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Abstract

Aims: Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for
tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained
tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue
microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions
and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is
fully automated and quantitative.

Methods and Results: Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images
representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting
Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel
containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine
melanoma classification model was learned from a discovery melanoma patient cohort (n = 264) and subsequently validated
on an independent cohort of melanoma patient tissue sample images (n = 157).

Conclusion: Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting
melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be
applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein
expression in melanoma.
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Introduction

Antibody-based proteomics provides an advantageous strategy

for biomarker discovery efforts [1]. Immunohistochemistry (IHC)

is a well established and accepted assay for labeling a specific

protein in tissue, provided the availability of validated antibodies

towards the target of interest. IHC assays use an antibody to

specifically couple a candidate protein and a dye that makes the

immunoreaction visible to the human eye in a microscope or a

digital glass slide scanner. In routine IHC, hematoxylin a natural

dye binding to nuclei acid, is added to the tissue specimen to

highlight the cell nuclei in dark blue, cell cytoplasm and extra

cellular matrix in light blue. The most common immunostaining

combination, achieving the highest contrast target signal to

background ratio, is diaminobenzidine (DAB) for visualizing the

IHC signal with hematoxylin counterstaining. With the introduc-

tion of tissue microarray (TMAs) technology [2] a large number of

tissue specimens can be analyzed simultaneously using IHC. Over

the past decade, TMAs have become an established and crucial

component of the cancer biomarker discovery and validation

pipeline.

The Human Protein Atlas (HPA) project has been set up to

allow for a systematic exploration of the human proteome using

antibody-based proteomics [3,4]. This is accomplished by

combining, high-throughput generation of affinity-purified anti-

bodies with protein profiling in a multitude of tissues and cells
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assembled in tissue microarrays. The Human Protein Atlas portal

(www.proteinatlas.org) is a publicly available database [5] with

over 10 million high-resolution images showing the spatial

distribution and relative abundance of proteins in normal human

tissues and a multitude of cancers, including 12 cases of malignant

melanoma. IHC stained TMAs containing normal and cancer

tissue are scanned to obtain the high-resolution images that are

used for manual assessment of immunohistochemical outcome

performed by pathologists. To leverage the true high throughput

potential of antibody-based protein profiling in tissues, there is a

need for fully automated scoring of IHC stained TMAs. Cancer

tissue is complex and typically represents a pool of different cell

types, including heterogeneous tumor cells and various normal cell

types. For cutaneous melanoma, normal skin structures such as

keratinocytes, blood vessels, inflammatory cells and fibroblasts in

the dermal connective tissue are usually present together with cells

and structures induced by the tumor, i.e. tumor stroma. For

melanoma biomarker research applications where protein expres-

sion patterns in melanoma cells are analyzed, automated tools that

can delineate melanoma cells from non-neoplastic cells with high

accuracy would be of great benefit.

With the fast-paced changes in computing technology and

recent advances on development of fast and high quality glass slide

digitalization devices, an impact has also been seen in the field of

histopathology [6–9]. Automated image analysis and pattern

recognition approaches based on bright field microcopy have

shown to be valuable to both clinical pathologists as well as to a

broad range of researchers for analyzing high-throughput histo-

pathological data [10–12]. The objectives of such automated

image analysis based approaches is to analyze data efficiently,

accurately, and reproducibly in high-throughput assays. As an

alternative to the brightfield-based IHC system, fluorescence-

based immunolabeled approaches such as AQUA have been used

in both research and clinical settings [13]. The AQUA system is an

established assay, combining a modified immunofluorescence

protocol with image analysis to automate biomarker quantification

in histopathological samples [14–16]. Although several studies

have validated these fluorescence-based approaches, bright field

IHC remains the standard assay used by pathologists. For both

brightfield and fluorescence-based microscopy data, appropriate

image processing and machine-learning techniques must be

employed so as to extract, from images, as much relevant

information as possible.

Cell nuclei object identification (also called segmentation) is a

challenging step in medical image analysis and more particularly

in digital pathology due to the resolution of the imaging data. One

of the requirements of such crucial step is the accuracy and

specificity of object identification. More particularly in pathology,

image analysis cell segmentation defines the accuracy of the

resulting cell texture and morphological measurements (i.e.

features). In a second step, a process known as feature selection

can identify the most useful information from the data, and reduce

the dimensionality in such a way that the selected features

represent the most significant aspects of the data. To improve the

efficiency of classification algorithms, feature selection is used to

identify and remove as much of the irrelevant and redundant

information as possible. During this step, redundant features, such

as features with low variability or not relevant for discriminating

between the two cell nucleus population, are filtered out. Methods

have been proposed for the segmentation of objects and feature

extraction from microscopy-based images for various microscopy

acquired data types, including histopathology [17,18]. Several of

these methods have been implemented in commercial image

analysis frameworks such as Matlab (Mathworks) and Image-Pro

(MediaCybernetics) and open source available tools such as

CellProfiler [19] and ImageJ [20]. Segmentation and classification

methods can be calibrated and adjusted for analysis of a broad

range of microscopy image data including digital pathology data

[21].

Here, we present a new method to fully automate the analysis of

IHC-assessed protein expression in melanoma. An IHC marker

was used to highlight melanoma cells in a tissue context. Image

analysis was used to extract a set of morphological and texture

features to characterize each type of cell and features distinguish-

ing melanoma and non-melanoma cells were identified. Finally we

present a classifier model applicable for IHC biomarker assess-

ment in TMAs, that with high accuracy can distinguish between

melanoma cells and non-melanoma cells. To our knowledge this is

the first description of a method using a molecular marker for

labeling both the training and testing set to fully automate this

process.

