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Abstract

Deep sequencing was used to investigate the subchronic effects of 1 ppm aflatoxin B1 (AFB1), a potent hepatocarcinogen,
on the male rat liver transcriptome prior to onset of histopathological lesions or tumors. We hypothesized RNA-Seq would
reveal more differentially expressed genes (DEG) than microarray analysis, including low copy and novel transcripts related
to AFB1’s carcinogenic activity compared to feed controls (CTRL). Paired-end reads were mapped to the rat genome (Rn4)
with TopHat and further analyzed by DESeq and Cufflinks-Cuffdiff pipelines to identify differentially expressed transcripts,
new exons and unannotated transcripts. PCA and cluster analysis of DEGs showed clear separation between AFB1 and CTRL
treatments and concordance among group replicates. qPCR of eight high and medium DEGs and three low DEGs showed
good comparability among RNA-Seq and microarray transcripts. DESeq analysis identified 1,026 differentially expressed
transcripts at greater than two-fold change (p,0.005) compared to 626 transcripts by microarray due to base pair resolution
of transcripts by RNA-Seq, probe placement within transcripts or an absence of probes to detect novel transcripts, splice
variants and exons. Pathway analysis among DEGs revealed signaling of Ahr, Nrf2, GSH, xenobiotic, cell cycle, extracellular
matrix, and cell differentiation networks consistent with pathways leading to AFB1 carcinogenesis, including almost 200
upregulated transcripts controlled by E2f1-related pathways related to kinetochore structure, mitotic spindle assembly and
tissue remodeling. We report 49 novel, differentially-expressed transcripts including confirmation by PCR-cloning of two
unique, unannotated, hepatic AFB1-responsive transcripts (HAfT’s) on chromosomes 1.q55 and 15.q11, overexpressed by 10
to 25-fold. Several potentially novel exons were found and exon refinements were made including AFB1 exon-specific
induction of homologous family members, Ugt1a6 and Ugt1a7c. We find the rat transcriptome contains many previously
unidentified, AFB1-responsive exons and transcripts supporting RNA-Seq’s capabilities to provide new insights into AFB1-
mediated gene expression leading to hepatocellular carcinoma.
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Introduction

Deep sequencing technologies provide unprecedented coverage

of the transcriptome at nucleotide resolution and a wide dynamic

range compared to hybridization microarrays based upon

predefined probes [1,2]. RNA-Seq offers the potential for de novo

definition of intron-exon boundaries, 59- and 39-untranslated

regions, splice variants, single nucleotide polymorphisms (SNPs),

and potentially new transcripts at a highly accurate level of

quantitation, all of which are crucial for the analysis of differential

gene expression [3,4,5]. The laboratory rat is an important

experimental animal model for the study of chemically-induced

diseases but RNA-Seq studies of rat tissues [6,7,8,9,10,11] are still

rather limited in part because its complete genomic sequence and

annotation are still being refined [12,13]. Published rat transcript

profiling studies have focused on effects in the ageing cerebral

cortex [10], neurons in the nucleus accumbens [6], the hippo-

campus of alcohol-addicted rats [7], functional compartments in

the rat placentation site [9], the ventricular myocardium from

SHR rats, [8] and kidneys from aristolochic acid exposed animals

[14]. Recent studies suggest that RNA-Seq is comparable to and

provides a greater level of transcriptional detail than genome-wide

microarrays, particularly for detecting low copy transcripts and

that it provides for an overall higher dynamic range of signal

intensity at 2 to 3 orders of magnitude greater than microarrays

[14,15].

Global gene expression studies using RNA-Seq can provide

insights into regulatory genes and critical pathways that might lead

to hepatocellular carcinoma [16,17,18]. For example, RNA-Seq of

ten matched pairs of hepatocellular carcinoma and adjacent, non-

cancerous tissues showed more than 1,000 differentially expressed

genes and about 25,000 differentially expressed exons, including

novel splice variants and a highly up-regulated exon-exon junction

in the ATAD2 gene in HCC tissues [17]. In another study, CD90+
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stem cells from human HCC and parallel non-tumorous liver

tissue were cell sorted for deep sequencing of the transcriptome,

revealing elevated glypican-3 among the 500 gene changes specific

to liver stem cells [16]. Another genome-wide transcriptome

survey in HCC patients identified recurrent hepatitis B virus

(HBV) integration into sequences of induced, cancer-related

TERT, MLL4 and CCNE1 genes [18]. Animal models can be

valuable for studying underlying processes leading to HCC such as

the aflatoxin B1 (AFB1) rodent model [19,20] at 1 ppm in feed

[21,22] that involve metabolic activation to an 8,9-epoxide

metabolite and which lead to DNA adducts, genetic damage,

cellular transformation and HCC [23,24]. Computational models

have also been used to derive gene signatures from microarray

data to distinguish genotoxic and non-genotoxic chemical agents

prior to the onset of hepatic tumors, including HCC [25] and we

recently validated one such signature for AFB1 [26].

The prospect of RNA-Seq’s increased resolution and sensitivity

compared to microarray profiling suggests that the subchronic

genotoxicity from AFB1 exposure might reveal new properties of

the liver transcriptome not observable by conventional hybridiza-

tion-based analysis. The goals of the current study were to more

precisely define gene expression changes that might relate to

carcinogenesis produced by AFB1 exposure prior to onset of

malignancy and to begin a high resolution map of the F344/N rat

liver transcriptome.

Results

Alignment of Sequencing Reads
All sequence data were at 2675 bp length (Figure S1) with high

quality metrics (.20 Phred score) and nucleotide distributions

(Figure S2). The total number of sequenced reads ranged from 58–

74 million pairs of which nearly 65% of the reads were uniquely

aligned to the Rn4 genome assembly using the TopHat aligner

(Table 1). The percentage of genomic alignment was similar

between the two groups (CTRL, 64.3%60.4; AFB1 group, 65.0%

60.6; mean6S.E.M) suggesting there were no obvious detectable

biases in the sequence data. Alignment statistics indicated data

were of high quality and were uniform (i.e., no outliers with

reference to alignment proficiency) and provided sufficient

sequencing depth to pursue differential expression testing between

two groups.

Transcript Assembly and Differential Expression Analysis
The Cufflinks pipeline was used to assemble transcripts and to

estimate their abundance. After assembling transcripts individually

for each sample, we employed Cuffcompare to produce a union of

transcripts from all eight samples which yielded 57,076 transcripts

(Table 2). Of all the transcripts assembled, 14,257 completely

matched RefSeq transcript annotations and over twice that

number (30,877) partially matched RefSeq annotation. Over

eleven thousand transcripts were obtained which likely included

novel transcripts. The number of RNASeq transcripts assembled

by Cufflinks that matched (overlapped) microarray probe sets were

44,469 for which 85.9% (38,186 transcripts) had RefSeq

annotation, while the remaining 14.1% (6,283 transcripts) were

classed as potentially novel (Table 3). Interestingly, 12,607 more

total transcripts were found by RNA-Seq (18.2% more than

microarray) and an additional 5,649 transcripts were classified as

novel since they did not overlap a microarray probe or RefSeq

annotation. Our findings suggest that RNA-Seq identified almost

double the number of unannotated transcripts compared to

microarray analysis.

Comparison of Cufflinks transcript level signals among the four

samples within the CTRL or AFB1 treatment groups showed

a high degree of correlation (Figure S3) with correlation

Table 1. Alignment of RNA-Seq Reads to the Rat Genomea.

