
Ancestral Genome Inference Using a Genetic Algorithm
Approach
Nan Gao2, Ning Yang3, Jijun Tang1,2*

1 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China, 2 Department of Computer Science and Engineering, University of

South Carolina, Columbia, South Carolina, United States of America, 3 School of Automation, Northwestern Polytechnical University, Shaanxi, Xi’an, China

Abstract

Recent advancement of technologies has now made it routine to obtain and compare gene orders within genomes.
Rearrangements of gene orders by operations such as reversal and transposition are rare events that enable researchers to
reconstruct deep evolutionary histories. An important application of genome rearrangement analysis is to infer gene orders
of ancestral genomes, which is valuable for identifying patterns of evolution and for modeling the evolutionary processes.
Among various available methods, parsimony-based methods (including GRAPPA and MGR) are the most widely used. Since
the core algorithms of these methods are solvers for the so called median problem, providing efficient and accurate median
solver has attracted lots of attention in this field. The ‘‘double-cut-and-join’’ (DCJ) model uses the single DCJ operation to
account for all genome rearrangement events. Because mathematically it is much simpler than handling events directly,
parsimony methods using DCJ median solvers has better speed and accuracy. However, the DCJ median problem is NP-hard
and although several exact algorithms are available, they all have great difficulties when given genomes are distant. In this
paper, we present a new algorithm that combines genetic algorithm (GA) with genomic sorting to produce a new method
which can solve the DCJ median problem in limited time and space, especially in large and distant datasets. Our
experimental results show that this new GA-based method can find optimal or near optimal results for problems ranging
from easy to very difficult. Compared to existing parsimony methods which may severely underestimate the true number of
evolutionary events, the sorting-based approach can infer ancestral genomes which are much closer to their true
ancestors. The code is available at http://phylo.cse.sc.edu.

Citation: Gao N, Yang N, Tang J (2013) Ancestral Genome Inference Using a Genetic Algorithm Approach. PLoS ONE 8(5): e62156. doi:10.1371/
journal.pone.0062156

Editor: Olivier Lespinet, Université Paris-Sud, France

Received December 27, 2012; Accepted March 18, 2013; Published May 2, 2013

Copyright: � 2013 Gao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a National Science Foundation (NSF) grant (Number 0904179). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jtang@cse.sc.edu

Introduction

With the increasing availability of fully sequenced genomes, we

are now able to conduct genomic evolution study beyond the mere

sequence level. Rearrangement of gene orders by operations such

as reversal (also called inversion), transposition, fission, and fusion

is known to be an important evolutionary mechanism. As these

events are rare, they can be used to reconstruct evolutionary

histories that extend far back in time [1]. Other than reconstruct-

ing deep evolutionary histories, another important application of

genome rearrangement analysis is to infer gene order between

ancestral and contemporary genomes. Such inference is valuable

for identifying patterns of evolution and for modeling evolutionary

processes (e.g. hot spots of rearrangement). As a result, genome

rearrangement analysis has attracted a lot of attentions from

biologists, mathematicians, and computer scientists [2,3] since the

pioneering paper of Sankoff [4].

Handling rearrangement events directly is mathematically very

difficult: it took almost a decade to find the first polynomial

algorithm that computes the reversal distance (i.e. the minimum

number of reversal operations to transform one genome into

another) [5], and it was just recently proved that the transposition

distance is NP hard [6]. Yancopoulos et al. [7] proposed a

simplified model that used the universal double-cut-and-join (DCJ)

operation to account for all rearrangement events, which cuts a

chromosome at two places and rejoins the four ends of the two cut

places in a new way. Although there is no direct biological

evidence for DCJ operations, these operations are very attractive

because it provides a simpler and unifying model for genome

rearrangement [8].

Main methods to infer ancestral gene orders are parsimony-

based methods such as GRAPPA [9] and MGR [10]. The core of

MGR and GRAPPA is to solve the median problems of k

genomes, which is to find an ancestral genome that can minimize

the sum of the pairwise distances between itself and each of the k

given genomes.

