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Abstract

Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV) is a powerful tool for the determination of the
number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In
this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple
absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted
component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of
sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex
lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we
show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting
components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different
abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally
poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting
approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not
discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation
coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass
conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of
components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular
complexes.
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Introduction

The study of protein interactions in multi-component systems is

key to improve our understanding of signaling pathways, which

ubiquitously possess dynamically assembled multi-protein com-

plexes as critical nodes for integrating different information flows

and regulating downstream events. Hallmarks of such complexes

are multi-valent interactions and cooperativity, which are notori-

ously difficult to characterize. We have recently developed a global

multi-method analysis for interacting systems with multiple

binding sites [1] that is useful for determining thermodynamic

parameters of the interactions, including association constants,

enthalpy changes, and cooperativity constants. However, often

one of the most difficult steps is to identify the thermodynamic

states, i.e. to ascertain which complexes exist in solution. This goal

can be far from trivial to achieve for two-component interactions

and be very difficult for three-component or higher-order systems.

Several years ago, the multi-signal sedimentation velocity

(MSSV) approach was introduced [2] as a new tool to address

this problem. It takes advantage of the strongly size-dependent

migration in the centrifugal field in a configuration that leaves

complexes always in a bath of their components, such as to

maintain populated complexes in solution during the experiment

despite their differential sedimentation velocities. MSSV exploits

the relatively high resolution that can be achieved in modern

diffusion-deconvoluted sedimentation coefficient distributions [3]

and synergistically combines this with spectral deconvolution of

absorbance and/or refractive index optical signals [2,4,5]. Among

the virtues of this method are the relatively fast experimental time,

the ability to detect multiple co-existing complexes, the orthogonal

observations of composition and complex size and hydrodynamic

shape often allowing for an internal test for consistency of the

derived complex stoichiometry, and the relative independence of

estimates of sample concentrations. Dependent on the particular

molecules under study, these often make the MSSV more

attractive than other solution methods such as isothermal titration

calorimetry, sedimentation equilibrium, or single-signal sedimen-

tation velocity. Many applications of MSSV to two- and three-

component systems have demonstrated the power of this approach

[6–16].

One potential drawback of MSSV is that interacting systems

with rapid chemical interconversion on the time-scale of
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sedimentation will not hydrodynamically resolve the different

chemical species during the sedimentation process, but exhibit

coupled migration and produce so-called reaction boundaries.

This previously limited the application of MSSV to systems that

either have slow reaction kinetics (i.e. complex lifetimes on the

order of hours) or to conditions where complex formation can be

substantially saturated. However, since the original development

of MSSV, significant progress has been made in the theory and

conceptual understanding of reaction boundaries [17–19]. In

particular, the effective particle theory (EPT) establishes simple

rules for the composition of reaction boundaries [17], opening

these for quantitative interpretation with regard to the binding

affinity and/or stoichiometry. One objective of the present work

was to illustrate how EPT can be applied in the context of MSSV

analyses of rapidly interacting systems.

A very useful feature of MSSV is that, due to the high statistical

precision of data acquisition, components may be distinguished in

the context of significant spectral overlap. In many cases, intrinsic

differences in UV absorbance from the content of aromatic amino

acids may suffice to resolve components, and extrinsic chromo-

phoric labels may not be necessary [2]. Recently, two of us (C.A.B.

and S.B.P.) have developed criteria for the reliability of the MSSV

analysis [5], and, based on the component extinction coefficient

matrix at the different signals, introduced a quantitative predictive

measure for the feasibility of spectral discrimination in MSSV.

When spectral discrimination is insufficient, misassignment of

signals can occur, with the result of incorrect identification of

species’ compositions. One of the tell-tales of spectral misassign-

ment is that the total integral over the components sedimentation

coefficient distribution does not approximate the known loading

concentrations. This observation motivated the question of how

the approximate knowledge of total loading concentrations of each

component could be used as a constraint to stabilize the MSSV

data analysis.

Mass conservation constraints have long been successfully used

in the analysis of sedimentation equilibrium of interacting systems

[20–23], but previously not been used in sedimentation coefficient

distribution analyses. In the present work, we describe a novel

approach, termed mass conservation constrained multi-signal

sedimentation velocity (MC-MSSV), that allows one to introduce

approximate total loading concentration either as a strict

constraint or as a ‘soft’ regularization parameter. Specifically, we

will first show theoretically how mass conservation constraints can

achieve a well-conditioned analysis with unambiguous solutions

even where the extinction coefficient matrix is singular. Next, we

will demonstrate the behavior of MC-MSSV with simulated data,

and introduce the combination with constraints in the sedimen-

tation coefficient range of one of the components. Finally, we

illustrate the practical application of MC-MSSV on an exper-

imental model system from the interaction of bovine lactoferrin

and Tp34 from Treponema pallidum.

Methods

Theory
Multi-signal sedimentation velocity (MSSV). Briefly,

MSSV is a generalization of the c(s) method [3] for the global

analysis of SV data for macromolecular mixtures acquired at

multiple signals [2]. Let us assume we have m macromolecular

components (1…M) with signal coefficients em
l at the different

signals l (1…L, L$M) that are used to record the evolution of the

sedimentation process, producing data points ar,t
l at radius r and

time t. Values for em
l are typically extinction coefficients when

considering absorbance data, but could equally represent molar

signal increments, for example, for interference data, or more

generally any other processes contributing to the signal propor-

tionally to the molar concentration, such as fluorescence, in the

absence of non-linearities in the detection arising from inner filter

effects or scattering. However, for the efficiency of notation, we use

the same symbol em
l and the term ‘‘extinction coefficients’’ for the

purpose of this theoretical treatment. The sedimentation process is

described as a superposition of normalized Lamm equation

solutions Ls,r,t
(l) [24,25] of ideally sedimenting species at a range

of sedimentation coefficients s (1… N), and using the customary

hydrodynamic scaling law, based on a common frictional ratio, fr,

to estimate the respective diffusion coefficients [3]. Due to

unavoidable differences between signals in data-acquisition times

radial data points, and sometimes in radial calibration and

apparent meniscus positions, in practice the evaluation of the

Lamm equation solutions Ls,r,t
(l) will also be dependent on the

signal to be modeled, to match the available data points ar,t
l.

Unknown is the distribution Ck(s) of sedimenting species of class k

(1…K,L) where the macromolecular composition of each class is

given by a stoichiometry Sk,m, such that the extinction coefficient of

each class is el
k~d

P
m Sk,mel

k (with d denoting the optical path-

length). We are searching for the unknown distributions Ck(s) that

satisfy the integral equation,

a(l)(r,t)%b(l)(r)zb(l)(t)zd
XK

k~1

XM
m~1

Sk,mel
m

ðsmax

smin

Ck(s)L(l) s,D(s,fr),r,tð Þds ð1Þ

which is approximated by the discretization into a grid of s-values,

Ck,s, and computed by least-squares,

Min
Cks

X
l

X
r,t

al
rt{

X
k

d
X

m

Sk,mel
m

X
s

CksLs,rt
(l)

 !2

ð2Þ

i.e. the minimization of the squared difference between the

measured signals and the theoretical contributions of all classes of

components to each signal. In Eq. 2, for simplicity the

contributions to the different signals from radial-dependent

baselines bl(r) and time-dependent baselines bl(t) (or constant

baselines) are not represented, but their inclusion as unknowns to

be determined simultaneously with the best-fit distribution trivially

follows the algebra outlined elsewhere [26,27]. Moreover,

additional terms from standard Tikhonov-Phillips regularization

[3,28] that are essential for stable solutions are suppressed for

clarity. The algebra for solving Eq. 2 with regularization follows

the single-signal strategy described previously [3,29] and is

described in more detail below for the case including mass

conservation regularization. Modifications of the standard Tikho-

nov-Phillips regularization for Bayesian regularization [30] were

implemented into the MSSV analysis in order to allow one to

exploit prior knowledge of the shape of the Ck(s) distributions, such

as expected peak positions, but this feature was not used in the

present work.

When solving Eq. 2 in the standard MSSV method, the

apparent meniscus position of the solution column (separate for

the absorbance and interference system due to unavoidable

inconsistencies in the radial calibration) and the frictional ratio fr
can be included as unknowns in a non-linear regression.

