sites for cholesterol

esters and triacylglycerols (Fig. 4B). In addition, as BPY-Chol is

highly photostable, we were able to follow it with time-lapse

imaging in a pulse-chase experiment in which the remaining lipid

probe was removed after 15 minutes of exposition (Fig. 4D,E).

Interestingly, total fluorescence after 90 minutes was not similar to

that of the time zero condition. Indeed, the absolute value of total

fluorescence was twice that at time zero. This increase in total

fluorescence is explained by the fact that some BPY-Chol

remained available in the perivitelline space even after washings

(Fig. 4D) and living oocytes continued to recruit this fluorescent

probe. For this reason, to analyze comparable changes in the

distribution of cholesterol among subcellular compartments,

fluorescence of those oocytes followed after 90 minutes was

normalized to 100%. Therefore, with increasing chase time,

plasma membrane labeling decreased and intracellular structures

became visualized indicating that the fluorescent cholesterol

Figure 2. Effect of cholesterol disrupting agents on mouse fertilization. Zona-free mouse oocytes were incubated with either different
concentrations of MbCD for 30 min at 37uC to remove cellular cholesterol or 200 mg/ml of Nystatin to sequestrate cholesterol into complexes.
Cholesterol repletion was carried out incubating MbCD-treated oocytes with MbCD/Chol complexes. After depletion/repletion and sequestration
treatments, oocytes were washed and inseminated. (A) Effect of cholesterol depletion and repletion on the fertilization rateand (B) fertilization index.
(C) Effect of Nystatin induced cholesterol sequestration on the fertilization index. Data in A and B represent the mean 6 SEM of at least 3
independent experiments from a total of 101 control oocytes, 49 oocytes depleted at 5 mM, 92 oocytes depleted at 15 mM and 52 oocytes depleted/
repleted at 15 mM of MbCD. Data in C represent the mean 6 SEM of 3 independent experiments from a total of 33 control oocytes and 72 Nystatin-
treated oocytes. Comparison of mean values was performed using LSD or Student’s t tests. Different letters (a-c) denote significant differences
(P,0.05).
doi:10.1371/journal.pone.0062919.g002

Figure 3. Effect of cholesterol depletion and repletion on polar body extrusion. Zona-free mouse oocytes were incubated with 15 mM of
MbCD for 30 min at 37uC to remove cellular cholesterol. Cholesterol repletion was carried out incubating MbCD-treated oocytes with MbCD/Chol
complexes. After depletion/repletion treatments, oocytes were washed and inseminated. (A) Percentage of expulsed polar bodies (PB) after
fertilization of cholesterol depleted oocytes. (B) Effect of cholesterol depletion and repletion on the extrusion of the second polar body visualized by
DAPI staining. Inserts show a zoom of the regions indicated by asterisks. White arrowheads indicate PB and red arrowheads indicate meiosis arrest.
Data in A represent the mean 6 SEM of 3 independent experiments from a total of 55 control oocytes and 57 oocytes depleted at 15 mM MbCD.
Asterisks (**) indicate significant differences with respect to control (P,0.01).
doi:10.1371/journal.pone.0062919.g003
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distributed among cell membranes (Fig. 4F). The percentage

distribution of the label changed during sterol sequestration,

showing more than 75% of the fluorescence inside the oocyte

(Fig. 4E,F). The timing of these experiments allowed us to find the

time-point (15 minutes) at which the fluorescent cholesterol is

highly located at the plasma membrane. Thus, the extent of the

cholesterol depletion at the plasma membrane was estimated in

MbCD-treated oocytes labeled with BPY-Chol (Fig. 5). Choles-

terol-specific fluorescence in the plasma membrane decreased

about 40% after MbCD treatment (Fig. 5B,D) compared to BPY-

Chol-control oocytes (Fig. 5A). Moreover, after repletion treat-

ment cholesterol was incorporated into mouse oocytes in a re-

Figure 4. Subcellular localization of BODIPY-Cholesterol in the
mouse oocyte. Zona-intact ovulated oocytes were incubated with the
fluorescent cholesterol probe for 15 min at 37uC. (A,B) Oocytes
continuously incubated with BPY-Chol were imaged at 15 and
50 min. (D,E) Pulse-chase experiment. After incubation, BPY-Chol was
washed and followed in time. (C,F) Fluorescence intensity quantified
with ImageJ software. The bars represent the mean 6 SEM of a total of
15 oocytes for continuous exposition experiment and 15 oocytes for
pulse-chase experiment. Comparison of mean values for each sub-
cellular compartment over time was performed using Student t test.
Asterisks denote significant differences (P,0.01). Fluorescence of
oocytes measured after 90 min was normalized to 100%.
doi:10.1371/journal.pone.0062919.g004

