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Abstract

The ‘complex neural pulse’TM (CNP) is a neuromodulation protocol employing weak pulsed electromagnetic fields (PEMF). A
pioneering paper reported an analgesic effect in healthy humans after 30 minutes of CNP-stimulation using three nested
whole head coils. We aimed to devise and validate a stimulator with a novel design entailing a multitude of small coils at
known anatomical positions on a head cap, to improve applicability. The main hypothesis was that CNP delivery with this
novel device would also increase heat pain thresholds. Twenty healthy volunteers were enrolled in this double-blind, sham-
controlled, crossover study. Thirty minutes of PEMF (CNP) or sham was applied to the head. After one week the other
treatment was given. Before and after each treatment, primary and secondary outcomes were measured. Primary outcome
was heat pain threshold (HPT) measured with thermal quantitative sensory testing. Other outcomes were warmth detection
threshold, and aspects of cognition, emotion and motor performance. As hypothesized heat pain threshold was significantly
increased after the PEMF stimulation. All other outcomes were unaltered by the PEMF but there was a trend level reduction
of cognitive performance after PEMF stimulation as measured by the digit-symbol substitution task. Results from this pilot
study suggest that our device is able to stimulate the brain and to modulate its function. This is in agreement with previous
studies that used similar magnetic field strengths to stimulate the brain. Specifically, pain control may be achieved with
PEMF and for this analgesic effect, coil design does not appear to play a dominant role. In addition, the flexible
configuration with small coils on a head cap improves clinical applicability.
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Introduction

Magnetic stimulation of the brain is a safe and non-invasive way

to modulate brain function. The best known method is transcra-

nial magnetic stimulation (TMS) and uses strong (1–2 T) and short

(,1 ms) pulses. In 1985 Barker et al. described the induction of

involuntary movement by stimulation of the motor cortex which

indicates that TMS is able to induce action potentials in the brain

[1].

Weaker magnetic stimulation can be achieved with small or

large coils, either commercially available or custom built. This

technique often uses pulsed stimulation and is then referred to as

pulsed electromagnetic field (PEMF) stimulation. Recently, some

evidence has been found that exposure to MRI systems may

change mood [2], brain metabolism [3] and brain activation [4].

In humans PEMF appears to have both analgesic [5] and

antidepressant [6] effects.

Often commercial stimulation systems (e.g. NeoSync, Inc.,

PEMF Systems, Inc., CNP Therapeutics Inc.) use a limited

number of small coils while in research the use of one or more

Helmholz coils is often reported [5]. Helmholz coils are large coils

that fit around the head and generate a relatively homogeneous

magnetic field. The disadvantage of few coils as well as of very

large coils is that it is difficult to investigate which stimulation sites

in the brain are most effective for inducing a specific effect. Large

coils are also impractical due to their size and weight which

impedes their wide spread therapeutic use in either a clinical or

even an extramural i.e. domestic setting. By far the most practical

stimulation system for wide spread clinical and extramural use

would be a small magnetic stimulator that is easy to use and able to
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selectively stimulate specific brain areas. It should also be able to

generate any type of magnetic wave to maximize applicability.

The use of multiple light coils on a head cap eliminates subject

motion relative to the coils and the coils may be positioned over

known anatomical sites. We selected the 10/20 system as used in

EEG for the positioning of the coils because this allows for easy

coupling of newly found knowledge to EEG findings and to

functional neuroanatomy because the brain structures under the

electromagnets are known [7]. One of our aims was the

construction of such a stimulation system.

The complex neural pulse (CNPTM) [8] has been used as a

PEMF at low field strength and it was shown to have analgesic

efficacy in snails [8], rats [9] and humans [5]. A recent study in

humans applied PEMF with the gradient coil of an MR scanner

and found a negative correlation between field strength and brain

activation in a network of brain areas that respond to pain [10]. A

second aim of the present study was to investigate the analgesic

potency of the CNP when administered with our own device.