The DCJ median problem is specifically defined as the problem to

find a median genome that minimizes the summation of DCJ

distances along the given three edges (Figure 1). It has been proved

that this problem is NP-hard even for three genomes [11]. Because

mathematically a DCJ distance is much simpler than handling

events directly, parsimony methods using DCJ median solvers

outperform other methods in terms of speed and accuracy. Among

all existing exact solvers, the best is ASMedian proposed by Xu

sand Sankoff [12], which uses the concept of Adequate Subgraph

to decompose the problem into smaller, more easily solvable

subproblems, thus significantly reduces the computation time.

However it still runs very slowly when the genomes are distant. For

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e62156

datasets with N genes and r (expected) number of events per edge,

when the ratio of r/N is larger than 50%, all median solvers have

great difficulty in finishing the analysis after months of computa-

tion.

In this paper, we present a genetic algorithm (GA) which is

based on sorting of two genomes to improve the DCJ median

computation, with carefully designed procedures to produce the

initial population and select individuals to create offspring. We

have conducted extensive simulations and find that our GA-based

method not only has better speed for difficult datasets, but also

have better accuracy than existing methods.

Background

Genome Rearrangement Events
The popular way to represent a genome is to place genes on

chromosomes, which is an ordering of genes with signs that

indicate genomic strand. More formally, given a reference set of n

genes fg1,g2, � � � ,gng, each gene is assigned with an orientation

that is either positive, written as gi, or negative, written as {gi. A

chromosome can be linear or circular where its head meets its tail.

In this paper, we assume that each gene appears exactly once in

each genome.

Let G be the genome with signed ordering of g1,g2, � � � ,gn. A

reversal between indices i and j (iƒj), produces the genome with

linear ordering g1,g2, � � � ,gi{1,{gj ,{gj{1, � � � ,{gi,gjz1, � � � ,gn.

A transposition applies on three indices i, j and k (iƒj) and

produces the genome with linear ordering

g1,g2, � � � ,gi{1,gjz1, � � � ,gk{1,gi, � � � ,gj ,gk, � � � ,gn (assume jvk).

If a genome has more than one chromosome, there are some

additional events, such as translocation (the end of one chromo-

some is broken and attached to the end of another chromosome),

fission (one chromosome splits and becomes two) and fusion (two

chromosomes combine to become one).

Two genes i and j are called adjacent if i is followed by j, or 2j is

followed by 2i. A breakpoint is defined when two genes are adjacent

in one genome but not in the other. As we can represent a gene g

by its tail gt and its head gh, the adjacency of two consecutive

genes g1 and g2 can have the following four types (depending on

their respective orientation): fgh
1,gt

2g, fgh
1,gh

2g, fgt
1,gt

2g, or fgt
1,gh

2g.
An extremity that is not adjacent to any other gene is called a

telomere, represented by a singleton set fghg or fgtg.

DCJ Distance and Sorting by DCJ
We can define the edit distance between two genomes as the

minimum number of events to transform one into the other. The

simplest distance is the breakpoint distance which is the number of

adjacencies appears in one genome but not in the other.

The double-cut-and-join (DCJ) operation cuts the chromosome

in two places and joins the four ends of the cut in a new way, in

one of the following four cases [8]:

N A pair of adjacencies fua,vbg and fpx,qyg can be replaced by

either the pair fua,pxg and fvb,qyg or the pair fua,qyg and

fvb,pxg.
N An adjacency fua,vbg and a telomere fpxg can be replaced by

the adjacency fua,pxg and telomere fvbg or by the adjacency

fvb,pxg and telomere fuag.
N A pair of telomeres fuag and fvbg can be joined and replaced

by the adjacency fua,vbg.
N An adjacency fua,vbg can be split and replaced by the pair of

telomeres fuag and fvbg.

Given two genomes G1 and G2, their DCJ distance can be

computed using the adjacency graph AG(G1,G2), a graph whose

set of vertices are the adjacencies and telomeres of G1 and G2. For

each u[G1 and v[G2 there are Du\vD edges between u and v

(Figure 2).

Based on the adjacency graph, we can easily compute the DCJ

distance using the following formula [8]:

dDCJ (G1,G2)~n{(CzI=2)

where C is the number of cycles and I is the number of odd edge

paths in the adjacency graph AG(G1,G2) (Figure 2).