Figure 1. Dye separation. Using the color deconvolution plugin, an
image of a tissue cores double stained with a counter staining dye (e.g.
hematoxylin) and a second dye binding to cellular feature of interest
(e.g. eosin or dye couple using IHC to a protein of interest) can be
separated into two images highlighting amount and patterns of the
feature of interest. The post deconvolution images are false-color coded
in such a way that the RGB values of each pixels are associated to each
dye absorption and according to the color properties of each original
dye (i.e. pink for eosin, brown for DAB and blue for hematoxylin).
doi:10.1371/journal.pone.0062070.g001
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Figure 2. Melan-A and nuclei segmentation dependence on the staining variability in the three patient cohorts available. Using
CellProfiler a Melan-A staining IHC positive mask is generated for TMAs sections from the discovery (A) and the validation (B) cohorts. In addition a
second TISSUE mask was generated from the hematoxylin deconvolved channel (i.e. H-CHANNEL) highlighting all areas of the tissue were there was
tissue present (C–D). Box and whiskers plot of average intensity of the DAB-CHANNEL and the H-CHANNEL in the discovery and the validation cohort
shows similar values and no significant differences (E). On the segmented regions of interest (i.e. TISSUE and Melan-A) generated from the CellProfiler
ruleset intensity of H-CHANNEL and DAB-CHANNEL was measured and distribution across the cohorts shows similar levels of total hematoxylin
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Methods

Ethics statement
Ethical approval was given by the Central Ethical Review board

of the Uppsala region (Regionala etikprövningsnämnden i

Uppsala). Written consent was given by the review board for the

use of human tissue from the discovery cohort (2005:U230) and

the validation cohort (2005/U232) for melanoma research. The

patients included in both studies signed an informed consent.

Sample preparation and immunohistochemistry
The study focused on two independent cohorts of patients with

diagnosed cutaneous melanoma. An initial discovery cohort was

used to build a pattern recognition model for melanoma nuclear

intensity (in the log10 scale), measured as sum of all intensity values within the segmented ROIs, but a significantly decrease of total intensity values
of DAB in the Melan-A ROIs between the discovery and validation cohort with the hematoxylin counterstained cohort (F). Scatter plotting of total
intensity values of the deconvolved H-CHANNEL for the same tissue samples images from the discovery cohort were same samples were once stained
with counterstained with hematoxylin and then independently stained with Melan-A (G).
doi:10.1371/journal.pone.0062070.g002

Figure 3. Cell nuclei segmentation of Melan-A stained TMAs tissue spot images. The CellProfiler ruleset take as input the original IHC
stained tissue core image as well as the Melan-A binary mask (A). (B) In the next step the corresponding H and DAB channel images are deconvolved
and only the H-CHANNEL image is further processed for cell nucleus segmentation. Initially H-CHANNEL image is pre-processed to sharpen the image
and highlight object of interest (i.e. cell nucleus). Using the binary Melan-A mask in A, non-melanoma (C) and other types of cells (D) nucleus are
segmented out (highlighted in red in panel C and D) using the robust background segmentation method in order to extract morphological and
texture features.
doi:10.1371/journal.pone.0062070.g003
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texture patterns. Samples included in the discovery TMAs were

collected from a cohort of 264 patients diagnosed with malignant

melanoma during the period 1993–2003. A validation cohort of

157 melanoma patients, diagnosed during the period 1982–2004,

was also used in this study, for which tissue samples from primary

or lymph node and metastatic tumor (if available) were collected

[22]. TMAs, using 0.6 mm cylinders, were employed arraying up

to 6 tissue core samples per patient (i.e. validation cohort).

Commercially available antibodies were used as primary antibod-

ies for IHC staining of Melan-A (Novocastra) and Ki67 (Dako).

Automated IHC was performed as previously described [23],

using 3,39-diaminobenzidine (DAB) as chromogen to visualize

antibody-target protein binding in tissue as a brown-black color

signal.

Manual scoring of IHC staining
Sections from the TMA representing the validation cohort were

immunostained with the proliferation marker Ki67 to validate the

pattern recognition model on IHC stained sections. Melanoma

cells were manually counted and scored as positive or negative for

Ki67 expression and an overall continuous ratio value of IHC

positive cell over the total number of melanoma cells per tissue

core was generated. This value was then compared to the

automated reading of the melanoma cell pattern recognition and

Ki67 quantification.

Image acquisition
Digital images from immunostained TMA sections were

acquired using an Aperio XT digital glass slide scanner (Aperio

Technologies, Vista, California, USA) at 0.20 mm resolution.

TMA digital slide images were further separated into individual

tissue core images using the commercial software TMALab2

(Aperio Technologies). Extracted tissue core images were saved

using JPEG2000 compression image format (Compression factor

1:100).

Quantification of IHC automated variation due to
variability in staining and image acquisition settings

As previously described, inter and intra laboratory variability of

both immunostaining and counterstaining are the primary cause

of independent validation failure for most automated digital

pathology applications [24–26]. To test for batch staining and

counterstaining effect on the segmentation of cell nuclei from the

Melan-A mask in the hematoxylin channel (i.e. H-CHANNEL),

we included two different sets of TMAs (from discovery and

validation patient cohorts) that had been stained and digitalized

independently in the same laboratory. The respective staining

intensity values were then compared among different batches.