Figure 5. Effect of cholesterol depletion and repletion on
oocyte cholesterol content. Zona-intact ovulated oocytes were
pretreated with 15 mM MbCD for 30 min at 37uC to remove cholesterol.
Cholesterol repletion was carried out incubating MbCD-treated oocytes

Oocyte Rafts and Fertilization
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versible manner reaching the level of the control oocytes

(Fig. 5C,D).

Localization of the Raft Marker Lipid GM1 in Living
Oocytes
Gangliosides are glycosphingolipids that contain sialic acid in

their structure and, in particular, ganglioside GM1 has been

extensively used as a marker for raft domains [18,19]. To confirm

the presence of GM1 in the mouse oocyte we used CTB-AF488

that recognizes with high affinity the cell surface GM1. Binding of

the B subunit to GM1 enables CTB endocytosis. In this respect,

live cell imaging at 4uC was crucial for membrane raft staining.

Specific binding toxin-GM1 showed a relatively homogeneous

distribution of the raft marker lipid exclusively on the oocyte

plasma membrane (Fig. 6A).

Immunodetection of the Raft Marker Proteins, flotillin-2
and caveolin-1
We also evaluated the oocyte localization of the raft proteins

flotillin-2, a marker of planar microdomains, and caveolin-1, the

structural protein of caveolae by immunofluorescence. As flotillins

(flotillin-1 and flotillin-2) localize at the cytoplasmic leaflet of the

plasma membrane via acylations and hydrophobic stretches of

amino acids, fixation of oocytes was required for indirect labeling.

As shown in Figure 6B, we found a strong presence of flotillin-2 on

the oocyte plasma membrane, as punctuations along specific

enriched areas.

Indirect immunofluorescence staining of caveolin-1 appears as

regular punctuations along the oocyte plasma membrane, however

at a lesser extent than flotillin-2 (Fig. 6C). Since this is the first

report of an immunolocalization of flotillin-2 in oocytes, whatever

the species, the corresponding protein expression was confirmed

by immunoblot analysis. As the presence of caveolin-1 in the

mouse oocyte has never been confirmed by Western blot, it was

also evaluated. A single specific band of 42 kDa, the expected

molecular weight of flotillin-2 (Fig. 6B), as well as a single specific

band of 22 kDa, the expected molecular weight of caveolin-1

(Fig. 6C) were detected in whole oocytes.

Observation of Caveolae-like Invaginations on Ovulated
Mouse Oocytes
Caveolae, are the only membrane microdomains that can be

identified morphologically. By transmission electron microscopy,

they appear as structures resembling ‘little caves’, which are small

flask-like vesicular invaginations of the plasma membrane of 50–

100 nm in diameter [20]. According to these criteria, this is the

first report that shows characteristic caveolae-like invaginations in

the mouse oocyte identified by electron microscopy (Fig. 7).

Effect of Cholesterol Depletion on Raft- and Non-raft
Associated Proteins Src kinase and Cd9 Tetraspanin
Signaling molecules such as Src family kinases have been shown

to be enriched in membrane rafts and are usually used as raft

markers. c-Src kinase expression in the mouse oocyte was

evaluated by immunofluorescence. In addition, functionality of

membrane rafts was assessed by disruption of these microdomains

and evaluation of c-Src staining in MbCD-treated oocytes.