Sample Total reads
Total (uniquely) aligned
reads % Aligned Both Ends mapped Singletons Spliced reads

CTRL_0 67,395,930 43,936,057 65.19 37,125,804 6,810,253 9,294,996

CTRL_1 64,538,856 41,448,207 64.22 35,167,586 6,280,621 10,012,853

CTRL_2 74,002,372 46,839,123 63.29 39,886,516 6,952,607 10,501,161

CTRL _3 71,263,544 46,051,262 64.62 39,785,288 6,265,974 9,963,622

AFB1_0 59,987,334 37,890,030 63.16 31,823,402 6,066,628 7,649,739

AFB1_1 58,988,872 38,868,457 65.89 33,733,256 5,135,201 9,106,175

AFB1_2 60,843,500 40,205,023 66.08 35,058,722 5,146,301 8,876,374

AFB1_3 66,458,154 43,107,025 64.86 37,343,234 5,763,791 9,919,540

aPaired-end reads were aligned to Rn4 using TopHat v1.3.2 and unique, non-gapped alignments were obtained. TopHat parameters were: -g 1–r 200–best –strata,
where ‘-best’ and ‘–strata’ are bowtie parameters that were included in the TopHat source code. Each sample represents an individual RNA-Seq lane of liver mRNA from
one animal. The last three columns indicate the number of reads in which both ends were mapped; only one end was mapped but not both (singletons); and reads that
were spliced to allow for alignment, respectively.
doi:10.1371/journal.pone.0061768.t001

Table 2. Reference-Guided Assembly of RNA-Seq Reads into
Transcripts by Cufflinksa.

Total Transcripts Assembled 57,076

Complete Match, RefSeq 14,257

Partial Match, RefSeq 30,887

Novel Candidates 11,932

aCufflinks was employed to assemble reads into transcripts from each animal
sample and Cuffcompare was used to obtain a union of transcripts from all 8
animals as summarized in this panel. ‘Total Transcripts Assembled’ was the sum
of Complete, Partial and Novel transcripts. ‘Complete Match’ transcripts were
identical to RefSeq transcripts (intron chain matches RefSeq gene); transcripts in
the ‘Partially Match’ category include transcripts that overlap RefSeq transcripts
but do not completely match (these could include potentially novel isoforms of
an existing RefSeq transcript); and potentially ‘Novel’ transcripts are those that
did not overlap with any RefSeq transcripts at all and may therefore involve
intergenic transcripts.
doi:10.1371/journal.pone.0061768.t002
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coefficients (r2) uniformly about 0.98. Similarly, high r2 values

(0.96–0.99) were observed for normalized probe intensities for

microarray data between samples for each treatment group

(Figure S4). The results of these analyses indicate that hepatic

gene expression of rats that were measured by RNA-Seq and

microarray platforms were highly stable and reproducible.

DESeq and Cuffdiff were used to test for differential expression

on Cufflinks assembled transcripts. Among the large number of

expressed liver transcripts, our initial differential expression

analysis focused upon changes in well annotated genes from

RefSeqGene as defined by RefSeq annotations. RefSeqGene is

a subset of NCBI’s Reference Sequence (RefSeq) project and

defines genomic sequences that have sufficient literature support as

reference standards for well-characterized genes that generally

represent a prevalent, ‘standard’ allele. For differential expression

of RNA-Seq data, we used Cufflinks for transcript assembly

followed by Cuffdiff or DESeq for their different capabilities in

measuring and comparing transcript changes between groups.

RNA-Seq and microarray data were generated from the same

RNA sample for each animal to permit direct comparison of

differential expression from two high throughput platforms.

Correlation analysis of Cufflinks transcript expression (RNA-Seq)

and normalized probe intensities (microarray) were performed by

first dividing genes into quartiles, based on their expression levels

in control conditions, and then correlating expression measure-

ments originating from either RNA-Seq or microarray platforms.

A correlation was performed for all animal samples from CTRL

(Figure S5) and for AFB1 (Figure S6) treated animal samples. As

expected, the highest correlations were found for highly expressed

transcripts in quartile 4, with a comparatively weaker correlation

among transcripts in the lower quartiles. These data indicate that

a better correlation occurs between RNA-Seq and microarray

platforms as signal level increases.

The number of DEGs obtained at a 2-fold cutoff and

unadjusted p,0.005 from RNA-Seq data by Cuffdiff and DESeq

were compared to microarray profiling (Figure 1A). DESeq

identified 1,026 DEGs which were 8.6 times more than the 119

DEGs identified by Cuffdiff and almost twice the 626 DEGs

detected by microarray analysis. Among the DEGs, about 90% of

the transcripts were annotated by RefSeq for each of the DESeq,

Cuffdiff and microarray analyses, leaving approximately 10% that

were potentially novel, differentially expressed transcripts. Venn

diagram analysis of DEGs (Figure 1B) shows the common and

unique transcripts shared among the three analyses for DEGs from

RNASeq (DESeq and Cuffdiff) and Microarray platforms. Unique

and common transcripts from the Venn diagram are summarized

in Table S1. The top 30 expressed transcripts among the three

platforms are provided in Table S2. The proportion of DEGs that

were shared between RNA-Seq and microarray varied by analysis;

62.6% (392/626 transcripts) for DESeq and 8.1% (51/626

transcripts) for Cuffdiff analysis. Reasons for varying differential

expression by Cuffdiff compared to DESeq likely relate to the

depth of sequencing, unique distribution of genes and their

expression levels in liver tissue and fragment alignment cutoffs for

statistical comparison of low expression genes [27]. As a result of

greater DEGs, we focused on DESeq transcripts for further

comparison to microarray data. The PCA plot showed clear

separation between CTRL and AFB1 treated groups (Figure 1C).

Cluster analysis of all samples using DEGs (Figure 1D) shows

a similar increase and decrease in transcript expression produced

by AFB1 exposure compared to CTRL as well as a high degree of

intragroup homogeneity of expression for both DESeq and

microarray analyses. We note that in comparing expression

platforms, transcript normalization was uncorrected for length

since we computed fold differences for each corresponding

transcript in CTRL and AFB1 groups and not across different

transcripts. When RPKM normalization for RNA-Seq data was

computed and compared to microarray data (Table S3) we found

results were similar to those presented in Figure 1.

Validation of DEGs by qPCR
Expression changes of selected high, intermediate or low

expressing transcripts were analyzed by qPCR as described

previously [26] and compared to the same samples analyzed by

microarray and DESeq (Figure 2). Among genes displaying large

differential expression changes, Adam8 and Cdh13 were in good

agreement for consistency of response. Ddit4l increased from 98-

fold to 142-fold fold by DESeq and microarray, respectively, but

did not amplify well by qPCR (3.8-fold) which may be related to

sequence specific issues and primer selection. Genes with

intermediate expression agreed well among four of five transcripts

(Abcb1b, Mybl2, Abcc3, Akr7a3) while Grin2c was slightly

reduced at 24.5-fold by qPCR compared to no change by

microarray and a 25-fold increase observed with DESeq. For low

expression change transcripts, two (Cxcl1 and Wwox) of three

transcripts agreed in direction and relative magnitude for these

three platforms with the only exception being Akr7a2 at (21)-fold

by qPCR compared to slight increases at 1.2-fold and 1.3-fold in

DESeq and microarray analyses, respectively. Primer design and

other experimental conditions are probably responsible for some

varying expression results by qPCR with the other platforms for

these few transcripts as previously described [26]. Overall,

a comparison of a wide range of DEGs shows validation of the

direction of change for 9 of 11 transcripts analyzed by RNA-Seq

and microarray.

Greater Number of DEGs by RNA-Seq
We were interested in possible explanations of why RNA-Seq

data showed an increased number of DEGs compared to

microarray (Figure 1A). Investigation into several example cases,

as described in the gene tracks in Figure 3, revealed several

Table 3. Analysis for Differentially Expressed Genes (DEGs)a.