The underlying mechanism of PEMF induced analgesia is

poorly understood. There is some evidence for endogenous opioid

mediation of PEMF analgesia in animals[8,11], but in humans the

mechanism is largely unknown. It is known that mood has a strong

influence on pain experience [12] and improved mood is thus a

potential mediator of PEMF analgesia, especially because PEMF

was reported to improve mood in depressed patients [6].

Further, dopaminergic tone is correlated to mood and also

sensitive to PEMF and TMS [13,14]. In addition, dopamine has a

modulatory effect on pain (for review see [15]) making dopami-

nergic tone another, although related, possible mediator of PEMF

analgesia. Non-invasive assessment of dopaminergic tone in

humans requires PET or SPECT imaging. However, there are

behavioral markers that are safer, quicker, cheaper and more

practical: the speed of finger tapping and the size of handwriting

are both highly significantly correlated with central dopaminergic

tone as established by PET or SPECT[16,17]. Our final aim was

to find evidence for mediation of an analgesic effect by mood or

dopamine release.

We applied the CNP [8] and studied its effects on the

experience of experimentally induced heat pain in healthy

volunteers. We also assessed emotional state as a potential

mediating factor of analgesia and aspects of motor and cognitive

performance.

Materials and Methods

Ethics Statement
This research has been approved by the Medical Ethical

Committee of the University Medical Center Groningen.

Informed consent was obtained from the subjects and the clinical

investigation was conducted according to the principles expressed

in the Declaration of Helsinki.

Wave synthesis
A personal computer (Pentium) and interface card (K8000,

Velleman, Gavere, Belgium) were used as Arbitrary Waveform

Generator (see figure 1). Digitization resolution was 3 ms, no extra

filtering was applied.

The computer ran a bash shell on Debian Linux (www.debian.

org). C++ programs were written that contained instructions for

wave generation using the libk8000 library (freshmeat.net/

projects/libk8000). Compilation with g++ resulted in one small

(,100 kB) executable for each wave.

Wave amplification
To increase the low power output of the K8000 a DC coupled

amplifier was built (figure S1). The amplifier had a medical power

supply and an isolation unit as additional safety features.

Magnetic field generation and head cap
The electromagnets consisted of 25 mm long, 9 mm thick reed

relays (Reed Relay 275–232, Radio Shack, Fort Worth, TX, USA)

of which the reed switch was replaced [18] by an M2630 mm

grade 2 steel bolt, transforming them into iron core electromag-

nets. Measurements of electrical properties with an RLC bridge on

a single coil yielded the following values: resistance: 245 V,

inductance at 100 Hz: 122 mH, at 1 kHz: 89 mH (without iron

core: 13.5 mH).

Nineteen of these electromagnets were radially attached to a

regular EEG cap with a chin strap (SU-60 and KR, MedCaT,

Erica, The Netherlands) using non-metallic nuts on the inside of

the cap. Electromagnets were positioned according to the

international 10/20 system for EEG electrodes (figure 1).

Safety. All electrical equipment was powered through a

medical isolation transformer (H01.96.00, Jansen Medicars,

Maarssen, Netherlands) (see figure 1).

The entire setup was tested with an International Safety

Analyzer (601PRO, BIO-TEK Instruments Inc., Winooski, VT,

USA) as a class I, type B device according to norm 601 of the

International Electrotechnical Commission (IEC; 1988). Leak

currents to earth were below 20% of the norm, patient leak

currents were below 1.8% of the norm (always below 10 mA) at a

current consumption of 0.2 A. The device passed all tests for a

class I type B clinical device.

Characterization of the setup. Maximum magnetic flux

density was 1.45 mT at each electromagnet (see figure 2).

Frequency response. DC shifted sine waves (min 0 V, max

+3.47 V) of different frequencies were generated with a Function

Generator (Model 110, Wavetek, San Diego, CA, USA) and a DC

power supply and were then used as input to the amplifier.

The following were measured: voltage into the amplifier,

voltage out of the amplifier and magnetic flux density (Gauss-/

Teslameter, FH 54, with an axial Hall probe, HS-AGB5-4805,

Magnet-Physik, Cologne, Germany) at the scalp side of one of the

coils.