Labeling of fixed and permeabilized oocytes showed fluorescence

punctuations along the cortex of the eggs (Fig. 8A) consistent with

the pivotal role of Src kinases as membrane-attached molecular

switches that link a variety of extracellular cues to critical

intracellular signaling pathways. Cholesterol removal disturbed

membrane localization of c-Src significantly decreasing fluores-

cence intensity at the cortex of the cell (Fig. 8B).

with MbCD/Chol complexes. After depletion/repletion treatment,
oocytes were washed and incubated with BPY-Chol for 15 min at
37uC. (A) Control, (B) depleted and, (C) depleted/repleted oocytes
labeled with BPY-Chol. (D) Fluorescence intensity quantified with
ImageJ software. Bars represent the mean 6 SEM of 3 independent
experiments from a total of 14 control oocytes, 23 depleted oocytes,
and 17 depleted/repleted oocytes. Comparison of mean values was
performed using Bonferroni test. Different letters (a-b) denote
significant differences (P,0.05).
doi:10.1371/journal.pone.0062919.g005

Figure 6. Presence of the raft markers GM1, Flotillin-2 and
Caveolin-1 in the mouse oocyte. (A) Plasma membrane localization
of the raft marker lipid GM1 assessed by incubation of living oocytes
with CTB-AF488. (B) Indirect immunofluorescence detection in fixed
oocytes and immunoblot detection in whole oocyte lysates of flotillin-2
and (C) caveolin-1. Fluorescence staining was performed in a total of 35
oocytes for GM1, 13 oocytes for flotillin-2 (Flot-2), and 10 oocytes for
caveolin-1 (Cav-1). For the Western blots, numbers to the left of each
panel indicate the molecular weight of the protein. A total of 120 (Flot-
2) and 470 oocytes (Cav-1) were pooled and lysed. 3T3 cell lysates were
used as positive controls.
doi:10.1371/journal.pone.0062919.g006
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Figure 7. Electron micrographs of caveolae-like microdomains in the mouse oocyte. Ultrastructural plasma membrane with a caveolae-like
invagination. OC: Oocyte Cytoplasm; PM: Plasma Membrane; PVS: PeriVitelline Space; C: Caveola; ZP: Zona Pellucida.
doi:10.1371/journal.pone.0062919.g007

Figure 8. Effect of cholesterol depletion on c-Src and CD9 subcellular localization. Src-family kinase role on second polar body
extrusion. (A) Cortex localization of the raft-associated tyrosine kinase c-Srcassessed by indirect immunofluorescence. (B) Cytoplasmic relocation of
the c-Src kinase after MbCD treatment. No primary antibody controls were negative. Staining of a total of 14 control oocytes and 6 MbCD-treated
oocytes. Within each group, oocytes showed the same staining pattern. (C) Plasma membrane localization of the CD9 tetraspanin, a non-raft protein.
(D) CD9 remained at the plasma membrane after MbCD treatment. Staining of a total of 18 control oocytes and 18 MbCD-treated oocytes. In both
groups, oocytes showed the same staining pattern. (E) Effect of Src-family kinase inhibition assessed by incubation of oocytes with PP2 on the
extrusion of the second polar body (PB). Data represent the mean 6 SEM of 3 independent experiments from a total of 77 control oocytes and 85 or
69 oocytes treated with PP2 at 10 or 100 mM, respectively. (F) DAPI-stained images illustrating 1- a blocked telophase, 2- the beginning of the
formation of the PB, 3- its almost complete formation, and 4- an extruded PB. Comparison of mean values was performed using Bonferroni test.
Different letters (a-b) denote significant differences (P,0.05). *: oocyte chromatin; S: sperm decondensed chromatin; PB: Polar Body.
doi:10.1371/journal.pone.0062919.g008

Oocyte Rafts and Fertilization

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e62919



On the other hand, to check that MbCD-induced effects on

oocyte fertilization are a direct consequence of raft-cholesterol

depletion without affecting non-raft cholesterol function, expres-

sion level of a non-raft protein (Cd9) in MbCD-treated oocytes

was evaluated. The incubation of oocytes with MbCD did not

modify the expression of Cd9 at the oocyte plasma membrane

(Fig. 8C,D). MbCD seems selectively alter the expression of

proteins found in cholesterol rich rafts without affecting non-raft

associated proteins. In agreement with the reported effects on Src

localization, this also means that, at least under our experimental

conditions, the removal of cholesterol by MbCD has mainly

affected oocyte membrane rafts.

Effect of Src Kinase Inhibition on PB Extrusion
Similarly to cholesterol depletion, MII oocyte treatment with

PP2, a potent inhibitor of Src family members, significantly

prevented PB extrusion (Fig. 8E). No PB were visible in 71.7% of

the oocytes maintained in contact with spermatozoa during 1 hour

when PP2 was used at 10 mM, a more important inhibition being

observed when PP2 was used at 100 mM, since less than 12% of

the fertilized oocytes extruded the PB. This effect is illustrated by

DAPI-stained images (Fig. 8F). In most of the cases, segregation of

oocyte chromatids was arrested within the ooplasm (Fig. 8F1), but

sometimes the beginning of the formation of the PB (Fig. 8F2), or

its almost complete, or totally complete formation were observed

(Fig. 8F3 and 4, respectively). However, this arrest was actually

a delay since after 2 hours of recovery after insemination the rate

of oocytes with extruded PB was similar to that of the control (data

not shown).