Transcripts by Analysis
Total
Assembled RefSeq Novel

Total CuffCompare
(2 ‘Others’)

57,076 45,144 11,932

Cufflinks (MA probe+RNASeq) 44,469 38,186 6,283

DESeq DEG(2X Fold, p,0.005) 1,026 945 81

Microarray (MA) DEG(2X Fold,

p,0.005)
626 558 68

Cuffdiff DEG(2X Fold, p,0.005) 119 108 11

aTranscripts were grouped by various combinations of analysis into three
columns: Total Assembled transcripts; RefSeq - transcripts matching or partially
matching RefSeq genes; and Novel transcripts. In the first row, Total
CuffCompare transcripts included all transcripts (57,076); RefSeq transcripts
(complete or partial match) were 45,144 (14,257+30,887 = 45,144); and 11,932
potentially novel transcripts. Note, that a set of 1,496 Cufflinks assembled
transcripts referred to as, ‘Others’, contained significant repeat sequences and
so this small set of transcripts was excluded (e.g. –‘Others’) from Total
Assembled transcripts. In row 2, to enable comparison with available Microarray
data, we identified Cufflinks assembled transcripts that overlapped MA probes
(total 44,469 transcripts). From this group of transcripts, we determined
differential expression (DEGs) using student’s t-test in the case of MA
(microarray) data in row 4, or for RNA-Seq data we performed DESeq analysis in
row 3 or Cuffdiff analysis in row 5 (see Materials and Methods for details).
doi:10.1371/journal.pone.0061768.t003
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possible explanations that generally involved greater nucleotide

level resolution data provided by RNA-Seq analysis which allows

for both accurate quantification of expression levels and precise

demarcation of exon boundaries compared to probe hybridization.

For example, Eda2r (ectodysplasin A2 receptor) is a plasma

membrane bound receptor regulating initiation, morphogenesis

and differentiation of ectodermally-derived organs [28]. Figure 3A

shows a novel extension at the 39-end of the Eda2r transcript (open

arrows) as assembled by Cufflinks. These additional reads

observed in an assembled transcript, Cufflinks_00063097, are

responsible for the larger fold increase at 45.5-fold by DESeq and

are not reflected by the smaller increase of 6.3-fold of single probe

(A_44_P387120) data at the 6th exon. It appears likely that these

additional reads in RNA-Seq comprise an undescribed UTR

(observed continuity of reads, no exon breaks) portion of the Eda2r

transcript but additional work will be needed to support this

hypothesis. Figure 3B shows how probe placement can affect

which genes are identified as differentially expressed between

platforms. The probe, A_44_P703664, for the RefSeq transcript of

Srxn1 (sulfiredoxin 1; GSH-depletion related oxidative stress [29])

which was placed in the 39-region (39-end microarray probe design

[30]) detects no significant change at 1.4-fold from AFB1

treatment. However, DESeq measured a 3.5-fold increase for

a transcript (Cufflinks_00036333) which represents expression of

all exons and UTRs that are identical to the RefSeq transcript

(NM_001047858) for Srxn1. Similarly, different results are

indicated by microarray probe and DESeq fold changes in

Figure 3C. The bar graph (Figure 3C) shows a 2.7-fold increased

Figure 1. Differentially expressed genes (DEGs) identified from RNA-Seq by DESeq and Cuffdiff compared to microarray. Panel A.
Number of DEGs observed with change $2-fold at p#0.005 by DESeq, microarray and Cuffdiff analyses with Cufflinks assembled transcripts for all
eight animals (4 Control, 4 AFB1) is shown. Total number of Cufflinks assembled transcripts and those that match an existing RefSeq annotation are
displayed in the bar chart. Panel B. Venn diagram of DEGs from Panel A shows the number of common transcripts (overlapping circles) and unique
transcripts (non-overlapping circles) for all three analyses. Panel C. Principal component (PC) analysis was performed for all samples using the gene
expression values for DEGs found by microarray and DESeq (on Cufflinks assembled transcripts) analysis. The percentage variability captured by the
first three principal components is displayed across PC#1, 2 and 3 represented on X, Y and Z axes. Panel D. Heatmap shows all DEGs at $2-fold
change, p#0.005 from microarray or DESeq analyses (on Cufflinks assembled transcripts). Gene expression data were log2 transformed and then
quantile normalized prior to generating the Heatmap for direct comparison of data. DEGs (red or green are upregulated or downregulated,
respectively) for each animal were mapped by lane for each of four animals in the CNTL or AFB1 treatment groups.
doi:10.1371/journal.pone.0061768.g001
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hybridization to probe A_44_P541708 for Stxbp5L (Syntaxin-

binding protein 5-like; vesicle trafficking, exocytosis, negative

regulator of insulin secretion [31]) but DESeq for the Stxbp5L

transcript shows no significant difference at 1.2-fold change (bar

graph) when all exons, including a novel 39- region (open arrows),

are counted. Interestingly, no fold change was found for the 59-end

probe A_44_P375665 (see whole transcript at bottom of figure)

nor were any significant fold changes observed for four additional

microarray probes located within the 39-terminal region (not yet

annotated to RefSeq Stxbp5L or Ensembl Stxbp5L transcript). We

further note that no Cufflinks transcripts included the 1st exon of

Stxbp5L (consistent with no observed reads in exon 1; data not

shown) suggesting transcription began at the 2nd exon in liver

tissue. In Figure 3D, novel Cufflinks transcripts which were

significantly upregulated (3.2-fold increase for Cuf-

flinks_00055299; and 2.5-fold increase for Cufflinks_00055290)

did not have any probes assigned to these transcribed locus regions

(spliced ESTs) in chromosome 8. Potentially, these two adjacent

Cufflinks transcripts (Cufflinks_00055299 and Cuf-

flinks_00055290) represent different portions of one transcript

but this awaits experimental confirmation.

Novel Transcripts Found by RNA-Seq
Of the 57,076 total transcripts in Table 2 that were assembled

from all eight animals, 11,932 (or 20.9%) were considered novel if

they were outside of RefSeq gene annotations; novel transcripts

could include Ensembl transcripts (ESTs, transcriptionally active

loci, hypothetical transcripts) or transcripts without prior annota-

tion. To ensure reproducibility, we counted how many animal

replicates contained each of the novel transcripts and selected

those transcripts that appeared in more than one replicate

(Figure 4A). Additionally, we also determined if the novel

transcripts appeared in either CTRL or AFB1 treatment

conditions or both. As expected, the number of total novel

transcripts diminished as the criteria for reproducibility increased.

A further breakdown of the 1,811 potentially novel transcripts

observed in more than 50% of the animals (two or more rats) is

shown in the inset of Figure 4A. In the group of 1811 Cufflinks

transcripts, there were 1532 (+) that were also annotated in

Ensembl (1510 transcripts at no change and 21 transcripts with

differential expression), and 280 transcripts for which there were

no (2) Ensemble annotations (252 transcripts with no change and

28 transcripts with differential expression). Only 2.7% or 49 novel

transcripts met criteria for differential expression by DESeq ($2-

fold, p,0.005) of which 21 transcripts had some (+) Ensembl

annotation and 28 transcripts, shown as (2) Ensembl, which did

not have an Ensembl annotation (Table S4).