The adjacency graph is also the basic data structure in finding

the optimal sequence of DCJ operations that transfers one genome

into the other. There are two properties in the adjacency graph

[8]: 1) no DCJ operation can simultaneously change the number of

cycles C and the number of paths I; 2) for any pair of edges that

connects two different vertices of G1 with an adjacency in G2, one

single DCJ operation can transform them into a cycle of length

two, and the remaining graph is reduced by the two edges. Thus

this DCJ operation always increases CzI=2 by one, making G1

one step closer to G2.

By greedily carrying out this operation, we can find one optimal

sequence of events (sorting sequence) to transform G1 into G2.

Figure 3 shows one example of three steps to transform genome

G1 = (3,21,24,2,5) to G2 = (1,2,3,4,5). As there may be multiple

pair of edges that have the above properties, the sorting sequence

is not unique at all. For example, in Figure 3, the first step

transforms G1 into a new genome (3,4,1,2,5); we can also

transform G1 into (3,21,22,4,5), one step closer as well. If the

genomes are distant, the number of all sorting sequences can be

very large.

Figure 1. The DCJ median problem and its bounding box
formed by the three outer edges.
doi:10.1371/journal.pone.0062156.g001

Figure 2. Adjacency graph and DCJ distance of two genomes
G1 = (3,21,24,2,5) and G2 = (1,2,3,4,5). The number of cycles C is 1, the
number of paths I is 2, the DCJ distance is N{(CzI=2)~3.
doi:10.1371/journal.pone.0062156.g002

Ancestral Genome Inference

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e62156

The DCJ Median Problem. In the DCJ median problem,

given three genomes (leaves) G1, G2 and G3 and a genome M, the

median score is defined as d(G1,M)zd(G2,M)zd(G3,M), where

d is the DCJ distance of two genomes. The aim is to find the

genome with the minimum median score. As distances all abide by

triangular inequality, we can define the perfect median score Sbest

as.

Sbest~q
d(G1,G2)zd(G1,G3)zd(G2,G3)

2
r

which is the lower bound of the median score (Figure 1). It should

be pointed out that the median genome is not unique: there may

exist many genomes with the same minimum median score and

one may be closer to the ancestor than others. However existing

methods all report the first best it encounters as the solution.

The median can be viewed as the ancestral genome that

minimizes the evolutionary cost, thus finding medians forms the

foundation of the most widely used genome rearrangement tools.

For example, GRAPPA included Caprara’s reversal median solver

[13], as well as Xu and Sankoff’s DCJ median solver (ASMedian).

MGR uses a heuristic that seeks good reversals that bring a

genome closer to the median genome. For datasets with more than

three genomes, both will iteratively solve many instances of the

median genomes to find a solution.

In ASMedian, the Multiple Breakpoint Graph (MBG) is used to

model the median problem and an Adequate Subgraph is defined

as the connected subgraph that has number of cycles larger or

equal to 3k/4 (k is the number of the vertices of the subgraph).

Once an adequate subgraph is found, the original MBG can be

decomposed into two smaller MBGs thus the size of the original

problem is reduced. Further decompositions could be performed

iteratively to reduce the complexity of the problem. By searching

existing adequate subgraphs, ASMedian can significantly reduce

the computation time of median calculation. However, when the

genomes are distant, the exhaustive search of adequate subgraphs

requires not only long time but also very large amount of memory

as ASMedian needs to store candidate subgraphs for further

analysis.

Other than speed, the accuracy is also a concern as the DCJ

median problem deals with edit distances and will severely

underestimate the true number of evolutionary events. Different

orders of searching and decomposing adequate subgraphs will

result in different median solutions; however ASMedian does not

take this into account and treats them in the order of their

appearance. As a result, even the computation can finish, the

inferred structures of ancestral genomes may not be trusted, which

is confirmed by our experimental results. Through simulations,

Haghighi and Sankoff [14] found that exact breakpoint median

solvers have a tendency to place the median on or near of the

leaves (the so-called ‘‘seeking corners’’ phenomenon), and

conjectured that this should also be true for existing reversal and

DCJ median solvers. As median computation forms the core of

current genome rearrangement research, faster and more accurate

methods are always desired.

Genetic Algorithm
Genetic Algorithms (GA) [15,16] were inspired by nature’s

robust way of evolution and also by Darwin’s theory of natural

selection: the fittest will have higher chance to survive.

For each generation, a genetic algorithm work on a population

defined as a set of solutions (genomes in the DCJ median problem).