SEDPHAT provides the flexibility to divide the s-range into

different segments in which the sedimenting components can be

defined separately with respect to their stoichiometry Sk,m. While

this feature is very useful to implement constraints, it does not

affect the basic principle of Eq. 1. In addition, discrete species of

ð1Þ
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certain molar masses and s-values can be added to the distributions

or used in place of distributions, with signal increments that are

given either in multiples of basis spectra of the macromolecular

components, or entered directly. The latter is useful, for example,

to add signals from known species, such as well-characterized free

species, or signals from impurities, such as models describing the

buffer salt signal contributions to interferometric data at very low

s-values.

A precondition for Eq. 1 and 2 to have a unique solution is that

the spectral contributions of the macromolecular components are

distinguishable, i.e., that the extinction coefficient matrix has a

non-vanishing determinant, det el
k.0. While this condition

ensures a mathematical solution, it is not sufficient for the MSSV

data analysis in practice. As shown by Padrick & Brautigam [5], a

better metric for predicting whether a set of extinction coefficients

will be sufficiently different to be distinguishable in the MSSV

analysis is the quantity Dnorm, defined as

Dnorm~
det el

k

�� ��
P
k
~eekk k

ð3Þ

By representing the fractional volume of a parallelepiped whose

edges are the vectors of the component extinction coefficients,~eek,

relative to the maximum volume of a hyperrectangle from edges of

the same length, it is a measure the spectral ‘orthogonality’ [5].

Dnorm values above 0.065 for two-component analyses with dual-

signal experiments are desirable for a promising MSSV study. (For

for three-component analysis with three-signal experiments, more

limited data suggest values .0.01 to be promising.) A Dnorm

calculator has been implemented in SEDPHAT.

For the practical implementation of MSSV, it is very important

to note that sufficiently distinguishable signals with large Dnorm

values may be obtained for many pairs of macromolecules without

requiring extrinsic labels. For example, in some cases, differences

in the content of aromatic amino acids and/or in the fraction of

carbohydrate moieties can be sufficient for two or three proteins to

be distinguishable on the basis of UV absorbance (e.g., at 280 nm

and/or 250 nm) and/or refractometric signal increment in the

interference optics [2]. In other cases, extrinsic chromophores

have been attached to proteins to increase the spectral discrim-

ination.

A statistical problem in the global analysis of signals from

different sources, especially when using different optical systems, is

that the number of data points as well as the overall signal

amplitudes can be very dissimilar. For example, the interference

optics provides routinely a higher density of data points than the

absorbance system. It can be advantageous to apply corrections to

the statistical weights of the different data sets that compensate for

the number of data points and/or the signal amplitudes [31].

Mass conservation multi-signal sedimentation velocity

(MC-MSSV). The above methodology was extended to make

use of estimates of the total molar concentration of each

macromolecular component in solution, Cm
tot. Usually this

quantity is not known with complete accuracy but may be

estimated from stock concentrations and the pipetting schedule, or

better from Ck(s) analyses of single-component samples run in SV

experiments side-by-side with the mixture, assuming factors such

as adsorption to centerpiece components are similar and co-

precipitation of material in the mixture is absent. For this reason,

our goal was to implement mass conservation not directly as a

hard constraint, but as a scalable regularization term in the form

Min
Cks

X
l

X
r,t

al
rt{

X
k

d
X

m

Sk,mel
m

X
s

cksLs,rt
(l)

 !2

za
X

m

Ctot
m {

X
k

Sk,m

X
s

Cks

" #2
8<
:

9=
;ð4Þ

where Eq. 3 is extended by a penalty term that describes the sum

of the squared mass deficit for all components. The scaling

parameter a can be iteratively adjusted in two different ways: (1) In

a ‘soft’ mass conservation approach, it can be adjusted such that

the quality of fit to the raw data degrades by no more than a

statistically indistinguishable level, pre-calculated by F-statistics.

This is similar to the standard regularization [3,29], and results in

the Ck(s) distributions that, among all possible distributions that fit

the data, is closest to preserving the total mass. Vice versa, any

remaining mass differences result from significant features of the

distribution. (2) Since very large values of a can enforce arbitrarily

strict mass conservation, it may be adjusted so that the total mass

loss is within a preset range, or related, so that the maximum mass

defect for any component is within a preset tolerance dCm
tot. The

value of dCm
tot then reflects our confidence interval on the total

component concentration Cm
tot. Dependent on the data, the cost of

honoring mass conservation may be a significantly worse fit. Both

approaches are useful tools and both have been implemented in

SEDPHAT (‘‘auto adjust by chisq, P’’ vs ‘‘auto adjust enforce to

within (%)’’).

To study the effect of mass conservation regularization in

relation to spectral discrimination of components it is of interest to

follow the solution of Eq. 4. As a quadratic minimization problem

we can as usual obtain a linear equation system by taking partial

derivatives with respect to any particular unknown, for example,

that of component k at s-value s, Cks, composed of spectral

components as given by the stoichiometry Skm. After some

rearrangement, this leads to

0~
X

l

el
kyl

sza
X

m

Ctot
m Sk,m

 !
{
X
k,s

Cks

X
l

Ekk
(l)z

a

Ass
(l)

X
m

Sk,mSk,m

 !
Ass

(l) V k,s, ð5Þ

where we use abbreviations analogous to those introduced

previously for the sedimentation related vector yl
s~

P
rt

al
rtxs,rt

(l)

and matrix Ass
(l)~

P
rt

xs,rt
(l)xs,rt

(l) (in vector matrix notation y(l)

and A(l)) [3,29] and introduce a matrix of the species’ extinction

coefficients el
k with Ekk

(l)~el
kel

k~d2
P
m,m

Sk,mSk,mel
mel

m (in vector-

matrix notation E(l)). In the single-signal c(s) method, Eq. 5 would

corresponds to a standard linear system y~Ac that can be easily

solved for non-negative concentrations with standard algebraic

methods [3,29] provided A is non-singular. In MSSV without

mass conservation constraints (a = 0), for a unique solution we rely

on the matrix
P
l

E(l)
6A(l) being non-singular. If we simplify the

problem by assuming all radial points, time-points, and menisci for

the different signals are the same (which is approximately true),

then A(l) will be independent of signal. For the subset of all ck,s at

the same s-value (i.e., s = s), we will then have to rely on the matrix

E~
P

E(l) to be non-singular, hence det E~ det(el
k)

� �2
=0 and

the above requirement that det el
k be non-zero. With mass

conservation, i.e. for any finite value of a, discrimination of

species now depends on the non-singularity of the matrix

F~EzaAss
{1SST , where S is the stoichiometry matrix, which

in the simplest case will the identity matrix I. As the determinant is

the volume of the parallelepiped, it can be seen that even if

det E~0 from insufficient spectral resolution,

ð4Þ

ð5Þ
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det F~det EzxIð Þw0 leads to a well-conditioned analysis. It

follows that mass conservation constraints can help to overcome a

situation in which extinction coefficients are degenerate or close to

degenerate. In this sense mass conservation may be regarded as a

form of regularization of the spectral dimension of MSSV.

In the implementation in SEDPHAT, an additional refinement

was introduced that allows the restriction of the summation range

of Ck,s to be considered for mass conservation assessment to a user-

defined interval of s-values. We also implemented the option that

the mass defect of the different components be all weighted on a

relative scale instead of an absolute scale (‘‘penalize % defect’’),

i.e., using
P
m

1{
P
k

Sk,m

P
s

Cks=Ctot
m

� �
as an alternative penalty

term in Eq. 4. This changes the importance given to mass losses of

each component. Finally, the MC-MSSV approach was com-

bined, optionally, with standard Tikhonov-Phillips regularization

applied to Ck(s) distributions of each component. In this case, mass

conservation regularization goals were ensured for each step

during the adjustment of Tikhonov-Phillips regularization.