A particularly interesting subset of these novel transcripts,

DEGDESeq, (2)Ensembl, were those unique DEGs responding to

AFB1 but without rat RefSeq/Ensembl annotation. We have

termed two such Cufflinks assembled transcripts as ‘HAfT’ or

‘Hepatic Aflatoxin-responsive Transcripts’ (Figures 4B, 4C). The

HAfT’s were further confirmed with independent validation by

Sanger sequencing. The HAfT1 transcript was assembled as 4

exons (Cufflinks_00006229) in Chr1.q55 (Figure 4B). HAfT1 was

found in all four animal samples with an average upregulation of

21.5-fold in AFB1 treated rats compared to CTRL and is located

in an intergenic region between rat Tcf7l2 (NM001191052) and

Habp2 (RGD:1302979). Comparative genomics shows this

intergenic region in the rat corresponds to the first intron of the

homologous mouse Tcf7l1 gene (NM009332) in which HAfT1 is

in an antisense orientation. No prior ESTs correspond to HAfT1.

Primers were designed from the sequence of the Cufflinks

transcript to clarify the exons of HAfT1. Sequencing of cloned

PCR products from two AFB1 rats (AFB1-0 and AFB1-1) showed

an 809 bp cDNA that aligned with predicted exons (Figure S7A).

A hypothetical peptide sequence of 115 amino acids could be

translated from a putative ATG start site at position 31 before

Figure 2. Test and validation of differential expression between qPCR, RNA-Seq and microarray by select transcripts. The mean fold
changes for each group were compared in the bar chart for eight high to medium fold change transcripts and three low expression change
transcripts (inset). qPCR data were normalized to b-actin expression for each sample. Means of significant (p#0.05) fold changes from control were
computed for qPCR, DESeq and microarray using RNA from the same 4 animals in each analysis.
doi:10.1371/journal.pone.0061768.g002
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encountering a stop codon. Preliminary analysis suggests this novel

AFB1-responsive gene may be protein coding although further

experiments will be needed to demonstrate a translation product.

A second transcript, HAfT2, is also reported in Figure 4C as

a proposed 4 exon transcript (a combined product of Cuf-

flinks_00021611 and Cufflinks_00022036) on Chr15.q11. The

Cufflinks_00021611 transcript was upregulated an average of 8.5-

fold by AFB1 treatment compared to the CTRL group. In this

case, two exons of rat EST AA851790 partially overlapped with

the Cufflinks transcripts. We note that there was no evidence of

any reads from our RNA-Seq data (Figure 4C) to support the

presence of the first designated exon in the EST AA851790 (in

liver tissue). We cloned PRC products from the same AFB1 treated

rats as above after designing primers for the 4th exon. The 209 bp

cDNA aligned well with the last exon of this new AFB1 inducible

transcript (Figure S7B) that was 8 kD downstream of the 59-end of

the rat Tpt1 gene (RGD:621623). Additional work must be

performed to confirm the sequence and expression of the entire

transcript proposed for HAfT2; however, our computational

predictions followed by PCR-sequencing validations strongly

support the presence of these novel HAfT1 and HAfT2 transcripts

in liver and for their upregulation by AFB1 exposure.

RNA-Seq Reveals Novel Exons
Another goal of this study was to compare all exons generated

during the transcript assembly process and classify them into exon

categories in order to identify novel or newly annotated exons

(Figure S8). Our approach was to compare Cuffcompare

transcript fragments for each treatment with the RefSeq annota-

tion and place transfragment exons into various categories

according to the schema in Figure 5A. Only those exons were

considered that passed selection criteria for statistical significance

Figure 3. Differing types of DEGs found by RNA-Seq and microarray data (Panels A–D). Numbers of reads in RPM (reads per million
mapped reads) are shown on the Y-axis and the genomic region is displayed on the X-axis using a common NCBI scale for representative AFB1 (blue
reads) and CTRL (black reads) sample tracks in UCSC browser format. Placements of microarray probes for specific transcripts are indicated by small
rose-colored squares with probe names below. Numbered Cufflinks assembled transcripts and the corresponding RefSeq (gene abbreviation) or
Ensembl annotated transcripts (ENSRNOT) identifiers are displayed under the RNA-Seq tracks. Exons are represented as blocks or bands; introns are
lines between exons. Arrows at the end of assembled or annotated transcripts show the direction of transcription. Open arrows in specific panels
point out a new Cufflinks identified exon. Bar graphs to the right show mean fold changes (AFB1/CTRL) for specific microarray probes and the
corresponding RNA-Seq transcripts (DESeq). At the bottom of Panels A and C, the entire transcript (red) is presented for which a portion of the
transcript which has been enlarged (blue bracket) for the RNASeq tracks shown above. In Panel D, only spliced EST’s (parallel lines in the center of
spliced EST represent gaps in the alignment) were available which were without RefSeq or Ensembl transcript annotation and for which no
microarray probe had been assigned. In Panel D bar graph, fold changes for two separate Cufflinks transcripts are indicated while no microarray data
were available (no probe).
doi:10.1371/journal.pone.0061768.g003

Figure 4. Novel transcripts found by RNA-Seq. Panel A. Bar graph shows the number of total and potentially novel transcripts on the Y-axis.
Transcripts are shown for Total (purple), unique to either AFB1 (blue) or Control (red), and common (AFB1+ Control, green), according to the
occurrence among replicates on the X-axis. A further breakdown of the 1811 total transcripts observed in two or more replicates is shown in the pie
chart. Here, the majority of 1811 transcripts had some Ensembl annotation (1531) while the rest did not (280). Of those that were differentially
expressed by AFB1, 21 had Ensembl annotation while 28 were unannotated and therefore, novel DEG transcripts. Panels B and C show two such
novel transcripts, described here as ‘HAfT-1’ and ‘HAfT-2’ (Hepatic Aflatoxin-responsive Transcripts 1 and 2). Numbers of reads as RPM are shown on
the Y-axis and the genomic region is displayed on the X-axis for representative AFB1 (blue reads) and CTRL (black reads) sample tracks in UCSC
browser format. See text for more details.
doi:10.1371/journal.pone.0061768.g004
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of expression were used in this analysis as described in Material

and Methods. A total of 15,204 total exons met stringent criteria

for consideration and about one-half of the total exons were

common (4,278 exons) to either control (9,936 Total CTRL exons)

or AFB1 (9,546 Total AFB1 exons) treatment groups in

(Figure 5B). Most of the exons common to both groups were

Exact matches to RefSeq exons (85% of Common, Total ‘Exons’)

while the other groups comprised smaller proportions (Common

Novel T, Common Novel-U locations shown in Table S5).

Interestingly, ‘Overlap’ exons made up the largest share of exons

unique to CTRL (71%) and unique to AFB1 (70%), followed by

about 20% of Novel-U exons which were found outside known

transcripts. ‘Exact’ matching exons, Novel-T exons, and ‘Within’

exons made up about 10% of the total exons unique to either

CTLR or AFB1 groups. Overall, RNA-Seq analysis found almost

two hundred Common novel exons either within the positional

boundaries of annotated transcripts or outside RefSeq annotation

(genomic locations of novel exons are described in Table S5).

These novel exons from RNASeq data await further experimental

validation.

A few examples of Novel-T, Novel-U and Overlap exons are

presented in Figures 5C, 5D and 3A and 3C. RefSeq and Ensembl

annotations are shown in Figure 5C for the F11 gene (coagulation

factor XI) for which a Novel-T exon was found by Cufflinks in

both treatment groups. It seems reasonable that this transcript

could include an alternative start site for F11 since this Novel-T

exon appears downstream of the predicted first exon (no reads

visible for predicted exon 1). Human F11 is recognized for

alternative splicing events in liver and platelets [32]. Extensions of

existing annotation at 39-exons were described for Eda2r in

Figure 3A that represent an Overlap exon and also for Stxbp5l

(Figure 3C) that represent a Novel-U exon as one outside the

RefSeq and Ensembl annotated boundaries. A more extensive

example of multiple Novel-U exons is shown in Figure 5D for the

two exons (open arrows) toward the 59-end of the Ass1

(argininosuccinate synthase 1) gene, a well-expressed intermediary

metabolism enzyme (Figure 5D). In addition, we also provide eight

additional examples in Figure S9A to S9H of novel exons

discovered within known RefSeq or Ensembl gene boundaries that

are conserved in other species (e.g. human, mouse) but are not yet

annotated in rat.