It simulates the survival of the fittest individuals in the population,

controlled by the definition of a fitness score. Generally an

individual will be encoded into a sequence. Different sequences

represent different solutions for the problem. Individuals in each

generation are made to go through a process of evolution: selection

by some fitness function, crossover with another individual, and

randomly mutation at one or some spots in their encoding strings.

Those individuals with the highest fitness score will be more likely

to survive in each competition and will have higher chance to

produce more offspring than those individuals that perform

poorly.

With the evolution progresses, ‘‘good’’ gene segments will

propagate throughout the population. Two good parents will have

higher chance to produce better offspring than bad parents, as

they have good gene segments. As a result, each successive

generation will become more adapted to their living environment.

A genetic algorithm will iterate until a solution is found or the

maximum number of iterations is reached.

Genetic algorithms were widely used in solving many hard

optimization problems, including those in computational biology

[17–19]. Since genome rearrangement deals with chromosomes,

evolutions and mutations, it will be natural to think that the

approach of genetic algorithm can be easily adopted into solving

the DCJ median problem. However, there are some major

difficulties and the biggest problem is that the search space is

simply too large: given genomes with N genes, the possible number

of gene orders is 2NN!. It poses serious questions on the major

aspects of genetic algorithms: how should we generate the starting

population, what is the best fitness score, and how to generate the

next generation and pick the better one to survive?

Methods

In this section, we present our sorting-based methods to tackle

the major problems of using the genetic algorithm approach in the

DCJ median problem. In this paper, an individual is simply a

Figure 3. Adjacency graphs of each stage of one DCJ sorting
sequence that transforms (3 21 24 2 5) to (1 2 3 4 5).
doi:10.1371/journal.pone.0062156.g003

Ancestral Genome Inference

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62156

genome consists of linear or circular chromosomes, represented by

the ordering of genes.

Initial Population Generation
The initial population has deep impact on the performance of a

GA-based method. In the DCJ median problem, as the search

space is very large, randomly pick some genomes as start will not

work as most likely these genomes will all be far away from the

desired median, resulting in searches may not converge. Our

approach is based on the following observation [20]: given three

genomes, the median genome is likely to be on the path from one

of the leaf genomes to another. Although this does not readily give

us a median solver as the possible number of sorting paths are very

large, it does suggest a strategy to generate the initial population:

for any pair of the given genomes Gi and Gj with distance dij , we

will find genomes that are on the sorting path from Gi to Gj and

are dij=10,2dij=10, � � � ,6dij=10 steps away from Gi. Such genomes

on the sorting path can be easily generated using the DCJ sorting

algorithm described earlier.

To obtain enough diversity, we generate 50 genomes per

sampled step, resulting in 1,800 genomes in the initial population.

As seen in the experimental results, this strategy is quite effective

and sometime only a few steps are required to converge into very

accurate results.

Selection and Fitness Function
A critical parameter to be carefully tuned in GA is the selection

pressure which is the process of selecting the best individual(s) for

the next generation, governed by the fitness function. In the DCJ

median problem, an obvious choice is to use the median score as

the fitness function, and the one with a lower score will have better

fitness. In practice, we use the following formula to calculate fitness

scores: given N genes and the perfect median score Sbest, if a

genome G has median score S, its fitness score is defined as

FG~N{(S{Sbest):

As the DCJ distance between any two genomes cannot exceed

N, the above fitness function guarantees that the one closer to the

median will be better, and the score is ranged between 0 and N.

In GA, an important step is to select individuals who can

produce offspring–those having better fitness score should have

higher chance to pass its good genes to the next generation. There

are some classical mechanisms to select these individuals, based on

different situations. For example, in Roulette Wheel Selection,

each individual has its own probability of being selected into the

candidate pool. One individual’s probability is its fitness score

divided by the sum of fitness scores of all individuals. Truncation

Selection selects the top 1=p individuals and each will be copied p

times into the pool.

In the DCJ median problem, the range of the fitness score is

very small ([0,N]) compared to the possible number of genomes

(2NN!), thus many individuals will have the same fitness score.

This situation will get worse when the search approaches the end:

the best candidate may have a fitness score that is only a few

numbers away from the worst. Furthermore, two individuals with

very different ordering of genes may have the same fitness score,

but the difference of orderings may result in very different search

directions: some may quickly converge to a good solution as they

have better genomic structures while the others may not converge

at all.