The coils acted as a low pass filter, limiting the frequency

response of the system: while the amplifier had its 50% frequency

around 90 kHz, the coils showed a 50% frequency at about

300 Hz (figure 3).

Legal and ethical. Before clinical testing of the stimulator, a

description of the equipment and a copy of the Insurance

Certificate were filed with The Dutch Health Care Inspectorate

(Inspectie voor de Gezondheidszorg) to comply with legislation.

The study conformed to national legislation on medical research

and was approved by the Medical Ethical Committee of the

University Medical Center Groningen, the Netherlands. In

addition the study was registered in the Dutch Trial Register

(Dutch Cochrane Centre, NTR1093, http://www.trialregister.nl/

trialreg/admin/rctview.asp?TC = 1093).

Also, we conformed to the Dutch Personal Data Protection Act

(‘‘Wet Bescherming Persoonsgegevens’’ of 2001). Subjects gave

written informed consent and received neither financial nor

curricular incentives for their participation.

Subjects. Twenty healthy volunteers, all native Dutch speak-

ers, were recruited through advertisements on bulletin boards of

the University of Groningen. Inclusion criteria were: 18–80 years

old, subjectively healthy. Exclusion criteria were: neurological (e.g.

epilepsy) history, psychiatric history, recent use (within four weeks)
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of prescription or non-prescription psychopharmaca, use of .10

units of coffee per day, use of .10 units of alcohol per day,

presence in the body of MRI incompatible implants.

Design. This was a single center, double-blind, sham-

controlled crossover study conducted in the Netherlands. The

within-subjects design was balanced for treatment order. All

subjects received a sham and an active treatment at the same time

of the day with one week in between. By using a random number

generator on the stimulus PC, neither the subject nor the

experimenter was aware of the nature of the treatment. The code

was broken after all twenty subjects had been treated twice. Also,

two field strengths were tested in order to investigate dose (field

strength) effects on the outcome parameters: HIGH (amplitude

1.1 mT) and LOW (amplitude 0.4 mT). Half of the subjects

received HIGH and half received LOW as their active treatment.

Intervention. During a session the volunteers were seated

behind a desk while wearing the treatment cap. Each session

consisted of four blocks of fifteen minutes each. The blocks were

identical in all aspects, except that during the first and last block

only zeroes were sent to the DAC. During the second and third

block either PEMF (LOW or HIGH field, one option per subject)

or sham (all subjects) was applied through all electromagnets so

that a total of 30 minutes of PEMF or sham stimulation was

applied in each session. For sham too, only zeroes were sent to the

DAC.

The applied field was measured afterwards with a tesla meter

(FH 54, Magnet-Physik, Cologne, Germany) and a digital storage

oscilloscope (DSO-101, Syscomp Electronic Design Limited,

Toronto, Canada) and is presented in figure 2. The used PEMF

is based on a published pattern [19], but for simplicity we removed

all trailing zeroes except one and shifted it to positive only. This

does not have a direct influence on the first time derivative of the

field strength, which is proportional to the induced current

according to Faraday’s law. Every integer was converted to a

voltage and presented for approximately 3 ms, resulting in a wave

duration of just under 2.5 s. For the LOW treatment all numbers

in the digital wave were divided by two (the relationship between

this digit and the resulting field strength is not linear). The sham

Figure 1. Schematic overview of the hardware. The interface card translates digital values into voltages. The amplifier in turn increases power
to generate pulsed magnetic fields in nineteen small electromagnets radially attached to the head cap. Photo by S. Martens, consent to publication
was obtained from the subject.
doi:10.1371/journal.pone.0061926.g001

Figure 2. Different stages of the CNP signal. The digital version of the CNP wave as published in the literature[22] (A) and used here (B), was
converted by PC and interface card to the analogue version (C), which was amplified (D) and converted to a magnetic wave (E), all to the same time
scale.
doi:10.1371/journal.pone.0061926.g002
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treatment had the same length and time resolution, but all points

on the digital wave had the value of 0.