The preceding data demonstrate the ability of RNA-Seq in

expanding the current annotation of the rat transcriptome at both

the transcript and exon level. However, alternative gene isoforms

present certain challenges to both RNA-Seq and microarray for

the accurate quantitation of transcript expression levels and the

ability to distinguish one isoform from another. We explored such

a case for Ugt1a transcripts, belonging to the UDP glucuronosyl-

transferase 1 family, polypeptide A cluster, which are actively

expressed phase II, conjugators of xenobiotics and relevant for

Figure 5. Novel exons found by RNA-Seq analysis. Panel A shows classification of different types of exons encountered during analysis of
a Cufflinks assembled transcript in a model gene. Exons include ‘Exact’ matches to known exons, ‘Overlapping’ exons corresponding to partial
matches, ‘Novel-T’ exons that occur with known transcripts, ‘Within’ exons occurring within the sequence of known exons and Novel-U exons that
were unknown and occur outside known transcripts. Panel B is a bar chart of such exon types that were unique to AFB1 or Control treatments and
those exons that were shared between treatments. Examples are shown for a Novel-T exon (Panel C) within the F11 transcript and two Novel-U exons
(Panel D) outside the ASS1 gene. Numbers of reads, as RPM, are shown on the Y-axis and the genomic region is displayed on the X-axis for
representative AFB1 (blue reads) and CTRL (black reads) sample tracks in UCSC browser format.
doi:10.1371/journal.pone.0061768.g005
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AFB1 toxicity [33]. Ugt1a isoforms share the last four exons but

generally contain one unique 59-exon to define each isoform.

RefSeq annotation currently contains eight isoforms for this gene

family, namely, Ug1a1, Ugt1a2, Ugt1a3, Ugt1a5, Ugt1a6 and

Ugt1a7c, Ugt1a8 and Ugt1a9. Figure 6A shows assembled

transcripts for Ugt1a1 isoforms except for Ugt1a8 and Ugt1a9

which were not expressed. Expression of the four common exons

at the 39-end of Ugt1a gene family is similar in CTRL and AFB1

samples which is evident from the fold change observed for the two

microarray ‘Ugta1a-Common’ probes as well as the fold change

measured by RNA-Seq for each of the individual exons

(Figure 6B). Expression changes of AFB1 vs. CTRL were about

two-fold for all Ugt1a isoforms using RNA-Seq primarily because

the four common exons contribute the majority of reads mapped

to each isoform, potentially masking any fold change observed in

isoform specific 59-exon(s). For example, AFB1 specific induction

of the two unique exons for Ugt1a6 isoform in AFB1 was not

observed when ratios were calculated for the whole transcript. By

contrast, the microarray probe annotated specifically for Ugt1a6

isoform was elevated by 7.3 fold. Only when exon specific reads

from RNA-Seq data were counted for isoform specific exons of

Ugt1a6 (exons 1 and 2) were the fold change values found to be

comparable (induction of 6.7 and 5.4 fold, respectively). On the

other hand, RNA-Seq analysis provided clear evidence for

expression of both Ugt1a5 and Ugt1a7c, whereas no microarray

data were available because microarray probes were absent for

these genes. RNA-Seq exon specific reads showed a 2.7 fold

increase for Ugt1a7, though this was not statistically significant.

Thus, exon specific data from RNA-Seq reads or microarray

probes placed at isoform defining exons appear best qualified to

give credible isoform measurements among homologous family

members.

Activation of Biological Pathways by AFB1
The biological effects of AFB1 exposure prior to development of

hepatic tumor formation are of interest to better understand

malignant transformation by this model carcinogen. Pathway

analysis assisted us in determining the biological effects of AFB1

exposure using genes with statistically significant differential

expression. DEGs from AFB1 exposure were contained in various

canonical pathways for which 26 were common (Table S6) to the

three approaches used for differential expression. Representative

pathways involved xenobiotic metabolism (AhR and xenobiotic

metabolism signaling, glutathione metabolism), cell cycle dysregu-

lation (G1/S checkpoint regulation, cyclins and cell cycle, ATM

signaling, estrogen-mediated S-phase entry), malignancy pathways

(glioma and hereditary breast cancer signaling), Nrf2-mediated

oxidative stress, and ten various intermediary and amino acid

metabolism pathways. Since the categories of canonical pathways

found by RNA-Seq platforms and microarrays were similar, we

considered the type and number of interrelationships among

DEGs datasets as another means of identifying potential drivers of

biological alterations that could set the stage for AFB1 carcino-

genesis. Twenty-six transcripts showed substantial connections

from DEGs by DESeq (Figure 7A). Here, Cdkn1a, E2f1, Cdk1,

Mdm2, Fgf1, Ndc80, Bub1, Ccna2, Aurkb, Pttg1 and Spp1

appeared to be major interacting transcripts showing 46, 28, 27,

14, 12, 10, 9, 8, 8, 8 and 8 connections (Table S7), respectively. A

number of elevated transcripts also formed mutual connections

relating to kinetochore structure and supportive functions in-

cluding Bub1, Ndc80, Mad2L1, Nsl1, Aurkb, Nuf2, Dsn1, Mcm3

and Mcm6 (Table S7). Microarray DEGs had far fewer

connections at 6 transcripts; Cdkn1a, Mdm2 and Fas were

primary contributors at 25, 8 and 8 connections, respectively

(Figure 7B, Table S8). Only four substantial connected transcripts

were observed for Cuffdiff (Cdk1, CCnd1, Cdk1 and Fas had 24,

21, 14 and 5 respective connections; Table S9). Among these

pathway connection maps in Figure 7A and 7B, changes in

transcripts responsive to DNA damage were insufficient to form

a connection hub even though there were upregulated transcripts

(2 to 4-fold increase) associated with DNA damage and repair

processes including, Mgmt, Top2a, Rad51, Rad18, Xrcc6, Mnd1

and Tyms.

Several of the interacting transcripts in Figure 7 are involved in

enhanced cell proliferation and turnover including E2f1, a member

of the E2f family of transcription factors, which was upregulated

by AFB1. Among many other cell cycle genes, E2f1 plays a critical

role in controlling both cell cycle progression and apoptotic cell

death in response to DNA damage (e.g. hepatic metabolites of

AFB1 are genotoxic) and oncogene activation [34,35]. We queried

the RNA-Seq dataset (containing all possible AFB1-induced gene

changes by DESeq) for hub genes which we defined as controlling

$5 downstream genes that could be directly or indirectly

regulated by E2f1 using IPA’s Grow Pathway algorithm (Table

S10). We found 223 directly or indirectly affected transcripts

(Figure 8) that mapped 198 transcripts that were upregulated and

25 transcripts that were downregulated. The pathway in Figure 8

shows a network of cellular processes potentially influenced by the

E2f1 transcription factor, including hub genes for cell cycle control

and proliferation (Cdk1, Mdm2, Ect2, Mad2L1, Nuf2, GNAI1),

cell death (FAS), cellular damage by electrophiles (Mdm2, Gstp1),

growth factors (Fgf1) and tissue remodeling (Mmp2, Ezr, App,

Mme). Upregulated genes by DESeq in this integrated pathway of

particular interest for hepatocellular proliferation and trans-

formation were follistatin (442-fold), Aldh3a1 (302-fold), Mybl2

(21-fold), Mybl1 (6-fold), and Sox9 (6-fold).