Discussion

Working on mammalian gametes adhesion/fusion, it was

worthwhile to highlight the involvement of membrane rafts,

which permit membrane sub-compartmentalization, regulating

membrane bioactivity [8] since the oocyte membrane reorganiza-

tion is a crucial event at this moment (for review [7]). In rafts,

gangliosides are important in organizing the fine structure of

cellular membranes. Important biological events are likely to be

affected such as the dynamic control of the shape of specialized

plasma membrane areas and of the intracellular organelles, the in-

and outward budding and fusion of membrane vesicles, the

physical and functional coupling of the outer and the inner plasma

membrane leaflets, involved in the transduction of signals across

the membrane. Our data confirm that the mouse membrane

oocyte is rich in rafts according to the presence of the glycolipid

GM1 all along the membrane of living oocytes, as previously

demonstrated on fixed mouse oocytes and embryos as well as an

evident enrichment at the cleavage furrow during cytokinesis

observed short after fertilization [10] or more recently in living

mouse embryos [11]. By contrast, it has been reported that

biotinylated-cholera toxin accumulate in the perivitelline space in

unfertilized mouse eggs, whereas only a small amount of GM1 was

detected at the interfaces in compacted 8-cell stage living embryos

[11]. Our experimental conditions to visualize GM1 in living

oocytes could be an alternative starting point to further investigate

GM1 localization in mouse preimplantation embryos.

Cholesterol depletion by MbCD induced decrease of fertiliza-

tion rate and index. It is important to underline that the MbCD
effect is non cytotoxic, since the repletion in cholesterol permitted

to partly recover the FR and completely recover the FI. This

recovery occurred also in the absence of added cholesterol but

with delay suggesting that it could be due to cholesterol synthesis

in the oocyte as already shown for MDCK II cells [21].

Interestingly, cell death induced by MbCD after long time

incubation and with increasing concentrations of the drug,

occurred as a non-apoptotic mechanism in several cell types

(NR8383 cells, A549 cells and Jurkat cells) [22]. In our study, no

DNA fragmentation was observed in MbCD-treated oocytes after

staining with the DNA-binding fluorescent dye, DAPI. Therefore,

it is also likely that other mechanism different from apoptosis could

be operating in those oocytes that did not resist treatment with

MbCD.

Regarding non-specific effects of MbCD on non-cholesterol

membrane components, it is important to take into account that

MbCD may interact with hydrophobic amino acids and

phospholipids due to the hydrophobic character of its pocket.

Several studies have shown membrane release of certain proteins

and phospholipids after bCD treatment [22,23]. However, until

now there are no sufficient systematic studies about the interaction

of bCDs with cell surface proteins or phospholipids to predict the

effect of these compounds on cells in specific situations. Useful

control strategies may help to verify that the observed effects are

due specifically to cyclodextrin-induced changes in cellular

cholesterol. In this respect, cholesterol repletion solely may not

restore membrane functionality if an involved protein/phospho-

lipid was severely removed by MbCD treatment. Thus, under our

experimental conditions, mainly cholesterol may account for the

ability of mouse oocytes to recover their fertilization competence.

Importantly, analysis of the expression of raft (c-Src) and non-raft

(Cd9) proteins indicated that MbCD mainly affected proteins

associated to cholesterol rich rafts without affecting non-raft

associated proteins.

Nystatin partially supported these findings by decreasing the

number of decondensed sperm per oocyte but without affecting

the FR and the extrusion of the second PB. Sequestering

cholesterol with filipin or nystatin or modification of membrane

cholesterol by its enzymatic degradation with cholesterol oxidase

[24] or by serum starvation [25], are methods used to compare the

effects of cholesterol depletion induced by MbCD. However, these

methods, introduce additional factors difficult to quantify, such as

changes in the local concentration of cholesterol or a build-up of

products of cholesterol degradation [17]. Conversely, in MbCD-

treated oocytes it was possible to correlate functional effects to

cholesterol levels and restored this condition by cholesterol

repletion. Marginal effects of nystatin might be also explained by

the poor aqueous solubility and stability of this polyene anifungal

agent.