To overcome these problems, we adopt a hybrid approach of

traditional selection methods. We first select the top 10%

individuals and reproduce them (without change) into the next

generation, as individuals with good genomic structure are hard to

find and we want to preserve them as long as possible. We then

give every individual in the remaining 90% an equal chance to be

selected to produce offspring. To ensure better genes can be

passed down, we devised the following crossover and mutation

operations that are based again on genomic sorting.

Crossover
Crossover is used for two selected individuals to exchange

genetic materials and produce offspring. In some genetic

algorithms, this procedure can be as simple as exchange blocks

of their encoding strings. However, in the DCJ median problem,

since each individual is represented as a gene order and each gene

should appear exactly once in one individual, such exchange will

result in invalid offspring.

The method we choose for crossover is based on sorting

genomes by DCJ. First, we pick two parents (P1 and P2) from the

candidate pool and compare their fitness scores F1 and F2.

Assuming P2 is better than P1, we will generate two children C1

and C2. C1 is generated by selecting a genome which is on the

sorting path from P1 to P2 (the better one) and is m (randomly

chosen) steps away from P1. In other words, the new child obtains

genetic materials from both parents by applying DCJ operations

on one parent, with respect to the one with better fitness score. We

do not generate C2 by sorting from the worse to the better, as from

our experiments, this can easily destroy the good group of genes

and lead to bad solutions. Instead, we generate C2 by directly

copying of P2 (which has better), giving the better genome a higher

chance to pass its good structures into further generations. Both

children will then undergo the mutation procedure described

below with the expectation that better offspring may be found.

Mutation
Mutation is used to maintain genetic diversities from one

generation of a population to its next. Proper mutations are

needed so that GA can avoid local minimal by preventing one

population from becoming too similar to others.

In the DCJ median problem, an individual can be mutated by

applying a random number of DCJ operations. However, there

are two questions to be solved: how many operations are required

and which operations should we choose to apply?

From Figure 1, one can estimate distances from the median to the

three given genomes by the following simple calculations:

d1M~
d12zd13{d23

2

d2M~
d12zd23{d13

2

d3M~
d23zd13{d12

2

Although actual distances may be different from these estimated

values, the above estimations are good indicators how close a

candidate genome is from the median. If the three edge lengths of

one genome are too far away from these relative estimated lengths,

Ancestral Genome Inference

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e62156

this genome is likely to be bad and should be mutated toward a

better one.

Our mutation procedure is based on the above observation. For

a genome G, we can compute its three edge lengths to the leaves,

and find the one which has the largest differences from its estimate

lengths. We then sort G some m (randomly chosen) steps closer to

that leave.

We conduct the sorting-based mutation procedure on the two

children genomes (C1 and C2) obtained from the above crossover

procedure. As a result, we get two new genomes C’1 and C’2. We

then choose the two best from the four genomes (C1, C2, C’1 and

C’2), with the aim to maintain enough diversities and improve the

quality of individuals in the next generation.

Results

We implemented our new GA-based method in C and

conducted experiments to assess its accuracy and speed. Simula-

tion is the main approach to evaluate the quality of a phylogeny

method, as its evolutionary history is known. In this paper, we

conducted extensive simulations following widely accepted proce-

dures. As ASMedian requires very large amount of memory when

given genomes are distant, we used a shared-memory computer

with 256GB memory to run the experiments, thus extended the

range of problems that can be solved by ASMedian not normally

achievable. Although the shared-memory computer is used, each

test is done on a single CPU with no parallelism utilized.

Setup of Simulations
Because all existing median solvers have very good perfor-

mances when genomes are close but cannot finish when the

genomes are distant, we divided our experiments into two parts:

those can be finished by the exact methods and those cannot. We

only compared our new GA method with Xu and Sankoff’s

ASMedian solver, as currently it is the best method of the DCJ

median problem.

We tested the methods on simulated datasets. Each dataset has

three genomes with 200 genes. We generated trees with three

leaves and one internal node, assigned the identity permutation on

the internal node and generated the three leaves by applying

rearrangement events along each edge respectively. The number

of events on each edge was controlled by a birth-death process

which was viewed as a good model to fit evolutionary trees. The

datasets were grouped by average edge lengths (r), which were 20

to 200 events per edge in our experiments, with the
r

N
rates

ranging from 0.1 to 1.0, representing data from very easy to

extremely difficult. For each r, we generated 10 datasets and

averaged the results.