Discussion

Liver cancer from chemical and viral (e.g. hepatitis C) exposures

is still an international problem for which AFB1 is a primary,

contributing etiological factor [36,37,38]. Dietary models of AFB1

exposure in rodents continue to be useful in studying hepatocel-

lular carcinoma [24]. A major objective of our work was to exploit

the wider annotation capabilities of NextGen sequencing for

differential gene expression to better understand biological pro-

cesses leading to AFB1 malignancy. As part of a previous larger

study, a microarray analysis had been previously been conducted

on the same control and AFB1 liver mRNA samples used to

conduct the current RNA-Seq study [25]. We hypothesized that

the increased dynamic range and base pair resolution capabilities

of RNA-Seq would allow for a more sensitive detection of

transcripts, as well as, for the detection of new isoforms and gene

products, resulting in an enhanced understanding of the AFB1

liver transcriptome. ‘Within group’ comparisons based on 4 rats

per group indicated a high degree of reproducibility among

samples. Cufflinks customization was used to assemble transcripts

and DESeq and Cuffdiff were used to determine DEGs ($2X fold;

p,0.005) from RNA-Seq data and were compared to similarly

filtered microarray DEGs. Using DESeq, a total of 1,026 DEGs

were found which were more than 400 transcripts or 63% greater

than microarray DEGs. Testing of differential expression by

Cuffdiff proved to be more stringent resulting in far fewer DEGs in

our study, so we employed a Cufflinks pipeline for reference-based

assembly and used the assembled transcript definitions with

DESeq for differential expression testing. Although we observed

a substantial overlap of DEGs by DESeq and microarray, some

DEGs were observed which were unique to either platform. When
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Figure 6. Exon specific expression among homologous transcripts in the Ugt1a gene family. Panel A. The genomic region for Ugt1a
transcripts is displayed on the X-axis in UCSC browser format where the Y-axis represents mapped reads in RPM units. Placements of microarray
probes for specific transcripts are indicated by rose-colored boxes with probe names below. There are a total of four microarray probes, some of
which correspond to shared exons of the Ugta1 gene family (A_44_P432355, A_44_P402641) or to specific exons defining Ugt1a1 (A_44_P446578)
and Ugt1a6 (A_44_P432358) isoforms. RefSeq transcripts and Cufflinks assembled transcripts are displayed under the RNA-Seq tracks. Exons are
shown as light blue blocks or bands; introns are lines between exons; arrows at the end of each transcript indicate direction of transcription. Panel B.
Bar graph shows mean fold changes (AFB1/Control) on the Y axis for the entire RNA-Seq transcript (blue), the microarray probe (red) and the isoform-
specific RNA-Seq_exon (green). For some exons, there was no corresponding microarray probe 2 ‘No Probe’ (e.g. Ugt1a5, Ugta1a7c). Exon-specific,
RNA-Seq ratios were labeled by exon number. Ugt1a-Common consists of four exons (common to all Ugt1a isoforms) for which two microarray
probes exist. Exon-specific ratios from RNA-Seq reads were calculated for Exons 1, 2, 3 and 4. RNA-Seq exon-specific reads were measured to calculate
AFB1/Control ratios for Ugt1a1, Utgt1a5, both exons of Ugt1a6, and Ugt1a7c.
doi:10.1371/journal.pone.0061768.g006
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normalized gene expression of RNA-Seq and microarray data

were separated into four quartiles ranked on the basis of average

control signal across replicates, the Spearman rank correlation

coefficient increased going from lowest to highest expression genes.

This indicates that transcripts with low microarray signal or small

read counts contribute to the weak correlation between platforms

for low expression genes and some of the differences in observed

unique DEGs between RNA-Seq and microarray. However, other

factors for platform differences are the presence of novel exons and

full length transcripts in the rat transcriptome shown by RNA-Seq

data which have not yet been annotated by microarray probes.

Notably, both platforms easily separated treated animals by PCA

and cluster analysis. qPCR validation of eleven selected transcripts

covering a wide range of expression showed good agreement in

direction and fold-increase for gene expression among expression

platforms. Overall, RNA-Seq produced a more comprehensive

DEG profile than microarray analysis under the conditions of our

study, which was due to measuring reads across the entire

Figure 7. Connection pathway analysis of DEGs from subchronic AFB1 exposure. The top panel shows annotated interactions and
regulatory relationships using IPA’s (Ingenuity Pathway Analysis) connectivity analysis. The connective pathway maps were generated using DEGs
identified by DESeq_RNASeq (top panel) and for DEGs generated from microarray analysis (bottom panel) for only those transcripts with available
RefSeq annotation. Hub genes (bolded, enlarged gene symbols) were defined as those transcripts regulating or interacting with $5 transcripts (red,
upregulated; green, down-regulated).
doi:10.1371/journal.pone.0061768.g007

Figure 8. E2f1 regulated and downstream pathways altered by AFB1. AFB1 produced DEGs from DESeq analysis of RNA-Seq data which
were analyzed by the IPA’s ‘grow pathway’ analysis (Ingenuity Pathway Analysis) which displays annotated regulatory relationships and interactions.
Starting with induction of E2f1 in the center, DEGs from DESeq analysis were used to connect and grow downstream-dependent genes (red,
upregulated; green, down-regulated). Hub genes (bolded, enlarged gene symbols) were defined as those transcripts regulating or interacting with
$5 transcripts.
doi:10.1371/journal.pone.0061768.g008
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transcriptome in agreement with the conclusions of other reports

[14,39,40].

Representative criteria for DEGs at $2-fold differences and

p#0.005 demonstrated areas of overlap and uniqueness between

RNA-Seq (DESeq and Cuffdiff) and microarray observed by Venn

diagram analysis. Many reasons were found for these differences.

For example, the detection of reads from a transcript for which no

probe was assigned was a common finding which is understand-

able considering the more complete mapping provided by RNA-

Seq data. RNA-Seq provided data at either the 39-end or 59-end of

RefSeq or Ensembl transcripts or sometimes in unannotated

regions of the transcriptome for which microarray probes did not

exist (e.g., Chr8 Cufflinks transcripts in Figure 3D), or had not

been assigned any specific annotation (e.g., probes at 39-Utr of

Stxbp5L). Probe placement within specific regions of a transcript

also appeared to be a determinant for differential expression since

the collective number of RNA-Seq reads per transcript could

outweigh a single probe or even multiple probe signals for DEG

criteria. For example, 3.7-fold increase in reads across the Srxn1

transcript by DESeq was in contrast to no change in signal by

microarray from the probe located within the 39-UTR. Probe

placement and probe annotation as well as the large number of

RNA-Seq reads counted across the length of each transcript were

factors that greatly influenced the number of DEGs found by

RNA-Seq compared to microarray platforms.

Another important aspect of gene expression is the Cufflinks-

derived exon expression compared to RefSeq annotations to

determine known exons, novel exon boundaries and novel exons.

It is important to note that for this analysis we only analyzed those

exons that had a significant signal, so that exons with low and

possibly irreproducible signal were removed from consideration.