What does appear clear is that the disruption of the basic

structure of cell membranes composed of two apposing leaflets,

where sphingolipids and cholesterol assemble, affects the process of

fertilization. This result has recently been observed [26], however

without dose response curve. The authors have observed a de-

crease in the fertilization index of mouse oocytes after treatment

with cyclodextrin for an unspecified time of incubation. On the

other hand, in non-mammalian species, it has been demonstrated

that treatment with the cholesterol depleting drug, MbCD,

inhibited amphibian oocyte maturation by disturbing the integrity

of membrane rafts [27].

Our work is the first in which the fluorescent probe BODIPY-

Chol was used to investigate plasma membrane microdomains in

mouse living oocytes. This novel approach permitted to identify

the time-point at which the fluorescent cholesterol is mainly

located at the plasma membrane enabling the estimation of the

extent of the cholesterol depletion. In addition, increased lipid

probe internalization resulted in its accumulation in cytoplasmic

structures that resemble lipid droplets. The main important

functions of the lipid droplets are to regulate the intracellular level
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of free fatty acids and free cholesterol, to be the site of synthesis

and metabolism of a wide range of lipids, to release fatty acids

preferentially used for many physiological functions over fatty

acids taken up from the extracellular milieu or synthesized de novo

in the cell and finally to provide a binding surface for proteins

[28]. At present, lipid droplets are under intensive study due to the

increasing recognition that they have significant roles in many

aspects of health and disease [29]. In particular, a metabolic role

for lipid metabolism during porcine oocyte maturation has been

demonstrated by using inhibitors of fatty acid b-oxidation leading

to developmental failure post-fertilization [30]. Just as the

induction of perilipin-2, a lipid droplet protein in mouse oocytes

concurrent with dynamic reorganization of lipid droplets suggests

marked changes in lipid utilization during oocyte maturation [31].

Our data also show that two kinds of membrane microdomains

coexist in mammalian oocytes: flat lipid rafts revealed by the

presence of flotillin-2 and flask-shaped plasma membrane

invaginations or caveolae-like microdomains revealed by the

presence of caveolin-1 and confirmed by transmission electron

microscopy. Flotillin-2 is considered a better marker protein for

lipid rafts than flotillin-1 because besides its dual palmitoylation is

irreversibly myristoylated being the more immobile of the two

[32]. On the other hand, flotillin-1 expression seems to be more

restricted at the cellular level [32]. Flotillins are also considered to

be scaffolding proteins of lipid microdomains [33]. This protein

family has never been observed in the oocyte before, whatever the

species, but flotillin-1 has been observed in the porcine cumulus

cells evolving throughout oocyte maturation [34]. It is also

interesting to note that flotillins promote the local co-assembly of

specific GPI-anchored proteins on the cell surface and allow

interaction with signal transduction molecules, including the Src-

family protein tyrosine kinases (PTK) [13].

Caveolin-1 is an ubiquitously expressed integral membrane

protein, essential for the formation of so-called caveolae, small

invaginations of the plasma membrane involved in major

physiological functions of the mammalian cell [35]. Among

caveolins, caveolin-1 is the true protein marker of caveolae.

Caveolin-2 colocalizes with caveolin-1 in caveolae but requires

caveolin-1 for proper membrane localization and caveolin-3 has

greater protein-sequence similarity to caveolin-1, but it is

expressed mainly in muscle cells [20]. By contrast to flotillins,

caveolins have been found to be expressed in oocytes of different

species such as the nematodes Caenorhabditis elegans [36,37] and

Trichinella spiralis [38], the amphibian Rhinella arenarum [27,39] and

human [40]. More recently it has also been observed in the

cytoplasm of mouse oocytes on slides of ovary, however without

any precision on the follicular size or the oocyte meiotic status

[41]. In line with this, we confirmed for the first time by electron

microscopy the presence of caveolae-like microdomains at the

ultrastructural level of the mouse oocyte membrane. In contrast,

flat rafts do not have the caveolae-like morphology and have less

than 50 nm in size. Caveolae are also distinguishable from

clathrin-coated pits (.100 nm) by their minor size and the lack of

the clathrin lattice-like coat [42]. In Rhinella arenarum oocyte, the

presence of raft markers and the finding of signaling molecules

from the MAPK cascade functionally associated to oocyte

membranes suggest that this caveolae-rich fraction efficiently

recreates, in part, maturation signaling [43].