End points–general. Several tests were selected to sample

the emotional, sensory, motor and cognitive domain. Two

emotional inventories were administered before and after all other

tests. The other tests were performed in four consecutive identical

blocks of fifteen minutes each. For all parameters, the initial value

was subtracted from the other values on a per subject per session

basis. In case the measure was repeated within a block, the mean

value per block was calculated.

Thermal QST. Warmth detection threshold (WDT) and heat

pain threshold (HPT) were taken as indicators of sensory and pain

perception, respectively. WDT and HPT were measured with

thermal quantitative sensory testing (tQST) with a computer

controlled thermode (Thermotest, Somedic, Hörby, Sweden). The

thermode was held in the non-dominant hand with the heatable

surface at a thenar palmar position.

The thermode temperature started at 32uC and started

warming up at 0.3uC/s at an unpredictable moment (figure 4).

Subjects were instructed to report the moment at which they

noticed that the thermode had started to warm up. The

temperature at which this happens is called the WDT.

When the temperature of the thermode induced a pain

sensation with an intensity of 7 on a scale from 0 (no pain) to 10

(severe pain) subjects pressed an ’escape button’ which resulted in

immediate and rapid cooling (3uC/sec) of the thermode to 32uC.

The temperature at which they pressed the button is called the

HPT and this variable was the primary outcome.

WDTs and HPTs were always measured in triplo and two of

these triplets were measured during each 15-minute time block.

For each triplet, the median was considered for analysis.

Finger Tapping
The speed of finger tapping was measured with a hand counter

(‘hand tally’). Subjects were instructed to hold the counter in the

dominant hand and to press the button with the thumb of the

same hand as often as possible in 20 s. During each 15-minute

block this was measured twice in duplo. For each doublet, the

average was considered for analysis.

Hand Writing
The size of handwriting was assessed by the request to copy a

text (single sentence of 24 words, 132 characters) by hand onto a

blank piece of paper. This was done once in each 15-minute block,

resulting in four time points per subjects per session. The total

surface area of the written text (cm2) was determined and used for

further analysis.

Cognition. Once in each 15-minute block Digit-Symbol

Substitution Test (DSST) of the Wechsler Adult Intelligence Scale

(WAIS)[20] was applied. The DSTT provides a composite

measure of attention, working memory, psychomotor speed,

processing speed, high-speed visuomotor speed and visuospatial

speed. Subjects were instructed to correctly substitute as many

symbols by digits as possible in 90 seconds. The number of correct

substitutions was used for further analysis.

Emotion. To assess emotional state during the experiment,

the Dutch versions of the Positive and Negative Affect Schedule

(PANAS)[21] and the Profile Of Mood States (POMS) were

completed at the beginning and at the end of both experimental

sessions. An extra item ‘‘happy’’ was added to the PANAS,

Figure 3. Frequency characteristics of amplifier, coils and amplifier + coils.
doi:10.1371/journal.pone.0061926.g003

Figure 4. Schematic of thermal quantitative sensory testing
(tQST) method for assessing Warmth Detection Threshold
(WDT) and Heat Pain Threshold (HPT). See text for details.
doi:10.1371/journal.pone.0061926.g004
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resulting in a total of 21 items; they were combined to result in a

score for positive associations and a score for negative associations.

The POMS resulted in scores on the subscales Depression and

dejection, Anger and hostility, Fatigue and inertia, Vigor and activity and

Tension and anxiety.

Exit interview. After all measurements subjects were de-

briefed and asked to report any unusual sensations, moods or

thoughts during the experiment. Also they were asked whether

they noticed the treatment with magnetic fields.

Statistics. For all outcomes the pre-treatment value was

subtracted on an individual basis. The primary outcome was then

tested across treatments with a one-sided paired t test on the

difference scores. Significance was accepted at 0.05. For the

secondary outcomes an exploratory analysis was done on the

treatments using two-sided paired t tests on the difference scores.

In this case, a conservative multiple comparisons correction

(Bonferroni, 11 comparisons) led to significance being accepted at

0.0045.