Classifications were defined as ‘Exact’ exon matches, ‘Over-

lapping’ or ‘Within’ matches and ‘Novel’ exons either within (2T)

or outside (U-unclassified) RefSeq transcript structure. A majority

of the ‘Exact’ matches were found as ‘Common’ to CTRL or

AFB1 groups (3650 exons) with many fewer as unique to either

treatment. Interestingly, there were many more ‘Overlap’ exons

for AFB1 or CTRL groups than were shared (Common). These

data likely represent the substantial splicing and differences in

exon junctions (accompanying the large concordance of ‘Exact’

exon matches) between treatment groups. For example, nearly

20,000 previously unreported exon junctions were uncovered after

annotation-based mapping of mammalian RNA-Seq reads by

TopHat [41]. In addition, we also report about 200 shared and

unique ‘Novel-T’ exons which were found between exons of

known transcripts, such as F11 (Figure 5C), and almost 100

‘Within’ exons which were also identified. The number of ‘Novel-

U’ exons is of particular interest since approximately 1,000 were

found for CTRL or AFB1 groups, such as new 59-exons for ASS1

(Figure 5D), and 179 Novel-U exons which were common to each

group.

Ugt1a isoforms represent a specific case posing a challenge for

measurement of each isoform using either RNA-Seq or micro-

array. The UGT1 family consists of thirteen genes that are all five

exons in length for which exon 2 to exon 5 are common for all

UGT1 mRNAs but the first exon is unique to each gene

(UGT1A1 to UGT1A13P) [42]. Since the shared exons compris-

ing each Ugt1a isoform cannot be definitively assigned to any one

isoform, exon-specific probes or RNA-Seq signal at each isoform-

defining exon would be required for accurate differential

expression. Exon-specific reads from RNA-Seq could be measured

in our analysis but several Ugt1a isoforms (e.g. Ugt1a7c, Ugt1a5

Ugt1a3 and Ugt1a2) did not have designated microarray probes

for measurement. In the present study, we report subchronic

AFB1 exposure causes isoform specific upregulation in Ugt1a6

and possibly for Ugt1a7c. Some studies have documented a general

increase in Ugt1a expression induced by AFB1 in HepaRG [43] or

FLC-4 human hepatocarcinoma cells [44], and in rat liver [45]

and more recently, an upregulation of Ugt1a3 mRNA was

reported in cultured HepaRG cells after a 48 hr AFB1 treatment

[43]. Our results of isoform specific induction from in vivo AFB1

exposure could have profound implications for liver function,

organ development and toxicity since a dramatic ontogenic

isoform switching has been reported in UGT1 isoforms in rats

during gestation, infancy, early childhood at days 14–28 and

young adulthood at day 56 [46]. It is also worth noting that

specialized methods such as CAGE (cap analysis of gene

expression) can complement RNA-Seq data in studying genes

with multiple isoforms since CAGE selects for 59-mRNA ends to

find exact locations of TSSs (transcription start sites) [47].

Interestingly, after generating human and mouse CAGE libraries

it was found that the Ugt1a gene family has seven promoters that

are preferentially used by different tissues as well as six alternative

ATGs to accommodate individual tissue needs [48].

RNA-Seq also holds intriguing possibilities for novel transcript

discovery. Several hundred (observed in two or more animals) to

thousands (observed in at least one animal of each group of four

animals) of putative, novel transcripts were found in control or

AFB1 treated animals depending on the level of replication

stringency (Figure 4). The number of novel shared transcripts as

‘AFB1+ Control’ remained higher (927, 479, and 234 novel

transcripts, at two, three, and four of four animals, respectively)

than transcripts unique to either Control or AFB1 alone at similar

levels of replication. These data suggest a limited number of

treatment-specific, novel transcripts for follow-up study. We

validated two such novel AFB1-responsive transcripts identifying

them as HAfT1 and HAfT2 on Chr1.q55 and Chr15.q11,

respectively. Four exons comprising an 809 bp cDNA were

confirmed by PCR cloning for HAfT1. There is no known prior

annotation or EST corresponding to this transcript suggesting it is

a completely novel gene about 150 kD downstream from rat 59-

end of the RefSeq gene Tcf7l2 in antisense orientation. This

region of rat Chr1 also bears some homology to a portion the first

intron of mouse Tcf7l1. A second novel AFB1-responsive gene

homologous to one spliced EST (AA851790) was cloned as a 209

cDNA sequence corresponding to the last exon of this proposed 4

exon transcript, made up of two overlapping Cufflinks transcripts

(00021611 and 00022036). Ongoing work will clarify the

expression and function of these two novel transcripts regarding

their upregulated response to AFB1 exposure.

A further objective of our study was to generate new insights

into alterations in gene networks that might lead to the formation

of hepatocellular carcinomas. The increased sensitivity, wider

dynamic range and base-pair resolution profile possible with

RNA-Seq compared to microarray platforms reported by others

[49,50,51] provided a greater biological depth in unraveling

changes to the transcriptome due to AFB1 effects. Analysis of

DEGs showed activation of various canonical pathways that were

involved in xenobiotic metabolism and detoxification, cell cycle

alterations, oxidative stress and malignancy signaling. Since

canonical pathways can sometimes be overrepresented by similar

gene sets [52], we also interpreted transcript interactions and

relationships (Figure 7 and accompanying supplemental tables) in

light of a perpetual, low level genotoxicity during AFB1 dietary

exposure that engages drug elimination enzymes, redox stress and

a nascent cell turnover [19,23,24]. We found that the pattern of

cell cycle transcript upregulation in DEG datasets using RNA-

Seq_DESeq shows similarities to low level genotoxic damage
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described in some rodent liver cancer models; for example, p53

IHC (immunohistochemistry) negative preneoplastic liver lesions

stain positive for Gst-P and Mdm2 with either chronic diethylni-

trosamine or AFB1 exposure in rats [53] and are often

accompanied by increased in Slc7a11 [54], a cystine-glutamate

transporter induced during GSH depletion and redox stress [55].

In RNA-Seq data, Gst-P, Mdm2 and Slc7a11 transcripts were

elevated by 73-fold, 2-fold and 51-fold, respectively, by AFB1 and

p53 was not significantly altered. Similarly, it is not unusual to

observe Cdkn1a induction (3-fold) as a protective response to

redox stress [56]. In all DEG datasets, the increases in apoptosis-

related genes such as Fas (2- fold) were relatively minor as were

changes in DNA damage and repair transcripts. Using only

transcripts from the DEGs of RNA-Seq in Figure 7, the highest

number of interactions were among Cdkn1a, E2f1, Cdk1 and

Mdm2 as well as transcripts whose proteins help create the mitotic

spindle (Prc1, Racgap1, Plk1, Mad2L1, Spag5) and proteins

associated with the kinetochore (Aurkb, Ndc80, Dsn1, Bub1, Nuf2

and Nsl1), the microstructure on chromatids where spindle fibers

attach during mitosis. For example, Aurkb controls microtubule

dynamics by phosphorylation of the Ndc80 complex, an essential

microtubule-binding component of the kinetochore [52] and by

phosphorylation of kinetochore component Dsn1 [54]. Further-

more, others have reported that the normal phosphorylation of

Aurkb by the mitotic kinase, Bub1, is dramatically increased in

Bub1 transgenic mice, causing hyperphosphorylation and in-

creased Aurkb activity [57]. These events cause chromosomal

missegregation and aneuploidization leading to formation of

multiple spontaneous tumors in Bub1 transgenic mice [57].

Dysregulation of such nuclear structures and associated kinases

indicated by RNA-Seq data are consistent with AFB1’s well-

known mutagenic and clastogenic [58,59] properties.

E2f1 is a transcription factor regulating cell-cycle, DNA

replication, differentiation, apoptosis and DNA damage [60] and

may play a role in liver tumorigenesis [61]. We found E2f1 as

a regulatory hub that controls a large number of downstream

transcripts (Figure 7) altered by AFB1 exposure which suggested

E2f1 could be one of the drivers for cell proliferation and tissue

remodeling. We report several E2f1 regulated- and indirectly-

regulated transcripts further downstream in Figure 8 which help

reinforce AFB1’s effects on mitotic spindle assembly and

kinetochore components, implicating Ect2, in addition to those

transcripts already identified from Figure 7. Screening microarray

data from the NCI-60 cell line panel similarly revealed a common

coregulation of E2f1 expression (among other transcription factors)

with transcripts involved in either forming kinetochore compo-

nents and proteins responsible for kinetochore maintenance,

including Cenpe, Cenpf and Incenp [56] (each of which were

upregulated by AFB1, see Figure 8).