Image analysis and cell feature extraction
Image analysis and feature extraction were performed on IHC

images using the open-source software CellProfiler R10997 [27]

(http://www.cellprofiler.org) and Matlab R2011a (MathWorks,

Apple Hill Drive, MA, USA).

a) Dye separation. Although the dyes used for labeling have

different colors, namely brown for diaminobenzidine (DAB)

and blue for hematoxylin, there exists complex overlapping

spectra. To examine the photometric, morphometric and

texture features of melanocyte nuclei, the relative contribu-

tion of each of the dyes to the resulting absorption spectrum

needs to be separated. To estimate each dye contribution we

used a color transformation technique, based on the original

red-green-blue band information. The method is based on

orthonormal transformations of the original RGB image

depending on user-determined color information about the

two stains [28]. After the color deconvolution, the images of

each dye, namely H-CHANNEL (i.e. hematoxylin) and

DAB-CHANNEL (i.e. diaminobenzidine) were used for

further densitometry or texture analysis (Figure 1).

b) Melan-A mask generation. A CellProfiler ruleset was

developed to automatically extract Melan-A regions of

interest (ROIs) in TMA core images from the discovery

and validation cohort. An image pre-processing step is added

after IHC staining deconvolution to avoid melanin pigmen-

Figure 4. Cell nuclei segmentation on the discovery and the validation cohort. Using the Melan-A binary masks, melanoma and the
remaining cell nucleus are selectively segmented from all Melan-A stained tissue spot images in the discovery and the validation cohorts. (A) Linear
regression analysis of average nuclear size, total number of nuclei and average granularity of size 1 features on the same tissue samples on the Melan-
A_DISCOVERY and H_DISCOVERY cohorts after standartisation (divided by the maximum value and scaled at minimum value of 0 and maximum
value of 1). (B) Average number of segmented melanoma (green bars) and other type of cell nuclei (blue bars) per tissue spot image in the MELAN-
A_DISCOVERY and Melan-A_VALIDATION cohort. (C) Comparing the ratio of Melan-A positive tissue area ratio to the ratio of Melan-A positive cell
nuclei ratio detected by the approach, the scatter plot shows how correlated the ratios are in both cohorts. (D) Ratio of Melan-A stained tumor area
towards total amount of present tissue (green bars) and the ratio of melanoma cell nuclei (as defined by the Melan-A mask) to total number of
detected nuclei (blue bars) in both cohorts. (E) Average intensity levels after stain deconvolution of IHC Melan-A intensity in Melan-A mask
highlighted areas (blue bars) compared to the average hematoxylin intensity (green bars) in both cohorts.
doi:10.1371/journal.pone.0062070.g004

Table 1. Distribution of number images and identified cell nuclei in the training and validation data sets.

Dataset # tumour cells # other cells # total cells # images

training full 76696 293186 369882 334

training balanced 4662 4691 9353 334

validation full 128929 257852 386781 615

validation balanced 3077 3102 6179 615

validation Hematoxylin unknown unknown 43799 90

doi:10.1371/journal.pone.0062070.t001
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tation in single melanocytes or basal epidermis to be

interpreted as Melan-A staining. During this step, upon the

deconvolved DAB-CHANNEL image, a region growing

morphological operation is applied to the mask to select

clusters of melanoma cells stained with Melan-A. This

approach is calibrated using melanoma tissue images from

the discovery and validation cohorts with Melan-A and

pigmentation. A detailed description of the steps involved for

generating a Melan-A mask from an IHC stained TMA tissue

spot is provided in Text S1. Figure S1 shows image examples

of tissue cores stained with Melan-A from both cohorts as well

as the respective masks. The Melan-A ROIs are further used

as true binary labels for melanoma cells in the training and

validation process.

c) Cell nuclei segmentation and feature extraction. In

the proposed method, advantage is taken from the H-

CHANNEL deconvolution to highlight nuclei as bright spots

from background. More importantly, to effectively segment

clumped objects, CellProfiler contains a modular three-step

strategy based on previously published algorithms [29,30].

Once the nuclei were identified a mask of the corresponding

nuclei was stored and this mask was used to measure their

texture and morphological properties. A detailed list of these

features is described in Table S1. This list includes features

previously used for microscopy pattern recognition applica-

tions [31] as well as Haralick and Gabor texture features. We

used the algorithms already implemented in CellProfiler [19]

to compute these features, however, other commercial or

publically available packages could be used.

Definition of training and validation datasets
Three different datasets were generated to develop and validate

the melanoma cell pattern recognition model.

1.Discovery dataset (Melan-A_DISCOVERY). Cell nuclei

features extracted from images in the discovery dataset

(n = 334) were used for feature selection and generation of a

classification model. A total of 73 features (Table S1) were

extracted from each nucleus in the training dataset

(n = 369882). Given the unbalanced class (i.e. melanoma and

non-melanoma) distribution of the training dataset and to

avoid overfitting, nuclei were randomly selected from the full

training dataset to derive a balanced class training dataset

(n = 9353). A classification model was built using the balanced

training dataset and internally validated on the remaining cell

nuclei features of the full training dataset.

2.Hematoxylin validation dataset (H_VALIDATION). In order

to test the reproducibility of the feature selection and

classification model on consecutive TMA sections from the

validation cohort, sections from melanoma tissue included in

the discovery dataset were digitalized prior and post-immuno-

staining with Melan-A antibody. Stain deconvolution followed

by nuclei segmentation and feature extraction was applied

identically to the Melan-A stained sections.

3. Independent Melan-A validation dataset (Melan-A_VALI-
DATION). Cell nuclei features extracted from images in the

validation dataset (n = 615) were used for independent

validation of the classification model learned on the training

dataset. Stain deconvolution followed by nuclei segmentation

and feature extraction was applied to the validation Melan-A

stained TMA sections. Melan-A stained sections in the

discovery and validation cohort were stained and digitalized

under same conditions. Using the Melan-A mask, a set of

labeled nuclei (n = 386781) was identified (i.e. melanoma or

non-melanoma) to test the melanoma classification model built

on the discovery cohort.

Feature selection
Given the unbalanced class (i.e. melanoma and non-melanoma)

distribution of the Melan-A_VALIDATION, nuclei were ran-

domly selected from the full training dataset to derive a balanced

class training dataset (n = 6179). This feature set was merged with

the random feature set from the Melan-A_DISCOVERY dataset.