Visual presentation. Figures in the results section show the

change after treatment relative to the first measurement in the

same subject in the same session. Bars indicate means and

standard error of the mean.

Results

Table 1 shows demographic and clinical characteristics for each

treatment group. The median (interquartile range-IQR) of weekly

coffee consumption was 3 (16.25) units. The median (IQR) of

weekly alcohol consumption was 3.5 (4.1) units.

Safety, exit interview and blindness
None of the volunteers reported adverse events or other

complaints. At the exit interview they were invited to guess which

treatment they had just received. There was no relationship

between the actual treatment and the subjects’ guess.

Dose-response relationship
There were no statistical differences between data from the

LOW and the HIGH treatment, therefore the two treatment

groups were combined into one.

Treatment effects on tQST, motor function and emotion
Both WDT and HPT increased over the experiment. The

primary outcome parameter, HPT was increased more after

PEMF than after sham (t(19) = 1.98, p = 0.0313, Cohen’s

d = 0.613), but for WDT there was no significant treatment effect

(t(19) = 0.114, p = 0.455) (figure 5).

For the WAIS symbol to digit substitution task there was a non-

significant effect of treatment (t(19) = 2.82, p = 0.0110, alpha

crit = 0.0045) with lower performance after PEMF.

The two motor variables, used as indices of dopaminergic

function, were both unaltered by the PEMF: finger tapping

(t(19) = 0.920, p = 0.369) and handwriting (t(19) = 1.20, p = 0.245).

From the emotional variables the PANAS showed that the

change in positive associations was negative i.e. subjects were less

positive after the treatment. Likewise, the change in negative

associations was positive indicating that subjects were more

negative after the experiment. Despite these changes there was

no evidence of a significant treatment effect: positive associations

(t(19) = 0.421, p = 0.679), negative associations (t(19) = 0.0785,

p = 0.938). Also for the POMS there was no evidence of a

significant treatment effect on any of the emotional subscales (all

t(19), = 0.157, all p. = 0.358).

Discussion

We aimed to construct a novel device for cerebral PEMF

stimulation and tested the hypothesis that the stimulation exerted

an analgesic effect when applying a wave pattern known as CNP

[8].

As hypothesized the weak field PEMF treatment for 30 minutes

increased HPT compared to sham stimulation. The effect size as

indicated by Cohen’s d is ’medium’ to ’large’. During sham

exposure HPT increased by approximately 1uC. In addition, the

PEMF effect added approximately 0.7uC to the HPT. Thus the

HPT increasing effects of PEMF were similar in magnitude to the

habituation effect that developed over the course of the

experiment. Taking into consideration that the thermode temper-

ature increased by 0.3uC/s, treated subjects allowed the already

hot thermode to warm up for an additional 2 to 3 seconds on

average.

Our PEMF effects on tQST results are in agreement with a

previous study [5] which used a very similar time varying magnetic

pulse. Despite a significant number of methodological differences

(within-subjects vs. between-subjects, nineteen radial electromag-

nets vs. three orthogonal Helmholz coils) they found a similar

result to ours, being an increased HPT due to PEMF treatment

and no treatment effect on WDT. They also observed that PEMF

Table 1. Demographic characteristics for each treatment
group.

Group n
female
(%)

right-
handed
(%) mean age (min, max, stdev)

HIGH-
sham

5 80 60 29.4 (24, 44, 8.35)

LOW-
sham

5 80 80 25.8 (20, 40, 8.07)

sham-
HIGH

5 100 80 24.6 (23, 29, 2.51)

sham-
LOW

5 100 100 24.4 (22, 28, 2.61)

doi:10.1371/journal.pone.0061926.t001

Figure 5. Effects of PEMF treatment on changes in skin
sensitivity. Warmth detection threshold (WDT) was unaltered by
PEMF (p = 0.455) but heat pain threshold (HPT) increased more after
PEMF than after sham stimulation. * significantly different at p,0.05.
doi:10.1371/journal.pone.0061926.g005
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effects were more pronounced in women which is compatible with

the fact that our effect was robust and that our population was

mainly (90%) female. The increased HPT also confirms that the

current arrangement of coils, using the international coordinate

system derived from EEG, is effective for the induction of

experimental analgesia. The trailing zeros in the CNP as described

in the patent [22] do not seem to be necessary for its analgesic

effect because we omitted them in this study.