The maximum number of iterations for our GA method was set

as 500 but may stop early if the perfect median score was met. The

genome with the lowest median score will be reported as the final

result. In our experiments, this maximum number is large enough

because we can find every best genome for every dataset within

fewer than 500 iterations.

Comparison with ASMedian
For r#60ASMedian is generally very fast while our method is a

bit slower. However, the running time of ASMedian increases

quickly for r$80 and requires more than a day to finish, while our

GA method requires no more than 30 minutes even for the most

difficult ones.

Table 1 shows the results of obtained median scores. For r#40,

ASMedian and our method achieve the same median scores that

are very close to the perfect median score. For r$40, although the

average median scores of our GA method are larger than those

obtained by ASMedian, the differences are very small and less

than 2% even for the most difficult cases. ASMedian could not

finish any dataset in r$140, while our method can still get

genomes with reasonable median scores within 500 iterations and

30 minutes of computation.

For the unrooted tree defined by the three given genomes, the

median genome can be used to estimate the gene order of the

internal node, which is the missing ancestor. Thus the distance to

their true ancestor (known in simulations) is an additional

measurement for the quality of median solvers. Table 2 shows

the average breakpoint distances to true ancestors for the two

methods. It is very surprised to see for almost all datasets, the

Table 2. Comparison of the breakpoint distance from the inferred median to the true ancestor.

Comparison to the true ancestors (the lower the better):

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180 r = 200

Our GA Method 0.3 0.4 5.0 9.9 28 32.7 44.9 49.2 57.5 54.9

ASMedian 0.4 0.3 6.3 15.6 40.7 50.5 - - - -

r is the averaged number of events per edge. ‘‘-’’indicates that a method cannot finish.
doi:10.1371/journal.pone.0062156.t002

Table 1. Comparison of median scores.

Comparison of the median scores (the lower the better):

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180 r = 200

Our GA Method 53.7 109.8 155.5 180.9 232.1 247.1 279.4 287.7 281.6 309.1

ASMedian 53.7 109.8 154.8 175.5 228 242.3 - - - -

Perfect Score 53.6 109.4 152.2 173.4 210.6 221.8 242.4 254.8 244.4 261.9

r is the averaged number of events per edge. ‘‘-’’indicates that a method cannot finish.
doi:10.1371/journal.pone.0062156.t001

Ancestral Genome Inference

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e62156

medians inferred by our GA method are indeed much closer to the

true ancestors compared to those inferred by the exact method.

This suggests that the sorting-based mutation and crossover

procedures are very effective and preserve important genomic

structures. Even for r = 200, the breakpoint distance between the

inferred and true ancestor genomes is less than 55, comparable to

those achieved by ASMedian for a far smaller r (r = 120 in Table 3).

Convergence
An important aspect of GA is whether it can converge or not.

Table 3 shows the average and max number of generations our

algorithm needed to find the best solutions. It is not surprising to

see with higher number of events, the search space becomes much

bigger, hence more generations are needed to get good genomes.

It also tells us that although the maximum number of generations

is set at 500, our GA method can always find good genomes with

fewer generations. The average number of iterations is indeed

much smaller than this upper limitation, thus better stop criteria

may be desired to avoid this waste, using strategies such as

checking population or genomic structure convergence.

Conclusions

In this paper, we present a genetic algorithm for the DCJ

median problem, a well-known problem in genome rearrangement

analysis. Our GA-based method uses genomic sorting to generate

initial populations and find offspring by crossover and mutations.

Our experiments on simulated datasets show that this GA method

is very efficient and has better speed and accuracy compared to

other existing methods. It also confirms the importance of sorting

in solving the DCJ median problem and avoid the phenomenon of

seeking corners. Our approaches can be adopted to include other

events such as deletions and insertions, for which linear algorithms

are available to compute genomic distances, to further improve the

ancestral inference from genome rearrangements. As we generally

deal with many more genomes, we need to develop a genetic

algorithm that can compute phylogenies and ancestors directly,

without solving the median problem at all.