Nuclei features relevant for classification of melanoma and non-

melanoma cell were evaluated on the merged class balanced

dataset. Features were ranked based on the significance of the

difference in expression levels (i.e. p-values) in the feature selection

balanced dataset. After sorting them according to their rank, each

feature was iteratively removed from Melan-A_DISCOVERY,

balanced and the full Melan-A_VALIDATION dataset. After

removal of a feature:

N The balanced Melan-A_DISCOVERY dataset was randomly

split into training (66.5%) and internal validation (33.5%)

datasets. A SVM model was learned on the training dataset

and then validated in the testing part of the Melan-

A_DISCOVERY dataset.

N A second independent validation was carried out on the

balanced and the full Melan-A_VALIDATION datasets.

N The optimal feature set was the one yielding maximum

predictive accuracy in the Melan-A_DISCOVERY and

Melan-A_VALIDATION datasets.

Receiver operator curve analysis (ROC) was carried out to test

the univariate predictive accuracy of each selected feature in the

final optimal set. SPSS (version 18) was used to assess the

significance of difference of mean expression of features values in

the melanoma and non-melanoma cells. ROC analysis was also

carried out using SPSS. Matlab and LIBSVM implementation of

SVM were used to iteratively find the optimal feature set [32].

Figure 5. Cell nuclei feature discrimination. From the balanced pooled feature set from the Melan-A_DISCOVERY and Melan-A_VALIDATION
dataset, selected features from the univariate analysis were tested using Receiver-Operator-Curve (ROC) analysis to show the performance of a binary
classifier (i.e. melanoma or non-melanoma) system as its discrimination threshold is varied for each of the selected features (A). To illustrate the
differences in granularity (top discriminative feature from the ROC analysis), a representative set of melanoma and non-melanoma nuclei were
selected from the discovery TMA and the histogram of the granularity feature (i.e. six pixel radius) values from each set is shown in B.C–D) Top
texture feature (i.e. granularity feature with structure element of six pixel radius) in melanoma cells (C) and non-melanoma cells (D) with cell nucleus
masks shown using different colored segmentation labels to differentiate nucleus of touching cells. E) Box-plot showing distribution of top
granularity features with variable structure element size (i.e. six and two pixel radius) that show significant difference (p-value ,0.001) in expression
values between melanoma and non-melanoma cells. F) Comparison of major and minor axis of bounding ellipse around the nuclei of melanoma and
non-melanoma cells shows no significant difference, showing no correlation of cell nucleus segmentation size and granularity feature as well as no
cell selection bias for the evaluation of the granularity feature.
doi:10.1371/journal.pone.0062070.g005
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Figure 6. Classifier training and validation. An overview of the cell nuclei in the balanced Melan-A_DISCOVERY dataset following the optimal
feature set (i.e. 34 features selected in the previous step) (A). A SVM classifier is build using data from the training set (66.5%) and tested on the
remaining cases (33.5%). To test the robustness of the classifier, during testing Weka varies the threshold (by default set to 0.5 and the label for the
nuclei would be the class with probability higher then 50%) on the class probability estimates from LibSVM for melanoma and non-melanoma
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Learning of a cell classification model
From all extracted morphological and texture features, the ones

not selected in the previous step were filtered out from all training

and validation datasets. The class balanced Melan-A_DISCOV-

ERY dataset was used to develop a melanoma cell classification

model. WEKA3 [33] a machine learning and data mining

software (version 3.6.7) was used to derive a learning model and

test the model on the validation datasets.

Classification model construction and validation
Three classification methods were used: a probabilistic learner,

Naı̈ve Bayes (NB), a decision tree learner, random forest (RF)

[34,35] and SVM [36,37]. These methods are applicable for

different research problems, considering the specific advantages

and disadvantages for each method. Naı̈ve Bayes, random forest

clustering and classification algorithms have the advantage of

producing classification models that are easy to interpret. SVM

have shown to be effective in deriving highly accurate classification

models in digital pathology [20].

Independent biomarker validation dataset
To validate the use of the melanoma cell classification model for

IHC biomarker quantification a set of consecutive sections were

cut from the validation cohort TMA and stained for the cell

proliferation marker Ki67. TMA sections from the validation

cohort were stained for Ki67 and digital images were captured as

described above. From all tissue spot images, a subset (n = 270)

were selected to be analyzed with the feature extraction pipeline

described above and tested with the melanoma cell classification

model. Using the melanoma classification model, all melanoma

cells were identified and quantified as either positive or negative

for KI67 staining. A trained user was also asked to blindly score

the number of Ki67 positive and negative melanoma cells from

each image in the Ki67 validation set. The results from the

automated and manual quantification of Ki67 staining were cross-

compared.

Results

Effect of variability in staining and image acquisition
settings

Optimally titrated primary antibodies for IHC and standardized

hematoxylin counterstaining protocols were used throughout the

study. However, due to the well-known variability of immuno-

staining assays, we tested how robust the stain deconvolution and

cell nucleus segmentation was towards this variability. The color

deconvolution algorithm was calibrated in the Melan-A_DIS-

COVERY cohort according to the previously published guidelines

[28]. The resulting matrix of colorimetric calibration settings of

Melan-A (Red = 0.269, Green = 0.570, Blue = 0.776) and

hematoxylin (Red = 0.575, Green = 0.681, Blue = 0.453) was

used throughout all the CellProfiler analysis rule sets. Using these

pre-defined colorimetric settings, three melanoma TMA glass

slides, digitalized independently, were analyzed with regard to the

deconvolved H-CHANNEL and Melan-A-CHANNEL intensity

variation (Figure 2A–B). After color deconvolution, each image

channel was independently analyzed to identify all DAB positive

cell nucleus (Figure 2C–D). There were similar levels of average

DAB-CHANNEL ROIs intensity levels when comparing the

discovery and validation cohorts (Figure 2E). In order to evaluate

the accuracy of the color deconvolution method to estimate the

optical density of DAB and hematoxylin, the glass slides from the

discovery cohort were digitalized both prior to the immunostain-

ing (hence with only the hematoxylin counterstain) and after

immunostaining (Figure S2A). The CellProfiler ruleset was applied

to both data sets and intensity levels were compared (Figure S2B).