Affinity constant and reaction boundary

composition. For reversible binding events that produce

complexes with lifetimes on the order of hours or longer, SV will

result in the hydrodynamic separation of complex species. These

will appear in the diffusion-deconvoluted sedimentation coefficient

distributions generally as separate peaks at different s-values for

different complex species. In MSSV they will produce co-localized

peaks in the component Ck(s) distributions which represent

component concentration contributing to that species. The total

of all component Ck(s) distributions hence accurately reports on

complex compositions. By contrast, for reactions that produce

complexes with lifetimes on the order of minutes or less, a

sedimentation/reaction process takes place in which the migration

of distinct populations of free species of both components and all of

the complex(es) are coupled. This process has recently been

examined in the effective particle theory (EPT). As a framework

for the interpretation of the observed component molar ratios in

MSSV for fast reactions, in the following we briefly recapitulate

the relationships established by EPT between the reaction

boundary composition, the species sedimentation coefficients (SA,

SB, and SAB for free A, free B, and the complex AB; the species are

assumed to sediment ideally), and the association constant K of a

1:1 reaction.

First, due to the ergodicity of a stable reaction boundary, co-

sedimenting populations of the free smaller species must always

remain in excess of those of co-sedimenting free populations of the

larger species. As a consequence, if we denote with RAB the molar

ratio of total A (the slower sedimenting molecule) to B (the faster

sedimenting molecule), then R is always less than unity. A second

immediate result of EPT is the fact that either free A or free B

produce the slower ‘undisturbed’ boundary, migrating with the s-

value of free A or B, respectively. At a molar excess of loading

concentration of the smaller species, the smaller one will always

provide the undisturbed boundary. Only if the faster sedimenting

species is in molar excess, exceeding a critical concentration for

phase transition, CBtot*, which for 1:1 interactions is at

C�Btot~CAtotz
(SB{SA)

2K(SAB{SB)
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

4CAtotK(SAB{SB)

(SAB{SA)

s !
ð6Þ

(with CAtot and CBtot the total loading concentrations, respectively),

then free B can supply the undisturbed boundary and all of A is

entirely contained in the reaction boundary [17]. It should be

noted that this phase transition occurs close to the equimolar point

if the two free components are of similar size, but requires a higher

concentration of B for more dissimilarly sized molecules.

For simplicity, assuming a 1:1 reaction with the smaller species

A providing the undisturbed boundary, the sedimentation velocity

of the reaction boundary is described by

sfast~
SBCBzSABKCACB

CBzKCACB

ð7Þ

and the composition of the reaction boundary follows

Rfast~1{ 1zKcA
SAB{SA

SB{SA

� �{1

ð8Þ

[17]. It can be discerned from the latter expression that the

reaction boundary composition will always be 1.0, i.e. reflecting

the complex stoichiometry, if the sedimentation coefficients of the

free species SA and SB are equal. RAB will be lower than the

complex stoichiometry by a larger margin for more dissimilar SA

and SB.

Given an experimental value of the reaction boundary

stoichiometry and species s-values, it is possible to estimate directly

the binding constant as

K~

Rfast
2 SB{SABð Þ

SA{SABð Þ{Rfast

CAtot{CBtotð ÞRfast Rfast{1
� �

{cAtot Rfast{1
� �2 SA{SABð Þ

SA{SBð Þ
,ð9Þ

again for the case if the slower sedimenting component constitutes

the undisturbed boundary.

Experimental
Protein preparation. Recombinant Tp34 was overex-

pressed in E. coli and prepared as described [11]. The preparation

of bovine lactoferrin (bLF; Sigma Chemical Corp.) was also

described before [11]. Both proteins were stored in Buffer A

(20 mM HEPES pH 7.5, 100 mM NaCl, 2 mM n-octyl-b-D-

glucopyranoside) at 4uC.

UV extinction coefficients. The method of Pace [32] was

used to determine e280 for bLF and Tp34. Briefly, bLF was

denatured in 6 M guanidinium hydrochloride, and its absorbance

at 280 nm was determined. The extinction coefficient of the

protein under these conditions was taken to be the weighted sum

of the coefficients of the chromophoric amino acids in its primary

sequence. With this knowledge, the concentration of the denatured

protein could be calculated. The absorbance of an identical

solution under non-denaturing conditions was then obtained;

because the concentration of this sample was known, its extinction

coefficient could be calculated. This coefficient was used for all

experiments. The e280 of Tp34 was determined in the same way.

Analytical ultracentrifugation. Prior to centrifugation, bLF

and Tp34 were diluted from their stock solutions into Buffer B

(20 mM Tris pH 7.5 and 20 mM NaCl). To maintain a

compositional balance between the sample and reference sectors,

references were prepared in parallel by diluting Buffer A into

Buffer B in amounts that mimicked the protein-containing

samples. Three samples were prepared: one containing only

13.8 mM Tp34, another containing only 4.6 mM bLF, and the

third having a mixture comprising 6.9 mM Tp34 and 2.3 mM bLF.

The concentrations of the first two samples were chosen to give

convenient pipetting volumes during their preparation. Although

not necessary, we sometimes plan the experiment such that

Multi-Signal Sedimentation Velocity Analysis
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concentrations of the components alone are exactly the same as

those in the mixture. This strategy allows the experimenter to

insert the concentration values derived the analyses of the

components alone directly into the mass-conservation calculations

(see below). In this case, we used exactly half of the concentration

of the proteins in the mixture, another computationally convenient

approach. The samples and references were placed in the

respective sectors of dual-sectored Epon centerpieces; each

centerpiece had been sandwiched between two sapphire windows.

Three assembled centrifugation cells (one containing the Tp34

alone, another containing the bLF alone, and the third containing

the Tp34/bLF mixture) were inserted into an An60-Ti rotor,

which was placed in a Beckman Optima XL-I analytical

ultracentrifuge (Beckman-Coulter) and allowed to equilibrate to

the experimental temperature (20uC) under vacuum for approx-

imately 1.5 hours. After that, centrifugation was commenced at

50,000 rpm and continued until both proteins had completely

sedimented. Data were acquired either in combination of

interferometry with absorbance at 280 nm, or in combination of

absorbance 250 nm and 280 nm. In all cases, the absorbance

optical system was set to scan in continuous mode, with a radial

resolution of 0.003 cm. These are our standard settings for all SV

experiments; they offer an excellent balance of scanning speed and

radial resolution. There is no need to accelerate radial scans in

MSSV detection over the standard settings when using absorbance

data acquisition at a single wavelength, as the frequency of

measuring the boundary position is not different in MSSV from

that of standard SV experiments, even though data are acquired

sequentially at different signals. The use of wavelength scans in the

centrifuge prior to sedimentation, although reporting on relative

extinction coefficients at different wavelengths, does not provide

sufficiently precise data for use in determining the mass constraints

or extinction coefficients in the context of MSSV. Instead, the

analytical strategy outlined in the Results section is used.

Data analyses. SEDPHAT version 10.31 was used for all of

the analyses of the experimental (i.e. non-simulated) data. The

buffer density and viscosity were estimated using SEDNTERP

[33]. However, we chose to fix the partial specific volumes of the

proteins at 0.73 mL/g. This action has the advantage of giving a

common S20,w grid for all data presented, with the drawback of

small inaccuracies in representing the frictional ratios, S20,w values,

and masses of the proteins, although compensatory corrections

could be easily applied. Unless otherwise mentioned, all analyses

had two ‘‘spectra’’ per segment of S20,w-space. Spectrum 1

corresponded to the Ck(s) distribution accounting for Tp34, and

Spectrum 2 was the Ck(s) distribution accounting for bLF. The

‘‘low-s’’ constraint (see Results) was achieved by allowing only one

Ck(s) distribution (i.e. Spectrum 1) in the low-s segment of

S20,w-space. In all cases, Tikhonov-Phillips regularization was used

with a ‘‘P-level’’ of 0.7. The larger number of data points in the

interference data compared to the absorbance data results in a

larger statistical weighting of the former in the refinement of

parameters. A compensatory factor has been introduced into

SEDPHAT that ensures the equal weighting of the data sets

[4],[31]. However, when we employed these compensations to the

data presented in this report, we found only very small differences

in reported molar ratios (,5%) compared to the unweighted

analyses; we present the latter in this paper. Indeed, there is a

sound reason to allow the interference data to have a slightly

higher statistical weight in these analyses: an unexplained and

irreproducible optical artifact in the cell containing the mixture of

the two proteins is present only in the absorbance data (see Results

and Figure S7). Thus, the optimal weighting of the data sets will

generally depend more on systematic than statistical errors of the

experiment. Generally, it is a good practice to ensure the

independence of the results on the weighting procedure applied

[31]. A detailed protocol for the analysis of MSSV data has

already been supplied in the Supplemental Information of [5]. We

have included as supplemental information to this paper an

addendum to this protocol that describes the additional param-

eters that must be input for a mass-constrained MSSV analysis

(Supporting Material S1). Plots of the signal profiles, fits, and

residuals, as well as the MSSV results were created using GUSSI

(biophysics.swmed.edu/MBR/software.html).