Regarding signaling pathways, we also observed the presence of

the c-Src kinase along the oocyte cortex. The drastic disturbance

of its localization after microdomains disruption by cholesterol

removal highlights its dependence on intact membrane rafts. It

was already known that mammalian eggs express Fyn, Yes and in

some cases, Src [44,45] but these kinases have not been described

as required for the unique sperm-induced calcium oscillations

[46,47,48], which trigger egg activation in mammals [49].

Numerous studies involving chemical inhibitors, dominant nega-

tive fusion proteins and exogenous recombinant kinases have

demonstrated that PTKs including Src-family PTKs, play an

important role in activation of eggs from non-mammalian species.

These species typically exhibit a rapid activation of Src-family

PTKs which may play a role in sperm-egg fusion [14,50,51,52]

and are required for the rapid, high amplitude calcium transient

that triggers egg activation [53,54]. Our data verified that Src-

family kinases are involved in the completion of mouse oocyte

meiosis since its inhibition by the specific inhibitor PP2 before

fertilization significantly delays the extrusion of the second PB as

does the inhibition of Fyn, a member of the Src family proteins, on

rat oocytes [55]. PP2 also significantly reduced post-insemination

levels of PB formation in the marine protostome worm Cerebratulus

[56]. Furthermore our data revealed similarities with the effect

shown after MbCD-mediated cholesterol depletion on PB

extrusion suggesting the assembling of membrane-related proteins

such as c-Src in signaling complexes compatible with the role of

membrane rafts. Interestingly, the contractile ring in sea urchin

embryos has been associated with GM1 and cholesterol-rich

microdomains that are characterized by intense PTK signalling

[57], and it is likely that a similar mechanism is employed during

PB extrusion. Moreover, GM1 associates with complexes formed

by uroplakin proteins and contributes to Src-dependent activation

of Xenopus laevis eggs [58]. It is also known that caveolin scaffolding

domain contains motifs that bind signal molecules such as Src

[59].

As discussed above, two oocyte proteins are essential to gametes

adhesion and fusion, the tetraspanin Cd9 and at least one GPI-

anchored protein. Both proteins associate to specific microdo-

mains on cell plasma membrane, TEM for the first one and non-

invaginated rafts for the second. Whereas tetraspanins are

demonstrated to belong to cholesterol-depletion-resistant mem-

brane microdomains [60], a physical and functional link between

tetraspanins and cholesterol has also been shown [61]. Links

between TEM and membrane rafts have first been considered as

impossible, however it has been recently demonstrated that they

can relate, in particular in immune cell signaling, malignant

disease and HIV-assembly [62,63,64,65]. The following data can

at least partly explain the contradictory observations [66]: in

contrast to Plasmodium infection, the association of Cd81 with

TEM is not essential for the early steps of HCV life cycle,

indicating that the same molecule can work by different

mechanisms. In fact, cholesterol depletion inhibited HCV in-

fection and reduced total cell surface expression of Cd81, without

affecting TEM-associated Cd81 levels. Finally, gangliosides such

as GM2 and GM3, which associate either independently or in

complex with tetraspanins, in particular Cd9, promote its

interaction with other proteins leading to its cell function

[67,68]. Another example demonstrates links between tetraspanins

and membrane rafts: the disruption of the membrane with MbCD
dissociates the EGFR/GM3/caveolin-1/CD82/PKC-alpha com-

plex and prevents the inhibitory effect of PKC-alpha on EGFR

phosphorylation, suggesting that caveolin-1, CD82, and the

ganglioside interact with EGFR and PKC-alpha within intact

cholesterol-enriched membrane microdomains [69].

A protocol for studying the molecular mechanism of egg

fertilization has been published few years ago, using cell-free

extracts and membrane/lipid rafts prepared from unfertilized,

metaphase II-arrested Xenopus eggs [70]. It has permit to

reconstitute a series of signal transduction events associated with

egg fertilization, such as sperm-egg membrane interaction,
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activation of Src tyrosine kinase and phospholipase C gamma,

production of inositol trisphosphate, transient calcium release, and

cell cycle transition. It would be very interesting to develop this

type of reconstitutional system in the mammalian oocyte but it still

remains difficult due to the limitations on the number of oocytes

required. Recently, by using the force measurement technique to

quantify subtle local changes in membrane adhesion, we have

discriminated different types of adhesive interactions between

sperm and egg plasma membrane during the fertilization process.