Paired-samples comparison showed an excellent correlation of

segmented hematoxylin positive tissue area (Rho = 0.832, p-

value,0.001) as well as average hematoxylin intensity levels (Rho

resulting in different classification labels for the cell nuclei in the test set (B). The SVM classifier derived from the balanced Melan-A_DISCOVERY is
then validated in 270 randomly selected tissue samples from the validation cohort stained with Ki67 antibody (C). Linear regression analysis is used
on the automated counting of ratio of melanoma cells expressing Ki67 by the SVM-based model (blue dotted line) and ImmuRatio (red dotted line)
and the same ratio exactly evaluated by an experienced human annotator (D).
doi:10.1371/journal.pone.0062070.g006

Table 2. Performance evaluation on divers supervised classifiers upon the balanced Melan-A_DISCOVERY and Melan-
A_VALIDATION cohorts.

Data set Classifier
Support Vector
Machine (SVM)

Random Forest
Clustering (RFC) Bayes Network (BN)

BALANCED Melan-A_DISCOVERY TP Rate 0.85 0.867 0.79

FP Rate 0.15 0.133 0.21

Precision 0.85 0.867 0.793

Recall 0.85 0.867 0.79

F-Measure 0.85 0.867 0.79

ROC Area 0.925 0.942 0.861

BALANCED Melan-A_VALIDATION TP Rate 0.914 0.877 0.834

FP Rate 0.105 0.123 0.166

Precision 0.891 0.887 0.842

Recall 0.914 0.877 0.839

F-Measure 0.913 0.883 0.929

ROC Area 0.964 0.952 0.834

doi:10.1371/journal.pone.0062070.t002
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= 0.837, p-value,0.001). Total intensity levels, measured as sum

of intensity values of all pixels in the DAB and hematoxylin ROIs

showed similar levels for hematoxylin. A significant difference of

total DAB intensity levels was found (Figure 2F). The few outliers

from the low levels of DAB observed from the discovery cohort

prior to the immunostaining, after visual inspection were

confirmed to be due to high levels of endogenous melanin

pigment present in these samples. A linear regression analysis of

the intensity levels further confirmed the near perfect correlation

of the total intensity values of the H-CHANNEL in the discovery

cohort prior and post immunostaining (Figure 2G). The

CellProfiler rule set used to generate the DAB and hematoxylin

ROIs, as well as extraction of the intensity values, can be found in

the Text S2.

Cell nucleus segmentation
Together with the calibration of the staining colorimetric

properties, the calibration of the cell nucleus segmentation is a

critical step prior to extraction of features describing the texture

and morphological properties of the melanoma and non-melano-

ma cell nuclei. The challenge and objective of the cell nucleus

segmentation, is to develop and calibrate tissue cell nucleus

segmentation and feature extraction using the discovery cohort

sample images and independently validate this segmentation

approach unchanged in an independent cohort of samples. A

detailed description of the CellProfiler rule set used to segment the

nuclei is given in Text S1 and the code can be found in Text S3.

Cell nuclei segmentation was validated for reproducibility by

comparing the result of Melan-A_DISCOVERY with H_DIS-

COVERY cohorts and Melan-A_DISCOVERY with Melan-

A_VALIDATION.

CellProfiler was used to segment nuclei in images from the

H_DISCOVERY and Melan-A_DISCOVERY cohorts (Figur-

e S3A–B). After H-CHANNEL was deconvolved in the original

images (Figure 3A–B), the nuclei were identified using the steps

described in Text S1 in the melanoma tumor stroma (Figure 3C)

and tumor nest mask (Figure 3D). Nuclei morphological and

texture features were measured using the nuclei mask in H-

CHANNEL (Figure S2B). Comparison of features extracted in

images of same tissue samples (Figure S2A) showed an excellent

correlation of number of nuclei identified in each of the paired

samples (Rho = 0.833, p-value,0.001) as well as average nuclear

size (Rho = 0.750, p-value,0.001) (Figure 4A). One of the top

texture features characterizing tumor cell nuclei and recently

reported to distinguish them from the normal tumor stroma cells

nuclei is granularity [10,38]. We compared granularity as feature

extracted using CellProfiler (structuring element of radius 1 pixel)

between H_DISCOVERY and Melan-A_DISCOVERY cohorts.

Again, the correlation of the granularity feature extracted from

paired samples showed a good correlation (Rho = 0.429, p-

value,0.001) (Figure 4A).

In a second step we validated the cell nuclei segmentation by

comparing results of running the same cell nuclei segmentation

ruleset, between the Melan-A_DISCOVERY and Melan-A_VAL-

IDATION cohorts. Accordingly to proportional differences in size

of tissue spots (i.e. 1 mm and 0.6 mm), the numbers of detected

melanoma and non-melanoma cell nuclei were similar between

the Melan-A_DISCOVERY and Melan-A_VALIDATION co-

horts (Figure 4B). This is also confirmed by the linear regression

analysis of the ratio of DAB positive to total amount of tissue

present with ratio of melanoma cells to non-melanoma cell nuclei

in the Melan-A_DISCOVERY (R2 = 0.775) and Melan-A_VAL-

IDATION (R2 = 0.648) (Figure 4C). When looking at the

distribution of melanoma and non-melanoma ratio of nuclei or

the total area of Melan-A positive tissue area, similar levels were

observed in both cohorts (Figure 4D). Finally, analysis of DAB

staining intensity in the DAB-CHANNEL of Melan-A IHC

positive ROIs and H-CHANNEL intensity levels shows very

different and significant different intensity levels for both cohorts

further confirming the accuracy of detecting melanoma and non-

melanoma cell nuclei in both cohorts (Figure 4E).