Results

Computer simulations
As a first test of the MC-MSSV analysis approach, sedimen-

tation profiles were simulated for a 100 kg/mol, 6S-protein ‘B’

(eIF = 275,000 M21 cm21 and e280 = 100,000 M21 cm21) binding

a 20 kg/mol, 2 S-protein ‘A’ (eIF = 55,000 M21 cm21) with

different absorbance extinction coefficients e280 = 20,630, 23,180,

or 26,500 M21 cm21 corresponding to the different Dnorm values

0.01, 0.05 and 0.10, respectively, creating a 7 S complex with Kd of

2 mM and koff = 1022/sec (System 1). As can be predicted with the

EPT calculator in SEDPHAT [19], at loading concentrations of

20.0 mM A and 5.0 mM B, most of B (4.4 mM) is in the complex,

and a reaction boundary at 6.9 S is formed with an apparent

molar mass of the effective particle [18] of 117 kg/mol and a

composition A/B in the reaction boundary of 0.91. The signal

ratios from the reaction and undisturbed boundary are approx-

imately 2:1, with a total signal of ,1 OD and ,3 fringes,

respectively (Figure S1). (Similar studies, employing different

parameters as suitable for particular experimental systems, can be

carried out with the simulation functions of the software SEDFIT

and SEDPHAT.)

Due to the relatively small size difference between the complex

and the larger component, as well as the potential for different

hydrodynamic shapes, the interpretation of the observed s-value in

terms of complex stoichiometry would be ambiguous. However,

the composition of the reaction boundary as observed in an MSSV

experiment should give unequivocal information about the 1:1

stoichiometry.

To assess how well the molar ratio can be defined by the data,

we probed the change in the quality of fit that occurred when the

Ck(s) distribution in the range of the sedimentation coefficient of

the complex was described by only a single class of species of a

composition pre-constrained to different molar ratio values (Fig. 1).

The resulting curves are equivalent to a standard error analysis

with the projection method and can be subjected to F-statistics

[34,35]. In the absence of mass conservation (Fig. 1, black line),

one can discern a significant degradation of the information

content on the complex molar ratio with decreasing Dnorm value,

vanishing almost completely at Dnorm of 0.01. When mass

conservation was imposed with a tolerance of 1% (blue dotted

line), this resulted in a steep increase in the x2 value of the fit

towards underestimates of the A/B ratio in the complex, but not

for overestimates of A/B. This is due to the non-negativity

constraint inherent in Ck(s): An overestimate of A in the high-s

region can be matched by an underestimate of A in the low-s

region, compensated for by a matching, partial mis-assignment of

A to B in the low-s region. This can be achieved at the same

expense as any spectral mis-assignment of A and B in the standard

MSSV. By contrast, an underestimate of A in the high-s region will

necessarily lead to an inappropriately high concentration of A in

the low-s region which cannot be compensated for by positive

values for B. This leads to a steep increase the x2 of the fit with
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MC imposed, based on the very large number of data points that

define the signal amplitude of a sedimentation boundary.

To further improve the molar ratio resolution a similar steep

increase can be achieved towards high molar ratio values if, in

addition to mass conservation, we also enforce the condition that

there can be no B in the low-s region. This is very plausible and

known a priori because free B sediments faster than free A,

therefore populations of B can be safely excluded in the range of

the undisturbed boundary formed by free A. This can be achieved

easily in SEDPHAT by using a multi-segmented Ck(s) model. As

expected, the combination of mass conservation with restrictions

of the sedimentation coefficient range of B leads to very well

defined molar ratio values (Fig. 1, red line), exhibiting a resolution

that is nearly independent of the Dnorm value from the paired

extinction of A and B.

Figure 1. Information content of simulated sedimentation velocity data on the molar ratio in the complex, dependent on spectral
properties and MSSV analysis constraints. Data were simulated for a rapid 1:1 interaction, as described in the Results, with a reaction boundary
of composition A/B of 0.91. Raw sedimentation profiles for interference and absorbance detection are shown in Figure S1. Simulated were conditions
with acceptable spectral discrimination with Dnorm = 0.1 (top), and marginal spectral discrimination with Dnorm = 0.05 (middle), and clearly insufficient
Dnorm = 0.01 (bottom), respectively. The MSSV analysis was conducted with a segmented ck(s) analysis with two different sedimentation coefficient
ranges, each describing one of the clearly distinguishable boundaries of the sedimentation pattern: a first segment covering the range of low s-values
including the s-value of the free smaller species and the undisturbed boundary, and a second segment covering the range of sedimentation
coefficients of the larger free species and the complex (both of which are entirely engulfed in the reaction boundary of coupled co-transport, which
forms a single ck(s) peak in this segment). To probe the statistical accuracy of the molar ratio values in the MSSV analysis, the high-s segment allowed
only for a single class of species with pre-constrained molar ratio. Plotted is the quality of fit, quantified as the ratio of the x2 obtained and the best-fit
x2

0, as a function of the molar ratio of the high-s segment. For each Dnorm value, shown are the results from a standard MSSV analysis (black solid
line), the MC-MSSV analysis (blue dotted line), and the MC-MSSV additionally constrained by the absence of component B from the low-s segment
(solid red line). For orientation, the x2/x2

0 levels corresponding to P-values of one standard deviation (at 1.003) or two standard deviations (at 1.011)
by F-statistics are indicated by thin dotted horizontal lines.
doi:10.1371/journal.pone.0062694.g001
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A second scenario was simulated (System 2) that is more

challenging in that, besides small Dnorm values, very dissimilar

overall signal contributions are present. To this end, the

sedimentation of 1.9 mM of a 200 kg/mol, 8.5 S protein B with

eIF = 550,000 M21 cm21 and e280 = 140,850 M21 cm21 was sim-

ulated, in a bath of 4.2 mM of a small ligand A of 10 kg/mol, 1.2 S

with eIF = 27,500 M21 cm21 and e280 ranging from 7,300 to

9,000 M21 cm21. The affinity was simulated to be 1 nM and koff

to be 1023/sec, such that virtual saturation of B occurs forming

1:1 complexes at 9.2 S. Under the simulated conditions, A

contributes only ,5% of the signal of the complex, and the

undisturbed boundary composed of free A is only severalfold

above the simulated normally distributed noise. To add to the

challenge, we simulated a short sedimentation time such that the

undisturbed boundary does not yet fully clear the meniscus (Figure

S2), and assumed that the precision of MC is only 5%, which at

the given total and complex concentrations can propagate to

errors in the complex of 17%. Even under these extremely

challenging conditions, a similar picture emerges as in the first

simulated system: By standard MSSV, the complex molar ratio is

well defined at high Dnorm but not at very low Dnorm values, but the

information content can be significantly improved by applying

MC constraints that exclude underestimates of the molar ratio,

and even more in a multi-segmented Ck(s) model combining MC

with the a priori exclusion of the component with high-s monomer

from the low-s segment, which allows to exclude both under- and

over-estimates of the molar ratio (Fig. 2).

In order to verify this picture from the error surface projections

independently, we carried out a series of simulations with this

System 2, at eight Dnorm values and at ten replicate simulations

each with independent normally distributed noise. The distribu-

tion of best-fit complex molar ratio values as a function of Dnorm is

shown in Figure S3. Consistent with the above results, we observed

large errors and standard deviations of the molar ratio values at

low Dnorm values, which became strongly reduced when MC was

introduced, and further improved in combination with a priori

constraints in the s-range of the larger component.