Cd9 tetraspanin is responsible for strong adhesion generating

fusion competent sites [71]. However, Cd9 tetraspanin essential in

mammalian sperm-egg membrane adhesion/fusion does not

contain a fusion peptide. It remains to verify by our biophysical

approach whether GPI-anchored proteins, one or more GPI-

anchored egg surface proteins being essential for sperm-egg

binding and fusion [6,72], which role they play in the adhesion

step. Moreover, flotillin proteins are widely clustered at contact

sites between cells [73] and GPI-anchored proteins are strongly

associated with flotillin-enriched lipid rafts with lipids as cue

components in cell-cell fusion as demonstrated by our data in

gametes interaction. Previously, we have proposed a model [7] in

which oocyte membrane rafts migrate to contact/fusion sites

favoring clustering and protein-protein interactions. Tetraspanins

and GPI-anchored proteins cluster in the membrane, and both

associate with integrins. As GPI-anchored proteins, several

integrins have also been found associated to membrane rafts

[74,75]. Plasma membrane cholesterol is therefore a key player in

the different stages of oocyte fertilization, i.e. adhesion and fusion.

Interestingly, it has been recently shown that cholesterol mediates

membrane curvature during fusion events [76]. Cholesterol

affected the conformation of the glycoprotein gp41 fusion domain

of the HIV-1 virus promoting a beta-sheet structure over alpha-

helix [77,78] and regulated its membrane penetration depth and

occupied surface area in model systems [76]. For low cholesterol

concentrations in the opposing membrane, the protein domain

embeds with a large expansion of area at the level of head groups

leading to a significant positive curvature in the lipid bilayer that is

essential at the initial stage of the fusion pore formation. In

contrast, with a higher cholesterol concentration, the fusion

peptide expands the hydrophobic and hydrophilic regions almost

equally with a milder effect on the overall curvature of the host

membrane representing later stages of the fusion process. Thus,

the membrane can bend back-and-forth simply by regulating the

local concentration of cholesterol at the point of contact with

membrane-bending sequences [76].

Recently, a new model based on myotube formation proposed

the involvement of lipid rafts, adhesion proteins and actin

rearrangement in cell fusion [79]. In this model, membrane rafts

first recruit adhesion molecules and align with opposing

membranes to finally disperse and expose a highly fluidic bilayer

leading to direct contact and the formation of fusion pores by actin

polymerization force. Despite the diversity of fusion events, recent

advances in the field start to reveal common mechanisms also in

gamete interaction [80,81]. The efflux of cholesterol that occurs

during sperm capacitation favoring an overall more fluid plasma

membrane and thus making it more fusogenic supports this

hypothesis. Conversely, the acrosome reaction primes sperm for

fusion facilitating relocation of sperm-egg fusion proteins, such as

Izumo and flotillin-2, into the plasma membrane [82,83].

Based on all these observations, it seems likely that also after

sperm-egg lipid bilayer mixing and expansion of fusion pores, once

again cholesterol concentrates at the fusion site to bend the

membrane back. In addition, due to the large difference in size

between an egg and a sperm, it may be mainly the sperm

membrane, which undergoes greater positive curvature to adapt to

a more ordered oocyte membrane at the moment of fusion. Note

that the contribution of the sperm membrane in terms of lipid

mass is minor compared to that of the oocyte membrane which

also includes a microvillar region. It remains to be established

whether a bending sequence is acting to produce this curvature at

the sperm plasma membrane. Thus, dynamic successions of

membrane raft clustering and dispersion may account for gamete

adhesion/fusion with these organizing platforms acting either

prior to oocyte-sperm membrane fusion as well as in the final

stages of the fusion process. Experiments showing depletion of

membrane raft cholesterol provide a straightforward answer to this

phenomenon. Here, we show evidence that membrane raft

integrity is necessary to efficiently accomplish fertilization in the

mouse oocyte. A lipidomic approach would be very interesting to

describe the lipid composition of gametes membrane in order to

study the degree of contribution of each component in female and

male gametes adhesion and fusion.
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