Feature selection
Features were initially ranked from the initial full set of 73

morphological and texture features (Table S1), followed by the

identification of the optimal subset of features for distinguishing

melanoma from non-melanoma nuclei. In order to avoid over-

fitting, we proceeded by ranking the features on a class-balanced

(i.e. melanoma and non-melanoma cells) random subset of the

Melan-A_DISCOVERY and Melan-A_VALIDATION data sets

(n = 15532) (Table 1). Difference of mean level of each feature for

melanoma and non-melanoma cell nuclei was tested (t-test on the

equality of the mean) on a randomly drawn sub-sample (5%,

n = 769) of cell nuclei to avoid high significance associated with

small feature changes due to sample size. All features were further

ranked according to the p-value of equality of the mean levels

between melanoma and non-melanoma cell nuclei (Table S1). A

scatter plot of all the nuclei from the feature selection dataset

(n = 15532) following the top five most differently expressed

features (i.e. lowest p-value) showed good discrimination of

melanoma and non-melanoma cells following these features

(Figure S4A).

Iteratively from the full feature set, starting from the less

differently expressed features (i.e. high p-values), a reduced feature

training (66.5% of class-balanced Melan-A_DISCOVERY), test-

ing (33.5% class-balanced Melan-A_DISCOVERY) and indepen-

dent validation (class-balanced and full Melan-A_VALIDATION)

datasets were generated. A LibSVM melanoma cell classification

model was build in the training dataset and tested in both

independent validation datasets (Figure S4B). The cubic interpo-

lation line fitted on the classification accuracy values of the full

independent Melan-A_VALIDATION datasets (blue dots) (Figur-

e S4B) was used to find the set of features for which the maximum

accuracy is reached and equation of the polynomial fit generated

(i.e. 34 features, 86.4%). From the balanced merged feature set (i.e.

Melan-A_DISCOVERY, Melan-A_VALIDATION class bal-

anced datasets), selected features from the optimal feature set

were tested using ROC analysis and area under the curve was

measured for each feature as performance indicator (Table S2).

ROC analysis shows the performance of a binary classifier (i.e.

melanoma or non-melanoma) system as its discrimination

threshold is varied for each of the selected features (Figure 5A).

ROC analysis of top most discriminant features also shows how

relevant these features are to discriminate between melanoma and

non-melanoma cells with area under the curve (AUC) values

ranging from 0.663 to 0.734 (Figure S4C), also confirming the

granularity with a structuring element of radius one pixel being the

top most discriminative feature (AUC = 0.734).

To illustrate the differences in granularity a representative set of

melanoma (n = 30) and non-melanoma nuclei (n = 30), showing

highest differences of granularity were selected from the balanced

Melan-A_DISCOVERY cohort (Figure 5B). Images of the

deconvolved H-CHANNEL of the melanoma (Figure 5C) and

non-melanoma (Figure 5D), for these cell nuclei using the Melan-

A binary masks also show distinctive granularity features.

Difference of mean values for the top two granularity feature

(size of structuring element radius 1 and 6 pixels) between the

melanoma and non-melanoma cell set showed also to be
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significant (p-value,0.001) (Figure 5E) as well as negatively

correlated (Rho = 20.337). Comparison of size (number of pixels)

for the major and minor axis of bounding ellipse around the nuclei

(Figure 5F) of melanoma and non-melanoma cells showed no

significant difference, as well as no significant correlation with the

granularity feature values.

Classifier training
To select the best fitted classifier for the classification of

melanoma and non-melanoma cell nuclei a Naı̈ve Bayes Network

classifier (NBN), a Random Forest classifier (RF) and a Support

Vector Machine (SVM) classifier were trained on the two-thirds

(66.5%) of the balanced Melan-A_DISCOVERY and then

evaluated internally on the remaining of the balanced Melan-

A_DISCOVERY data set (33.5%)(Figure 6A). Validation of the

classifiers models show similar performances for SVM and RF and

a clear improvement compared to NBN (Table 2). However, the

independent validation of the SVM and RF supervised models in

full Melan-A_VALIDATION dataset shows that SVM outper-

forms RF (i.e. average out performance 1.7%) indicating that

SVM is more appropriate for learning a better generalizable

melanoma classification model.

Classifier validation
LibSVM [32] was selected to generate a probabilistic logistic

classification model to control the label probability threshold in

order for true positive (TP) rate of melanoma nuclei (i.e. by default

set to 50%). A LibSVM model was generated on the training part

of the balanced Melan-A_DISCOVERY dataset (66.5%) and

tested on the remaining set of nuclei (33.5%). WEKA was used to

illustrate the classifier prediction trade-offs that can be obtained by

varying the threshold value between classes (i.e. melanoma and

non-melanoma). The resulting classification performance on the

test set was used for ROC curve analysis to show the robustness of

the classifier with regard to the class probability boundary

(AUC = 0.924)(Figure 6B). The classifier developed in the

Melan-A_DISCOVERY dataset was tested independently in the

Melan-A_VALIDATION data set (Table 2). Additionally, the

same classifier was tested on samples stained only with hematox-

ylin from the discovery cohort (i.e. H_DISCOVERY). The results

were visually inspected by a trained pathologist (FP) and deemed

to be accurate with regard to melanoma cell classification.

Example of input from the H_DISCOVERY and the correspond-

ing output from the SVM melanoma classification model are

shown in Figure S5A–D.