These simulations also showed that, within the statistical

uncertainty of the results, Tikhonov-Phillips regularization can

have a side effect of not only providing the most parsimonious Ck(s)

distributions, but in the process also biasing the molar ratio values

(Figure S4). By design, such bias cannot exceed the range of

statistically equivalent molar ratio values, which at low Dnorm values

will be determined by the stringency of the MC constraint (Figure

S4).

Application to the interaction of bovine lactoferrin and
Tp34

Earlier [5], a set of four criteria had been established to assess

the success of an MSSV analysis. They may be summarized as

mass conservation (Criterion 1), distribution rationality (Criterion

2), molar-ratio rationality (Criterion 3), and molar-ratio distin-

guishability (Criterion 4). We used this framework to assess the

performance of MC-MSSV under realistic experimental condi-

tions. We chose bovine lactoferrin (bLF; a ,80 kg/mol glycopro-

tein) and Tp34 (,20 kg/mol) from Treponema pallidum as a model

system. The interaction of these two proteins had been charac-

terized before using isothermal titration calorimetry [11]. These

Figure 2. Analogous error surface projections as shown in Fig. 1, but for a more challenging simulated system (System 2) with very
dissimilar protein sizes and extinctions (see Results and Figure S2). The data analyses were conducted as described in the legend for Fig. 1,
with Tikhonov-Phillips regularization at a level of 0.68. Plotted is again the quality of fit of two data sets with Dnorm of 0.066 (Top) and 0.016 (Bottom),
quantified as ratio of x2 obtained and the best-fit x2

0, as a function of the molar ratio of the high-s segment. Shown are the error surface projections
from a standard MSSV analysis (black solid line), the MC-MSSV analysis (blue dotted line), and the MC-MSSV additionally constrained by the absence
of component B from the low-s segment (solid red line). For orientation, the x2/x2

0 levels corresponding to P-values of one or two standard
deviations by F-statistics are indicated by thin dotted horizontal lines.
doi:10.1371/journal.pone.0062694.g002
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earlier experiments established that the molar ratio of the

interaction is 1:1, and the calorimetric data were fitted with a

1:1 binding model; the best-fit association constant was

1.66106 M21 (Kd = 0.63 mM).

First, the spectral properties of the individual proteins were

determined. We have generally found that determination of both

extinction coefficient using a standalone UV-Vis spectrometer to

result in inaccuracies that interfere with the analysis. Instead we

recommend choosing one extinction coefficient and using it as a

reference for calibrating the others in a preliminary Ck(s) analysis

on individual components. In many cases, the Raleigh interference

signal increment can be estimated very accurately from the

polypeptide sequence, but not for substantially modifeid proteins,

such as bLF. Instead we used the method of Pace [32] to measure

the e280 of bLF and Tp34, which were found to be 108,280 and

31,645 AU6M216cm21, respectively. Then, SV experiments of

bLF alone and Tp34 alone were performed, using absorbance at

280 nm and laser interferometry to simultaneously monitor the

evolution of radial concentration profiles of the proteins. The

global Ck(s) analysis of both signals in terms of a sedimentation

coefficient distribution of a single spectral component allows the

molar signal increment for the interference signal, eIF, to be

determined. For both proteins, this resulted in excellent fits

(Figures S5 and S6). The S20,w-value of Tp34 was 2.0 S, and this

preparation displays only very small quantities (ca. 4% of the total

signal) of aggregated forms (Fig. 3A). The S20,w-value of bLF was

5.2 S, and there is significant evidence of smaller contaminants

and aggregated forms of the protein (Fig. 3B). The best-fit values

for eIF were 232,800 and 65,300 fringes6M216cm21 for bLF and

Tp34, respectively. These results indicate that the spectral

discrimination between bLF and Tp34 should be poor; the Dnorm

of this system is 0.016.

Next, an SV experiment containing a mixture of the two

proteins was examined. Based on the known pipetted volumes and

on integration of the entire distributions in Figures S5 and S6, the

concentrations of Tp34 and bLF were 6.9 mM and 2.3 mM,

respectively. From the calorimetry results and mass action law we

expected that 90% of the bLF would be in a 1:1 complex having

an S20,w -value .5.2 S. We used standard MSSV without

constraints for our first analysis of these data. (These data

contained an instrumental artifact that caused a decreasing slope

in the absorbance data only at late times and high radial values

(not shown); the data were truncated to exclude as much of these

artifactual data as possible.) The resulting fits are shown in Fig. 4

and the Ck(s) distributions in Fig. 5A. Considering our criteria set

out above, the current analysis decisively fails the first three tests:

(1) The total concentrations of Tp34 and bLF from integration of

the Ck(s) distribution were 5.7 mM and 2.8 mM, respectively. These

values differ from the known input values by as much as 22%.

Given the accuracy of our pipettors and the quality of the

technician, we judge that the observed concentrations should vary

by no more than 5%, likely much less. (2) Only bLF was detected

in the low- S20,w range, where it should not be found—only Tp34,

which is in molar excess, has the size and shape properties to

sediment at these low rates. (3) Additionally, the analysis detects a

co-sedimenting complex of the two proteins at approximately 5.8

S. However, the molar ratio detected here (4.9 moles Tp34 for 1

mole of bLF) diverges drastically from the calorimetric result.

Furthermore, this molar ratio is not supported by the hydrody-

namic properties of the complex: such an assembly (5 Tp34’s and

1 bLF) at 5.8 S would have a frictional ratio (fr) of 1.95, whereas

the refined frictional ratio of the complex is 1.48. We therefore

concluded that the analysis failed due to mis-assignment of the

spectral components, which is caused by the lack of sufficiently

distinct spectral properties, as predicted by the low Dnorm of the

system.

In a second analysis, we used mass conservation to constrain the

total concentrations of the components to be within 5% of their

known values. As shown in Figure S7, an essentially identical

quality of fit was achieved. However, again, this strategy failed to

satisfy the above criteria: Although the mass conservation

succeeded in constraining the total concentrations present over

all segments, bLF alone was still detected at low S20,w –values

(Fig. 5B and Figure S7C), which is physically impossible, thus

failing Criterion 2. Considering Criterion 3, the ratio of Tp34 to

bLF in the complex was even more unrealistic (11.7:1). Thus, mass

conservation constraints alone were not enough to accurately

analyze these data.

In a third analysis, in addition to mass conservation, we applied

our prior knowledge that only free Tp34 can sediment at low s-

values. To this end, we divided sedimentation-coefficient space

into a low-S20,w segment (0.2 to 4 S), where only (free) Tp34 was

expected, and a high- S20,w segment (4.1 to 15 S), where both bLF

as well as Tp34 were allowed. This doubly constrained model

again yields a quality of fit indistinguishable to the original analysis

(Figure S8). The resulting Ck(s) distributions are shown in Fig. 5C.

Because of the newly imposed constraint, only Tp34 is detected

between 0.2 and 4 S (gray area of Fig. 5C), and the signal-to-noise

Figure 3. Analysis of the individual samples: ck(s) distributions
from the MSSV analysis of SV data of Tp34 alone (A) and bLF
alone (B).
doi:10.1371/journal.pone.0062694.g003

Multi-Signal Sedimentation Velocity Analysis

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e62694



ratios of this final analysis are about 130 and 80 for the

interference and absorbance data sets, respectively. The cosedi-

menting complex is observed at 5.8 S, where 1.5 mM Tp34 is

found to be complexed with 2.1 mM bLF, yielding a molar ratio of

0.7. This is reasonable based on the known interaction and

hydrodynamic properties of this system (see below), thus meeting

Criterion 3. For comparison, we performed an analysis with the

low-s constraint in place but lifting the mass constraint (Figure S9).

While the correct concentration of Tp34 is detected at low

s20,w-values, the molar ratio in the 5.8-S peak is again drastically

incorrect, having a Tp34:bLF ratio of 4.7:1 (i.e. a Criterion 3

failure). Thus, both the low-s constraint and the mass-conservation

constraint are required in this case for a physically meaningful

outcome.