Author Contributions

Conceived and designed the experiments: NG NY JT. Performed the

experiments: NG NY. Analyzed the data: NG NY JT. Contributed

reagents/materials/analysis tools: NG. Wrote the paper: NG NY JT.

References

1. Raubeson L, Jansen R (1992) Chloroplast DNA evidence on the ancient

evolutionary split in vascular land plants. Science 255: 1697–1699.

2. Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal
extensive breakpoint reuse in mammalian evolution. Proceedings of the National

Academy of Sciences USA 100: 7672–7677.
3. Richards S (2005) Comparative genome sequencing of Drosophila pseudoobs-

cura: Chromosomal, gene and cis-element evolution. Genome Research 15: 1–

18.
4. Sankoff D, Blanchette M (1998) Multiple genome rearrangement and breakpoint

phylogeny. Journal of Computational Biology 5: 555–570.
5. Hannenhalli S, Pevzner P (1995) Transforming cabbage into turnip (polynomial

algorithm for sorting signed permutations by reversals). In: Proc. 27th Ann.
Symp. Theory of Computing (STOC95). Las Vegas, NV: ACM, pp. 178–189.

6. Bulteau L, Fertin G, Rusu I (2012) Sorting by transpositions is difficult.

SIAM J Discrete Math 26: 1148–1180.
7. Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic

permutations by translo-cation, inversion and block interchange. Bioinformatics
21: 3340–3346.

8. Bergeron A, Mixtacki J, Stoye J (2006) A unifying view of genome

rearrangements. In: Proc. 6th Workshop Algs. in Bioinformatics (WABI’06).
Number 4175 in Lecture Notes in Computer Science, pp. 163–173.

9. Moret B, Wyman S, Bader D, Warnow T, Yan M (2001) A new implementation
and detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp.

Biocomputing (PSB 2001). Hawaii, pp. 583–594.
10. Bourque G, Pevzner P (2002) Genome-scale evolution: reconstructing gene

orders in the ancestral species. Genome Research 12: 26–36.

11. Tannier E, Zheng C, Sankoff D (2009) Multichromosomal median and halving

problems under different genomic distances. BMC Bioinformatics 1-: 120.

12. Xu W, Sankoff D (2008) Decompositions of multiple breakpoint graphs and
rapid exact solutions to the median problem. In: 8th International Workshop on

Algorithms in Bioinformatics (WABI 2008). pp. 25–37.
13. Caprara A (2001) On the practical solution of the reversal median problem. In:

Proc. 1stWorkshop Algs. in Bioinformatics (WABI’01). volume 2149 of Lecture

Notes in Computer Science, pp. 238–251.
14. Haghighi M, Sankoff D (2013) Medians seek the corners, and other conjectures.

BMC Bioinfor-matics 13: S5.
15. Holland J (1975) Adaptation in natural and artificial systems, university of

michigan press. Ann Arbor, MI 1: 5.
16. Goldberg D (1989) Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley Professional.

17. Hill T, Lundgren A, Fredriksson R, Schioth H (2005) Genetic algorithm for
large-scale maximum parsimony phylogenetic analysis of proteins. Biochimica et

Biophysica Acta 1725: 19–29.
18. Mitra A, Almal A, George B, Fry D, Lenehan P, et al. (2006) The use of genetic

programming in the analysis of quantitative gene expression profiles for

identification of nodal status in bladder cancer. BMC Cancer 6: 159.
19. Unger R, Moult J (1993) A genetic algorithm for 3d protein folding simulations.

The 5th Interna-tional Conference on Genetic Algorithms.
20. Moret B, Siepel A, Tang J, Liu T (2002) Inversion medians outperform

breakpoint medians in phylogeny reconstruction from gene-order data. In: Proc.
2nd Workshop Algs. in Bioinformatics (WABI’02). volume 2452 of Lecture

Notes in Computer Science, pp. 521–536.

Table 3. Number of generations to find the best genome.

r = 20 r = 40 r = 60 r = 80 r = 100 r = 120 r = 140 r = 160 r = 180 r = 200

Average 7.9 27.3 43 50.6 94.3 128.6 99.4 142.8 172.2 180.4

Max 21 104 108 110 201 290 151 303 337 496

doi:10.1371/journal.pone.0062156.t003

Ancestral Genome Inference

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e62156