This study shows that the PEMF effect appeared to be quite

specific for HPT. PEMF treatment had no effect on WDT,

indicating that the ability to detect warmth, a non-noxious thermal

stimulus, remained unaltered by the pulsating magnetic field. This

is in agreement with the literature [5] and it is a very advantageous

property for an analgesic treatment: to only reduce pain without

reducing a person’s sensitivity. Finger tapping speed, handwriting,

PANAS and POMS results were all unaffected by the PEMF

treatment.

The digit to symbol substitution task showed a non-significant

treatment effect with worse performance after PEMF than after

sham. The fact that this did not reach significance was because we

did not have a hypothesis about cognition so this is a result from an

explorative analysis with a conservative multiple comparisons

correction. However, there is some biological plausibility because

it was recently shown that cognitive control and sensory processing

can both be influenced simultaneously by one intervention or

manipulation [23]. These considerations combined with the need

for analgesic treatments without cognitive side effects, motivate the

future study of cognitive performance after PEMF treatment.

In order to gather information concerning the working

mechanism of the induced analgesia, we also measured two

emotional parameters and two motor parameters that are sensitive

to dopaminergic tone. No treatment effects on the emotional state

were found so we have no evidence that emotional changes were

mediating the PEMF effects on HPT. We also found no treatment

effects on the two behavioral indices of dopaminergic tone. Taken

together these findings suggest that PEMF analgesia is not

mediated by changes in emotion or in central dopaminergic tone.

The fact that pain tolerance was increased does not identify a

single neuroanatomical structure as the mediating location

because the level of pain tolerance is the end result of the total

function of the anterolateral somatosensory system: nociceptors,

thin fibers, dorsal horn, ventral commissure, spinothalamic tract,

periaqueductal grey and reticular formation, ventromedial,

mediodorsal and intrathalamic thalamus, insula and anterior

cingulate cortex. The latter two are involved in the emotional

aspects of pain such as tolerability and suffering. Therefore, these

are plausible areas for mediation of increased pain tolerance and

in fact a relatively recent study found support for the notion that

brain activation in insula and anterior cingulate cortex as

measured with fMRI was decreased by PEMF stimulation with

the CNP[10].

The mechanisms by which electromagnetic fields can influence

biological systems are not yet fully understood. An abundance of

mechanisms have been proposed and a large number of them have

been confirmed experimentally (for review see e.g. [24] or [25]).

The most established mechanism is induction of an electrical

potential due to changing magnetic flux density (Faraday’s law). As

a result ion motion (current) is altered, which in turn induces

changes in synaptic potentials. Because synaptic potentials

determine the likelihood of an action potential, this is a plausible

mechanism for PEMF effects on neuronal activity: PEMF per se

may not induce action potentials like TMS does, but it can change

the temporal probability of action potentials. A recent paper found

evidence for magnetic sensitivity in the low mT range of

cryptochrome, a protein that is expressed throughout the tree of

life including humans [26]. Human cryptochrome has indeed been

shown to be sensitive to magnetic fields [27]. Cryptochrome is thus

a candidate mediator of the analgesic [5] and antidepressant [6]

effects of PEMF on humans. Mediation of PEMF effects by

cryptochrome, being a protein sensitive to both light and magnetic

fields, could also explain why PEMF effects were reported to be

highly dependent on lighting conditions [28].

We found no differences between the effects induced by the two

field strengths: apparently the intensities were equipotent. Dose-

dependency of PEMF effects is generally very steep and has been

described for different systems to occur below 1 mT [10], below

500 nT [29] and even below 50 nT [30]. It appears that the two

field strengths used in our study (0.4 and 1.1 mT) both induced the

maximum effect.