It is interesting to note that in the ck(s) distributions of the double

constraint MSSV analysis no peak for free bLF was found, yet the

complex formation does not seem to be fully stoichiometric. In

principle, this could simply be due to a lack of hydrodynamic

resolution and regularization of c(s) producing a single merged

peak. In this case, given the loading concentration and assuming

the calorimetric binding constant, the composition of the

combined peak would be 0.89. However, no shoulder is evident

Figure 4. Unconstrained MSSV analysis of the mixture of
6.9 mM Tp34 with 2.3 mM bLF. (A) Interference data (circles), fits
(lines) and residuals. Only every 3rd scan and every 10th data point used
in the analysis are shown. The time-points of the boundaries are
indicated in rainbow colors, progressing from purple (early scans) to red
(late scans). (B) Absorbance data, fits, and residuals, showing every 3rd

scan and every 4th data point. The best-fit ck(s) distributions are shown
in Fig. 5A.
doi:10.1371/journal.pone.0062694.g004

Figure 5. MSSV analysis of the data in Fig. 4. Shown are the ck(s)
distributions of both components calculated in a global fit (A) in an
unconstrained fit; (B) using mass conservation MSSV; and (C) using both
mass conservation and excluding of bLF from the range of sedimen-
tation coefficients between 0 and 4 S (shaded in gray).
doi:10.1371/journal.pone.0062694.g005
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at 5.2 S in the Ck(s) distribution for bLF, and both component

distributions appear quite symmetric. This suggests that there

really is only one boundary from the coupled migration of free and

complex species that occurs when complex lifetimes are short

(100 sec or less), as described in the Gilbert-Jenkins [36] and

effective particle theories (EPT) [17]. As explained by EPT, in such

reaction boundaries the coupled sedimentation of both free and

complex species takes place in a way that for fundamental reasons

always requires a molar excess of the slower-sedimenting

component over the complex stoichiometry [17]. The quantitative

prediction of the reaction boundary composition from Eq. 8, based

on the calorimetrically binding constant, yields a value of 0.91.

Although the observed ratio (0.7) is lower than expected, it should

be noted that the association constant on which this calculation

was based was measured calorimetric under different buffer

conditions, with lower [NaCl] and in the absence of detergent, as

will be examined further below. Further, we used F-statistics [35]

to examine whether our 0.7 molar ratio was significantly different

from 0.9. Using a 68% confidence level, 0.7 is significantly lower

than 0.9, but this is not true on a 95% confidence level.

Regardless, the outcome is realistic and supports a 1:1 molar ratio

for the complex.

With the first three criteria met in the doubly constrained

analysis, we focused on the fourth and examined the statistical

significance of the molar ratio value of 0.7. Using the x2 of the fit

and F-statistics [35], we chose to test whether varying the molar

ratio by 0.5X and 2X would result in a statistically worse fit.

Constraining the composition of the high-s range to values of

either 0.35:1 or 1.4:1, while both mass conservation and low-s

constraints were in place, resulted in significantly (.2s) worse fits.

We therefore judge that Criterion 4 for the success of an MSSV

experiment, molar-ratio distinguishability, is also met in this case

when applying both mass conservation and low-s constraints.

There is an additional fact that supports the reliability of the 0.7

molar ratio detected in the constrained MC-MSSV experiment.

To confirm the analysis shown above, we analyzed a follow-up

experiment that was conducted almost identically to that described

above. However, no interferometric signal was acquired in this

second experiment; instead, two UV wavelengths (280 nm and

250 nm) were used to monitor the sedimentation. From the SV

experiments of both proteins separately, e250 of bLF and Tp34

were found to be 48,800 and 11,300 AU6M216cm21, respec-

tively, corresponding to a Dnorm value of 0.08, which, according to

our simulations (see above and [5]), should afford excellent

spectral discrimination of Tp34 and bLF. The MSSV analysis

without any constraints yields Ck(s) distributions (Figure S10) that

are remarkably similar to the constrained distributions of the

MSSV analysis based on the combination of 280 nm and

interference data (Fig. 5C), with a molar ratio of again 0.7:1.

We conclude that the constraints we placed on the analysis of the

IF/ABS280 experiment allowed the MSSV algorithm to perform

as if the spectral discrimination of the proteins were excellent.

Having confirmed the measured molar ratio of 0.7 of the

reaction boundary, based on knowledge that bLF and Tp34 form

1:1 complexes, we can use effective particle theory to obtain an

independent estimate of the association solely from the observed

molar ratio, the known loading concentrations, and the measured

or estimated s-values of all species. As outlined in the theory

section, at a molar excess of the smaller component we are in all

cases below the phase transition line such that the conditions of

Eq. 9 are fulfilled. Assuming a value of SAB = 6.2 S (which is not

directly measured), then the measured molar ratio of 0.7 results in

an estimate of Kd = 3.1 mM under the present buffer conditions,

and a theoretical value for the reaction boundary sedimentation

coefficient Sfast = 5.84 S which is consistent with the experimentally

observed reaction boundary s-value. (To show the sensitivity of Kd

estimates to the molar ratio value, for Rfast in the range from 0.6–

0.8 we calculate a range of Kd values of 1.7–4.9 mM.)

Discussion

In the last decade, sedimentation velocity analytical ultracen-

trifugation has re-emerged as a popular tool for the study of

protein interactions, as the introduction of new theoretical and

computational data analysis methods has significantly increased

the resolution and precision of this approach. Initially, our focus in

the development of sedimentation velocity was the spatio-temporal

analysis of the evolution of a single signal. More recently we have

broadened the analysis to the deconvolution of spectral dimen-

sions, which can offer significant advantages when studying

heterogeneous protein interactions.

In such systems, different approaches have been described for

the quantitative determination of binding constants: direct fitting

with solutions to coupled systems of Lamm equations that embed a

certain reaction scheme [37–39], and the analysis of the isotherms

of boundary patterns (their overall weighted-average s-value,

reaction boundary s-value, and amplitudes of reaction and

undisturbed boundaries) [19,40]. We have explored and imple-

mented in SEDPHAT both approaches, and found that the direct

Lamm equation modeling can in some cases provide useful

information on kinetic rate constants, whereas the boundary

pattern analysis is significantly more tolerant for sample imper-

fections. In our experience, the latter is increasingly important for

the study of interactions between more components involving

more binding interfaces. Such multi-component and/or multi-site

interactions also exacerbate a more fundamental problem, which

is the question of what type of complexes can form. Even though

both direct Lamm equation fitting as well as boundary pattern

analysis may be applied with different interaction schemes to rule

out incorrect interaction models by trial and error, this becomes

increasingly impractical for more complicated systems. In this

context, the strength of the MSSV analysis is the ability to define,

in few experiments, the stoichiometry of the complexes formed.

This is often one of the most important, and non-trivial facts that

informs on possible reaction pathways and is fundamentally a

prerequisite for any thermodynamic analysis. In addition to Ck(s)

providing a relatively model-free analysis of co-sedimentation that

can guide the formulation of the reaction scheme for a

thermodynamic analysis, in conjunction with the effective particle

theory [17,19], it also highlights experimental designs that will be

particularly informative on stoichiometries of complex formation,

producing data that can be utilized initially for the Ck(s) analysis as

well as at a later stage for the analysis of the energetics.

MSSV exploits spectral information, which, together with the

boundary velocity and boundary spread, forms a set of three

independent sources of information on the composition of

complexes by mass, s-value, and composition. Within the precision

of typical results of boundary analysis, molar mass estimates and

considerations of hydrodynamic shape alone will often fail to

deliver unambiguous estimates for the complex stoichiometry both

for systems with similar-sized components as well as for very

dissimilar sized components. If components are spectrally distin-

guishable, such ambiguity can be resolved by MSSV. Further-

more, we have shown previously that spectral deconvolution can

be synergistic to the hydrodynamic separation of complexes by

sedimentation coefficient [2], which for compact particles, scales

with the 2/3 power of the molar mass. Interestingly, an extension

of another hydrodynamic approach, fluorescence correlation
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spectroscopy, to the simultaneous global analysis of multiple

signals, F3CS, has recently been developed and been described to

be similarly applicable to define the thermodynamic states of

complex systems with ternary complexes [41]. While there appear

to be several analogies, there are also important differences with

regard to the required sample concentrations, spectral properties,

complex life-times, and hydrodynamic resolution.

One important virtue of MSSV is that, dependent on protein

amino acid composition (or, more generally, macromolecular

UV/VIS extinction properties), it may be applied label-free.