Classifier validation for biomarker quantification
One of the goals, for developing image pattern recognition

models as described, is to use these models for recognizing

melanoma cells in images of tissue sections from melanoma

specimens. In this particular study the goal was to identify

melanoma cells with high accuracy and reproducibility in both the

dicovery and validation cohort. Once the recognition of the

melanoma cells in these sections is possible, then the deconvolved

DAB-CHANNEL could be used to quantitate the expression levels

of any given protein candidate biomarker of interest (Figure S6A).

The developed SVM-based melanoma classification model was

further validated for general biomarker discovery in a consecutive

section of the validation cohort stained with Ki67. Ki67 is a well-

known biomarker for cell proliferation, earlier described in the

discovery cohort [39]. Ki67 expression in tumor cells has been

suggested as a prognostic indicator for cancer patients, including

melanoma [40] (Figure 6C). A set of randomly selected tissue spot

images (n = 270) in the discovery cohort was assesed by manual

evaluation and scoring (JB). The amount of melanoma cells were

manually counted and the ratio of these cells expressing the Ki67

protein was calculated. The same images were subjected to an

adapted CellProfiler rule set (Text S3), extended with additional

analysis steps to quantitate the deconvolved DAB-CHANNEL for

Ki67 expression in a cell-by-cell basis (Figure S6B). The SVM

pattern recognition model was applied to the texture and

morphological features extracted from selected tissue spot images

(n = 270) and the total amount of melanoma cells as well ratio of

these cells expressing Ki67 was quantified (Figure S6C). A linear

regression analysis of the manual and automated quantification

results of Ki67 showed a high level of agreement between the

scores obtained by manual counting and the automated SVM-

based melanoma classification and biomarker quantification

approach (R2 = 0.745, Rho = 0.831) (Figure 6D). Automated

results were also compared to ImmunoRatio, a previously

published method for quantification of Ki67 in IHC stained

TMAs tissue spots [41] (Figure 6D). Comparison of Immunoratio

Ki67 ratio to the SVM-based approach by us developed showed

excellent agreement (Rho = 0.776) and also good agreement with

the manual annotation (Rho = 0.662).

Discussion

The aim and purpose of the present work was to develop an

algorithm for automated quantification of IHC-determined

protein expression in melanoma tumor specimens and to attain

a strategy that could be further extended to other solid tumor

types. All the tools used to generate the obtained data and utilize

the pattern recognition model are publically available, making this

system valuable for use in the research community. Previously

described automated methods such as AQUA, take advantage of

known biological markers, e.g. cytokeratin markers and have been

extensively used in fluorescence-based pathology assays [13,42].

However, up-to-date no functional method has been proposed for

use with optical bright-field high throughput microscopy pathol-

ogy applications. The presented approach differs from other

commercially available packages and previously proposed super-

vised methods, since a molecular marker is used to objectively

select data for training purposes. Additionally, previously de-

scribed methods for use with digital pathology pattern recognition

applications, have focused on laborious image object identification

by skilled pathologists, followed by the measurement of texture

and morphological features of single or group of pixels with similar

texture or color properties [9,10,43]. Methods characterizing

epithelial nuclear characteristics, such as size, color and spatial

distribution in order to distinguish tumor and lymphocyte

infiltration has shown to be effective in solid tumors such as

breast cancer [11,44]. Here, we propose an extension of this work

that learns to identify texture patterns of true biological objects

such a cell nuclei instead of pixels. A high quality counterstain is

helpful, however, we show that it does not have to be specifically

controlled for automated analysis.

To our knowledge this is the first time such a cell-type specific

marker has been proposed to develop a supervised machine

learning classification model for digital pathology. In contrast, to

previous methods the learning and validation process of the

method proposed here is fully automated with regard to the

training and validation. Once the specificity of the antibody for

Melan-A and digitalization is approved there are no requirement

for image filtering to ensure high-quality TMA images for the

training. One of the challenges in developing automated methods

for pattern recognition in digital pathology is the selection of

robust methods of segmenting objects that are biologically relevant
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(e.g. nuclei, cells or vessels) and secondly selecting features

describing biologically relevant changes of morphology or texture

at the micro or macro tissue level [45]. Both segmentation and

feature selection are affected by non-biologically relevant variabil-

ity in staining and image acquisition settings [17]. Independent

validation of the presented SVM-based melanoma model on

digital slides stained and digitalized at different times shows

robustness with regard to such variations (Table 2).

In contrast to previous approaches, our system proposes the use

of a limited number of texture and morphology features (n = 73)

that could be measured in a reasonable amount of time (average of

2 minutes for 1 mm diameter tissue core image) allowing such a

method to be of practical consideration for high throughput

assays. Further reduction of these features shows to improve both

internal classification during the training and validation set as well

as independent validation on the a second independent cohort of

patients (Figure S4B). A key computational aspect of the approach

proposed here is use of unbiased data-driven approach to identify

morphologic and texture features relevant for discrimination of

melanoma and non-melanoma cell nuclei. We have earlier shown

that this discovery-based approach is applicable in the study of

cancer morphology and texture changes from microscopic images

of patient samples [43]. Selection of cell nuclei elongation in the

top most discriminative features for melanoma and non-melanoma

in the present study as well as selection of this feature for

discrimination of infiltrating lymphocyte and tumor cell nuclei in

breast cancer [44] indicates the possibility of such method to be

scalable to the analysis of other solid tumor types.

Our work demonstrates the ability to apply publically available

image analysis tools together with a machine-learning framework

to build a powerful pathology image–based pattern recognition

model from very small samples of a solid tumor. Use of cell nuclei

as seeds for quantifying whole cell biomarker expression levels in

melanoma cells is demonstrated by validating the SVM-based

model in consecutive sections from the validation cohort. The in-

build features of the cell nucleus and cell outer border

segmentation also allow for discrimination of biomarkers expres-

sion with regard to these subcellular compartments (Figure S6A).