Concerning the penetration depth of our stimulation, it is often

heard that TMS penetrates 1–2 cm, although H-coils can reach

up to 6 cm [31]. Such statements are incomplete and inaccurate

because what is implied is that TMS can induce action potentials

at these depths. It is unknown whether magnetic fields have to

induce action potentials in order to be effective at modulating

biological functions. On the contrary, weak pulsed fields (PEMF)

are effective in humans [5,6] and it is highly unlikely that the direct

induction of action potentials in the brain plays a role here. The

magnetic permeability of biological tissues is very similar to that of

air or vacuum meaning that the main factor determining the field

strength of low frequency PEMF in the brain, apart from the

current and the coil design, is the distance to the coil.

Thresholds for PEMF effects on living systems have been

estimated at 500 nT [29] and even 50 nT [30]. Flux density was

measured in our study at five distances from the coils with flux

density values between 1 mT and 0.1 mT. These values fit very

closely to an exponential dependence of flux density on distance.

Extrapolating using this exponential dependence predicted flux

densities of 500 and 50 nT to be reached at 2.2 and 2.9 cm from

the coil respectively. This strengthens the notion that our

stimulator induces biologically relevant magnetic fields in the

brain [7].

In terms of safety, our newly designed magnetic stimulator

conformed to the assessment criteria of the Dutch Work Group for

the Classification of Instruments in University Hospitals (Wibaz)

and is a class I, type B device according to the IEC 601-1988

norm. This indicates that the device is electrically safe to be used

on humans. With regard to neurological safety, epileptic seizures

are the main serious adverse event that can potentially be induced

by magnetic stimulation. However, the risk of inducing seizures is

controllable because it is a function of frequency and field

strength[32]. Importantly, the stimulator described here falls well

below the field strength described in the above paper: our field

strength was not 100–220% [32] of the motor evoked potential

threshold, but in the order of 0.05%. Therefore it seems highly

unlikely that induction of epileptic seizures is a risk with the

current setup. None of the volunteers could detect the stimulation

or had adverse effects or other complaints so that the PEMF

procedure appears to be completely safe.

A strength of this study is that we provide data from an actual

measurement of the magnetic field whereas this is frequently

omitted in PEMF reports. Additionally, we confirmed our

prediction that HPT would increase after PEMF treatment and

we measured many additional parameters. This study was sham-

controlled and volunteers detected no difference so it was truly

double-blind for the whole duration of the experiment. Although

the treatment groups (PEMF-sham and sham-PEMF) were not

fully balanced with respect to age, gender and handedness, the use
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of a crossover design precluded confusing group effects for

treatment effects. In the paired design every subject served as

their own control thus reducing the obscuring effects of

intersubject variability.

As a limitation, the generalizability of this trial is limited because

it was performed in a relatively small group (n = 20) consisting

mostly of young women. Another limitation is that although the

device permits considerable anatomical specificity of the PEMF

stimulation, for this pilot we stimulated all locations simultaneous-

ly. Future studies should aim to elucidate the relative contribution

of the individual electromagnets.

In summary, we built a magnetic stimulator capable of

producing fluctuating magnetic fields with arbitrary temporal

patterns within the 0–300 Hz frequency range. The use of an

established coordinate system allows studies with anatomical

specificity and integration with existing (EEG) literature. The use

of nineteen small electromagnets makes it possible to stimulate

specific neuroanatomical targets with the aim of modulating their

function. This setup allows double-blind, sham-controlled exper-

iments with arbitrary wave shape magnetic stimulation. These

advantages, in addition to low cost and high safety, make this

technology widely applicable for functional and clinical studies of

the brain. As expected PEMF stimulation of the brain with this

device caused increased pain tolerance in healthy subjects. At the

same time, sensitivity to non-noxious thermal stimuli remained

unchanged. We found no evidence for changes in emotional state

and motor parameters that correlate with dopaminergic tone, thus

it is unlikely that these would have mediated the changes in pain

sensation.

Supporting Information

Figure S1 Electrical wiring diagram for the DC coupled
amplifier with power supply (top) and amplifier (bot-
tom).

(TIF)
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