Differences in the ratio of aromatic amino acids leading to

different extinction profiles can be sufficient for spectral discrim-

ination in sedimentation velocity using the absorbance and/or

interference detection. (Unfortunately, only a single wavelength is

currently available for the commercial fluorescence detector,

which excludes the simultaneous operation of other detectors.)

This is despite the fact that the quality of the commercial

spectrophotometer in the ultracentrifuge is far lower than that of

most common bench-top spectrophotometers. For example, the

limited reproducibility in the monochromator control when

scanning at alternating absorbance wavelengths exhibited by

individual instruments imposes some restrictions in the selection of

wavelengths to be near a minimum or maximum of absorbance or

at a spike of lamp intensity (e.g.230 nm). Alternatively, sorting of

scans according to the actual detection wavelength, which is more

precisely measured than controlled, is possible and supported in a

SEDFIT utility function. In practice, it should also be noted that

wavelength accuracy depends on accurate wavelength calibration

and may be different in different ultracentrifuges. This potential

limitation can be circumvented by measuring absorbance spectra

and locating peak absorbances of all components in the

ultracentrifuge used for the MSSV experiment.

The excellent spectral resolution in MSSV ultimately rests on

the exquisite precision of measuring sedimentation boundary

heights, which is also exploited in the familiar application of

sedimentation velocity to determine trace amounts of aggregates

[42], where routinely boundaries with signal amplitudes less than

the noise of a single data point can be detected and quantitated

due to the large number of points (typically on the order of 105)

determining boundaries and plateau signals. Thus, in scenarios

featuring a small signal-to-noise ratio (e.g. ,10), we expect the

current methodology to perform well. Likewise, even in cases

featuring a large difference in sedimentation coefficients between

the free and complexed species, wherein the smaller species is

overrepresented in the analysis (e.g., see Figure S7), there are

usually ample data to spectrally resolve the underrepresented

species (presumably the complex), and there is no requirement for

all species to contribute evenly or to the same number of scans

(e.g., see Figure S2). It should be noted that the precision of

relative signal contributions obtained from global modeling of SV

data far exceeds the precision of wavelength scans, which could

only give a very coarse estimate of extinction coefficients and

would not be suitable in conjunction with MSSV. An analytical

methodology similar in principle to MSSV could be applied to

data acquired from size-exclusion chromatography (SEC) when

the elution profiles are acquired with different in-line detectors,

e.g. a UV detector and a refractometer. However, such a strategy

would rely on the complex of interest having a long lifetime on the

timescale of the chromatography experiment. This limitation is

not present in MSSV [2,4,5]. It would further require sufficient

resolution between the complex and any free species; when

performed properly, sedimentation velocity generally has superior

resolution to SEC.

In the present work, we were concerned with cases where

spectral discrimination, with or without extrinsic chromophores, is

too poor for a reliable spectral deconvolution. We have shown that

the introduction of additional knowledge of the approximate total

concentrations of loaded concentrations can substitute for

insufficient spectral discrimination. While mass conservation

principles have been very successfully applied in sedimentation

equilibrium analyses [20,21,23], and in some form are common as

hard constraints in direct Lamm equation modeling [37,39] and

boundary structure analyses [19,40], they are novel in sedimen-

tation coefficient distribution analyses, which are conceptually

more related to data transforms.

In the weakest form, mass conservation prior knowledge may be

used as a form of spectral regularization, which probes the space of

different possible multi-component decompositions and reveals the

solution where the calculated total loading concentration of each

component after integration of the distribution is closest to that

known to be inserted into the experimental mixture. When used in

conjunction with Tikhonov-Phillips regularization for parsimony

of the sedimentation coefficient domain, the second regularization

term poses the problem of how to scale it independently. In the

current implementation of SEDPHAT, we decided ad hoc for an

adjustment to produce the same relative increase in the x2 of the fit

as applied to the Tikhonov-Phillips term and predicted by F-

statistics on a certain confidence level. Furthermore, we found that

Tikhonov-Phillips regularization will invariably be correlated with

spectral assignment (as it similarly biases peak areas within the

statistically permitted extent [43]). Therefore, in this weak form as

purely a regularization term, once mass conservation is combined

with Tikhonov regularization it may not be more useful than

allowing one to explore the flexibility of the spectral assignment.

For a statistically better-defined result, we would recommend its

use in the absence of simultaneous Tikhonov-Phillips regulariza-

tion.

A stronger variant, which we envision to be the predominant

use of MC-MSSV, is the requirement that mass conservation be

strictly fulfilled within a preset tolerance, the achievement of which

governs the scaling of the penalty term independent from

Tikhonov-Phillips regularization. In SEDPHAT this is pro-

grammed such that the tolerance is determined by the user,

derived, for example, from the estimated experimental reproduc-

ibility of pipetting, and comparison with single-component

experiments conducted side-by-side. As long as protein concen-

trations are based on signal coefficients determined in these

separate sedimentation velocity experiments on single-component

solutions, actual loss of material in the mixture seems unlikely.

Pathological processes such as co-precipitation or altered surface

adsorption of complexes, as compared to individual components,

are possible. Some of these may be flagged in a standard MSSV

analysis by mass balances of all components to be negative, in

contrast to spectral mis-assignment that over-estimates one

component at the cost of the other. At present, MSSV analysis

also assumes the absence of hypo- or hyper-chromicity at the

detection wavelengths, which could potentially affect apparent

mass conservation. The absence of significant spectral changes

upon binding may be verified in a bench-top spectrophotometer,

and, if present, be eliminated from consideration in MSSV by

detection at the isosbestic point. Importantly, complications of

mass conservation analyses historically familiar from sedimenta-

tion equilibrium analyses, including those related to baseline

signals and the location of the base of the cell, are not present in

sedimentation velocity.

Although mass conservation constraints can stabilize the MSSV

analysis even in the limit where spectral discrimination of
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components is completely absent, in itself it cannot provide

information on which sedimentation coefficient the mass of each

component is attributed to. As an extreme example, one may even

load data from the same signal twice and perform a stable MC-

MSSV analysis, but this will not yield reliable information on how

each component partitions into two sedimenting species (beyond

the limits set by mass conservation and non-negativity of

concentrations). The strongest use of MC-MSSV, therefore, is

an analysis where mass conservation is combined with additional

knowledge that excludes components from certain sedimentation

coefficient ranges. Especially when studying components with

dissimilar sized free species, this knowledge will be obvious from

inspection of the Ck(s) traces of the samples from the individual

components. Conceptually, the introduction of this information is

akin to ‘fringe counting’ or ‘free pool’ experiments, where the

complex stoichiometry is indirectly assessed based on the observed

boundary amplitudes of the remaining free species of one

component and the complex. As shown in the Results section,

exploiting such principles in the context of MC-MSSV analyses

can be very powerful. Obviously, even when spectra are

distinguishable, the introduction of such robust knowledge is

highly desirable, and can be expected to leverage MSSV to study

more complex multi-component systems.

Besides the previously developed initial criteria for distribution

rationality and molar ratio rationality [5], the success of the MC-

MSSV analysis is best studied in the framework of a segmented

Ck(s) distribution probing the error surface projections for different

molar ratio values pre-constrained in a segment covering the

sedimentation coefficient of the complex (or reaction boundary,

see below). In the limit of very low spectral distinguishability, by

MC-MSSV one can expect only to determine the average

composition of all complexes in the relevant segment. Additional

systematic errors may occur, for example, due to errors in the

signal coefficients on which MSSV is based. In the present

experimental work we have used the method of Pace [32]. When

the absorbance extinction coefficients are predicted from amino

acid composition, reported errors are typically ,5%, but errors

exceeding 15% may occur [32]. For proteins without post-

translational modifications it may be advantageous to measure the

extinction coefficients experimentally in multi-signal experiments

with refractive index optics and using the refractive index

increments as a fixed point instead of the extinction coefficient.

The refractive index increment is less composition dependent [44],

although the compositional prediction of the refractive index

increment may be warranted to achieve better accuracy especially

for small proteins [44]. Obviously, the assessment of the complex

stoichiometry is greatly facilitated by the fact that a complex can

only contain an integral number of subunits, which for small

complexes (as apparent chiefly from the s-value) often poses very

generous tolerances.