All analysis pipelines used to generate the data presented here are

available in the attached document. Since antibody-based

proteomics occupies a key role in the cancer biomarker discovery

and validation pipeline, such versatile automated tools would

facilitate the high-throughput translation of candidate biomarkers

in melanoma from the research bench to clinical implementation

[1]. Although all images used in our study came from melanoma

TMAs digitalized glass slides, inclusion in the training and

validation of large collection of TMAs melanoma patient samples

(n = 949) allows the derived classification model to capture general

changes of melanoma and non-melanoma cells in TMAs.

As a conclusion, here we propose a method for general use in

biomarker melanoma cell pattern recognition and melanoma cell

specific biomarker quantification. Use of TMAs for the training

and validation is both a strength and a limitation of this study.

Since we use a large number of samples to train and validate the

melanoma cell classification model we propose this method for

general use with TMAs. In order to extend the model for use with

full glass slides, a further stratification of the non-melanoma cells

and extension of the feature set to allow to capture differences with

the new cells types are needed. As cell- and tumor-type specific

protein expression is exceedingly rare [46], developing new

antibodies with high specificity will remain a challenge. However,

our strategy and results from the image processing and machine

learning pipeline used with melanoma TMA images, suggest that

this approach could be adapted and retrained with digital

pathology data from other solid tumor types.

Supporting Information

Figure S1 Melan-A mask generation. Using CellProfiler a

Melan-A positive mask is generated for TMAs sections from the

discovery (A) and the validation (B) cohorts. Melan-A binary

masks (C, D) generated from the CellProfiler ruleset highlight in

black, areas where there is Melan-A staining and with with white,

IHC staining negative and slide background.

(TIF)

Figure S2 Stain color deconvolution. Figure shows decon-

volution of DAB from Hematoxylin channels in examples of tissue

spot images from the discovery and validation cohort stained only

with hematoxylin and counterstained with hematoxylin and

stained with an antibody against Melan-A (A). Bottom panel (B),

shows the respective images of the hematoxylin channel after using

the color decovolution algorithm (only the hematoxylin decon-

volved channel shown).

(TIF)

Figure S3 Validation of cell nuclei segmentation in the
H_DISCOVERY and Melan-A_DISCOVERY cohorts. (A)

Images of the same tissue samples from the H_DISCOVERY and

Melan-A_DISCOVERY cohorts are analysed using the cell nuclei

segmentation CellProfiler ruleset (Data file S2). From each image

all nuclei present are segmented and masks used to measure

texture and morphological properties of the H-CHANNEL of

each nuclei (B). H-CHANNEL after deconvolution of original

images (A) is mapped using a false colors heat color map, encoding

H-CHANNEL values from low (in blue) to high (yellow-to-red)

(C).

(TIF)

Figure S4 Optimum feature set selection. Iteratively
from the full feature set, starting from the less
differently expressed features, reduced feature training,
testing and independent validation datasets (green dots)
were generated. A SVM melanoma cell classification model

was trained (66.5% of data) and tested (33.5% of data) as well as

independently validated in both the balanced and full Melan-

A_VALIDATION datasets (A). A cubic interpolation line was

fitted on the classification accuracy values of the full independent

Melan-A_VALIDATION datasets (blue dots) and equation of the

polynomial fit generated to find the number of feature for which

the maximum accuracy is reached (i.e. 34 features, 86.4%) (A).

Scatter plot of melanoma and non-melanoma cells from the

balanced Melan-A_DISCOVERY and Melan-A_VALIDATION

datasets following the top five most significantly expressed features

(B). ROC analysis shows also how relevant, the top five most

differently expressed feature, are to discriminate between mela-

noma and non-melanoma cells with AUC values ranging from

0.663 to 0.734 (C).

(TIF)

Figure S5 Validation of the melanoma classification
model. The SVM model learned in the Melan-A_DISCOVERY

is validated in the H_DISCOVERY cohort with the same samples

only counterstained with hematoxylin (A). Images of paired tissue

samples from Melan-A_DISCOVERY cohort (B) and the Melan-

A_MASK (C) extracted by the CellProfiler ruleset, were compared

to the automated melanoma (marked in Red) and non-melanoma

cell nuclei (marked in Blue) in the images from H_DISCOVERY

cohort (A).

(TIF)
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Figure S6 Validation of the melanoma classification
model for general biomarker quantification. Using the

CellProfiler ruleset described in Data file S3, the nucleus of the cell

(black cavity) is extracted from the original immunostained image

and the cell is classifier as a melanoma or non-melanoma cell (A).

Furthermore based on the deconvolved DAB-CHANNEL the

boundary of the cell cytoplasm is fixed on the gradient of the

staining pattern outside the nucleus and the cell defined as

immunostained positive (annotated in red) or negative (annotated

in blue) (A). This ruleset is further applied to two tissue core images

from the validation melanoma TMA immunostained against Ki67

with a ratio of melanoma cells positively stained greaten then

twenty per cent (B) and less then twenty per cent (C).

(TIF)

Table S1 Descriptive statistics of all texture and
morphological measurements made by CellProfiler
modules extracted from non-melanoma and melanoma
cell nuclei in the discovery TMA. Last 3 columns summarise

the univariate T-test of equality of means with a * denoting all

significant features (p-value,0.05) and ** denoting the top most

discriminative features (highlighted in bold).

(XLSX)

Table S2 Receiver operator curve analysis of the
features in the optimal feature set.
(XLSX)

Text S1 Schematic overview of the different steps of the
image analysis pipeline starting from color deconvolu-
tion to the quantification of the immunostaining inten-
sity and ratio of positive tumor cells.

(DOC)

Text S2 Source code of the CellProfiler ruleset used to
segment the Melan-A and hematoxylin regions of
interest from the original IHC images.

(TXT)

Text S3 Source code of the CellProfiler ruleset used to
segment the melanoma and non-melanoma cell nuclei
from the original IHC images.

(TXT)
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