However, non-integral (or non-rational) values for the boundary

composition can be expected for reaction boundaries of rapidly

interacting systems. In fact, as we have shown in the effective

particle theory, these reaction boundaries can be understood and

quantitatively well approximated as regular sedimentation and

diffusion processes from ‘pseudo-particles’ or ‘effective particles’

that are composed of all interacting species transiently co-

migrating in non-stoichiometric amounts [17,18]. As such, they

are equally accessible experimentally by MSSV or MC-MSSV as

stable boundaries of real physical species. However, in addition to

the reaction stoichiometry, the composition and velocity of the

reaction boundary will depend, in a simple relationship, on the s-

values of all species, the loading concentrations, and the affinity

constants [17]. In fact, a well-known hallmark of reaction

boundaries is a concentration-dependence of the peak s-values of

c(s), and this similarly holds true for Ck(s). Most notably, for

fundamental reasons, the content of the slower sedimenting

component will be concentration-dependent and always be less

than stoichiometric. However, when one of the components is in

.5 fold molar excess over the stoichiometry, the composition will

converge to represent essentially the properties of a complex

saturated with the excess component [4,17].

More quantitatively, we have shown in the present work how

the measured reaction boundary stoichiometry can be used, in a

back-of-the-envelope calculation, to estimate Kd (and the complex

s-value). This highlights the possibility for quantitative interpreta-

tion of the observed molar ratio in MSSV of reaction boundaries,

which can be useful, for example, to determine whether the

measured values are reasonable and consistent with a putative

binding model. Obviously, for a more precise characterization of

the binding constant and the hydrodynamic properties of the

complex, a more extensive experimental series with large

concentration range would be highly advantageous, such that

one could combine information from the isotherms of signal

amplitudes of all boundary components at all signals with the

isotherms of reaction boundary s-values and overall signal average

s-values into a global EPT isotherm analysis, as described in [19].

The results from a MSSV data analysis such as shown in the

present work could also be helpful in designing more extensive

experiments, for example, using the tool of the effective particle

explorer in SEDPHAT that helps to predict expected boundary

patterns, including the phase transition lines, and thereby aids in

the design of dilution or titration series of experimentally feasible

trajectories in concentration space [19,22]. Thus, even though the

presence of a reaction boundary from fast chemical exchange on

the time-scale of sedimentation preempts the hydrodynamic

separation of co-existing complex species and the determination

of their composition, the boundary pattern and MSSV Ck(s)

analysis can, similar to the standard c(s) analysis, still be a highly

informative approach.

In summary, we have developed a new analytical technique for

MSSV, called MC-MSSV, which can compensate for poor

spectral resolution of the components of a complex and result in

excellent outcomes for the determination of complex stoichiom-

etries. It utilizes our a priori knowledge of the component

concentrations to constrain the MSSV analysis. Previously [5],

we had recommended that the Dnorm (Eq. 3) of a two-component

system be greater than 0.065 in order to reliably distinguish two

components using their spectral differences. Our present work

demonstrates that this limit is virtually eliminated in an MC-

MSSV analysis. Further, the addition of a constraint limiting a

certain (low) s-range to have only one component in it is very

powerful in this analytical setting. It should be noted, however,

that this constraint is only applicable in situations where the

respective diffusional envelopes of the species are clearly resolved.

This limitation leads to an important experimental consideration:

to populate complexes, it is advantageous to have the smallest

component (‘‘A’’ in the systems presented in this report) present in

a molar excess so that the maximum difference between the s-

values of the free material and the complex is realized. In a

previous report [4], we recommended that the smallest component

be present in a molar excess for different reasons, and the results

presented here make that recommendation even more pertinent.

Supporting Information

Supporting Material S1 A series of screenshots and
graphs that illustrates how to use the MC-MSSV method
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in the SEDPHAT software. The relevant SEDPHAT param-

eter box entries that relate to the MC-MSSV tools described in the

present work are explained.

(PDF)

Figure S1 Simulated data of System 1, which consists of
a 100 kg/mol, 6 S-protein ‘B’ (eIF = 275,000 M21 cm21

and e280 = 100,000 M21 cm21) binding a 20 kg/mol, 2 S-
protein ‘A’ (eIF = 55,000 M21 cm21) with absorbance
extinction coefficients e280 = 23,180 M21 cm21 corre-
sponding to Dnorm = 0.05, creating a 7 S complex with
Kd of 2 mM and koff = 1022/sec. Simulated was a sedimen-

tation experiment at 50,000 rpm, in a 12 mm solution column,

scanned in time-intervals of 300 sec and radial increments of

0.001 cm, and with 0.005 OD or 0.005 fringes of normally

distributed noise. Shown is every 3rd data point of every

3rd scan.

(TIF)

Figure S2 Simulated data of System 2 consisting of a
200 kg/mol, 8.5 S-protein ‘B’ (eIF = 550,000 M21 cm21

and e280 = 140,850 M21 cm21) binding a 10 kg/mol, 1.2
S-protein ‘A’ (eIF = 27,500 M21 cm21) with absorbance
extinction coefficients e280 = 8,000 M21 cm21 corre-
sponding to different Dnorm = 0.032, creating a 9.2 S
complex with Kd of 1 nM and koff = 1023/sec. Simulated

was a sedimentation experiment at 50,000 rpm, in a 12 mm

solution column from 6.0 to 7.2 cm, scanned in time-intervals of

300 sec and radial increments of 0.003 cm and 0.0007 cm for

absorbance and interference data, respectively, and with 0.005

OD or 0.005 fringes of normally distributed noise. Shown is every

3rd data point of every 3rd scan.

(TIF)

Figure S3 Replicate simulations of System 2 (as in Fig.
S2) at different low Dnorm values. Each simulation obtained

different stochastic noise and was modeled by standard MSSV

(Top), MC-MSSV with 5% tolerance (Middle), or MC-MSSV

with 5% tolerance additionally with excluded component B from

the low-s segment (Bottom). Plotted are the molar ratio values

from integration of the complex ck(s) peak (black circles). Red

vertical error bars indicate the mean 6 standard deviation from

the set of 10 simulations performed at each Dnorm value. With a

MC tolerance of 5% on both components at 1.9 mM and 4.2 mM

total concentrations, if all errors occur in the assignments of

components in the ck(s) peak of the complex, the resulting molar

ratio may range from 0.85–1.17, which is indicated as dotted

horizontal lines.

(TIF)

Figure S4 Same as Fig. S3, but calculated with Tikho-
nov-Phillips regularization at a confidence level of 0.68.
(TIF)

Figure S5 MSSV analysis of Tp34 alone. (A) Interference

data, fits, and residuals. (B) Absorbance data at 280 nm, fits, and

residuals. (C) The ck(s) distribution. Here, k;Tp34.

(TIF)

Figure S6 MSSV analysis of bLF alone. (A) Interference

data, fits, and residuals. (B) Absorbance data at 280 nm, fits, and

residuals. (C) The ck(s) distribution. Here, k;bLF.

(TIF)

Figure S7 Mass-constrained MSSV analysis of the
Tp34/bLF mixture. (A) Interference data, fits, and residuals.

(B) Absorbance data at 280 nm, fits, and residuals. (C) The ck(s)

distributions.

(TIF)

Figure S8 MSSV analysis of the Tp34/bLF mixture with
both low-s and mass-conservation constraints. (A) Inter-

ference data, fits, and residuals. (B) Absorbance data at 280 nm,

fits, and residuals. (C) The ck(s) distributions. The region shaded in

gray was constrained to contain signal only from Tp34.

(TIF)

Figure S9 MSSV analysis of the Tp34/bLF mixture with
low-s constraint but without and mass-conservation
constraints. (A) Interference data, fits, and residuals. (B)

Absorbance data at 280 nm, fits, and residuals. (C) The ck(s)

distributions. The region shaded in gray was constrained to

contain signal only from Tp34.

(TIF)

Figure S10 Unconstrained MSSV analysis of the exper-
iment with dual 280 nm/250 nm absorbance data
acquisition. (A) The data, fit, and residuals for data collected

at 280 nm. (B) The data, fit, and residuals for data collected at

250 nm. (C) The ck(s) distributions.

(TIF)
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