Two DEGs found by RNASeq in E2F1-mediated pathways that

were highly upregulated by AFB1, were Wfikkn2 (WAP,

follistatin/kazal, immunoglobulin, kunitz and netrin domain

containing 2) and an aldehyde dehydrogenase isoform, Aldh3a1.

The activin-follistatin system is comprised of members of the TGF-

b family for cell growth and differentiation and is critical for

maintaining liver homeostasis and in tissue rebuilding and repair

[62]. Imbalanced expression of follistatins and activins in

preneoplastic foci and hepatoma cells is well known [63] and

some researchers suggest follistatin expression is required for

proliferation and colony expansion of progenitor populations of

hepatocytes [64]. In cultured MEF cells from Mmp22\2 mice,

transfected human MMP2 (matrix metalloprotease-2) protein was

found to increase the processing of Wiffk2 [65] and researchers

have suggested that binding of WFIKKN proteins with these

growth factors may localize their action and thus help to establish

growth factor gradients in the extracellular space [66]. We

identified Mmp2 as a key protein upregulated by AFB1 and its

activation is inferred by increased expression of Ddr1 [67].

Upregulated Mmp2 and Ddr1 are events consistent with their

respective roles in tissue remodeling in preneoplasia [68,69].

Additionally, the 2 to 3-fold increase in the gelatinase Mmp2 [70]

and the metalloelastase Mmp12 have been linked to invasiveness

in rat liver tumor models [71]. Of related interest is that elevations

in aldehyde dehydrogenases, in particular Aldh3a1, may play a role

in self-protection and expansion of stem cell populations [72].

Upregulation of liver cancer stem markers, Sox9 [73], Epcam [74]

and Dmbt1 [75] were observed in this study. It is of interest that

Sox9 controls Dmbt1 (deleted in malignant brain tumor 1)

expression which is highly amplified during the emergence of

ductal (oval) stem cell populations in injured liver [75].

Conclusions
In conclusion, RNA-Seq analysis demonstrates hundreds of new

transcripts and isoforms that includes gene expression changes at

a greater dynamic range than microarray and provides deeper

insight into pathways and molecular events at an AFB1 exposure

level and time prior to the formation of liver tumors. The base pair

resolution of RNA-Seq provides an expanded depth of gene

expression changes and therefore increased annotation of the rat

liver transcriptome. We report novel genes, HAfT1 and HAfT2,

and potentially other transcripts that may prove important to

chemical response and liver biology. Pathway analysis findings

were interpreted as a reflection of a slow hepatocellular turnover

supported by an active stem cell population in response to

continual, low level, genotoxic injury by AFB1 in the presence of

barely perceptible apoptosis. Expression of various ECM proteases

suggests a pattern of tissue remodeling and activation of surface

receptors that favor tumor development and progression [76].

Differential expression of numerous components and associated

kinases of the mitotic spindle assembly and kinetochore structure

that support cell division are visible in this type of AFB1 feed

exposure model which might otherwise be masked by other high

dose, injurious models of chemical carcinogenesis. While the

structure of the pathways reported here is contextualized to AFB1

exposure, it could form the basis for further hypothesis testing of

other carcinogenic agents for similar transcriptional drivers,

signaling pathways, activation of kinases, affected subcellular

structures and transcriptional changes within specific areas of the

liver architecture. Collectively, these findings highlight the

potential contribution of toxicant-mediated perturbations of the

transcriptome as a special tool for novel gene discovery using high

resolution, NextGen sequencing technologies.

Materials and Methods

RNA Extraction, Transcript Profiling and Illumina
Sequencing
All experiments were performed in accordance with the Animal

Welfare Act and the U.S. Public Health Service Policy on

Humane Care and Use of Laboratory Animals after review and

approval by the Institutional Animal Care and Use Committee

(IACUC) of Battelle Laboratories, Columbus, OH. Male F344/N

rats were exposed to 1 ppm AFB1 in feed for 90 days and RNA

was obtained from fresh frozen liver as previously described [25].

At necropsy rats were anesthetized with isofluorene, the left and

median lobes of the liver were removed and animals were

euthanized by exsanguination. A cross-section of each lobe was

obtained for histopathology. The remainder of the left and median
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lobes of the liver were minced quickly into very small pieces and

frozen in liquid nitrogen within 4 min of euthanasia and stored at

280uC.
Briefly, RNA was extracted from 130–150 mg of liver tissue

with Qiagen RNeasy Midi kits (Valencia, CA, USA). A 500 ng

amount of total RNA was converted into labeled cRNA with

nucleotides coupled to fluorescent dye Cy3 using the Low RNA

Input Linear Amplification Kit (Agilent Technologies, Palo Alto,

CA, USA) according to the manufacturer’s protocol. Cy3-labeled

cRNA from each sample was hybridized to Agilent Rat Whole

Genome Oligonucleotide microarrays in a 4644 K format.

Microarray data are available through the NTP Chemical Effects

in Biological Systems (CEBS) database with the accession number,

002-00100-0003-000-6, at the URL site, http://www.niehs.nih.

gov/research/resources/databases/cebs/index.cfm and direct ac-

cess to raw data files are at ftp://157.98.192.110/ntp-cebs/

individualstudy/002-00100-0001-000-4/NTP009-

Hepatocellular_CarcNon-CarcTox/RawFiles/. (Further details

on microarray file access in the CEBS database are in Figure S10.).

For RNA-Seq, RNA libraries were created from each of four

controls and four AFB1 treated male F344/N rats. RNA samples

were the same as those used for the microarray analysis studies.

Starting with 5 mg total RNA, polyA-tailed mRNA was isolated by

oligo(dT) and fragmented by adaptive focused acoustic energy

(Covaris Inc., MA, USA). A random hexamer primed, cDNA

library of nucleotide sequences (400 bp median fragment size) was

created from which millions of short DNA reads were generated in

a paired-end orientation. Sequencing was performed on eight

RNA samples in individual lanes of an Illumina GXIIx instrument

(Illumina, San Diego, CA, USA) by the NIH Intramural

Sequencing Center (NISC). Each lane produced 29–37 million

raw paired reads. Data output in fastq file format contained

information about sequences and quality (Phred quality score).

Average Phred scores of $20 per position were used for

alignment.

Bioinformatic Analysis: Alignment of Paired End Reads
RNA samples were sequenced by the standard Illumina

protocol to create raw sequence files (.fastq files) which underwent

quality control analysis using FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Two of the eight total samples

(one each from CTRL and AFB1 treated samples) were initially

sequenced as a pilot experiment at paired end read length of

100 bp each; however they showed declining average base call

quality beyond the 75th nucleotide of the 100 bp read. To avoid

low quality data negatively influencing downstream analysis, we

trimmed the reads on the 39-end and only used the first 75 bp

from the 59-end of each read for further analysis. The remaining

six samples were sequenced at 75 bp paired end read length and

did not show any quality issues and hence they were retained at

75 bp length without any trimming. Quality Control (QC) plots

are provided in the supplementary information (Figure S1). We

aligned the quality checked reads to the Rn4 build of the Rat

genome (http://hgdownload.soe.ucsc.edu/goldenPath/rn4/

chromosomes/) using TopHat version 1.3.2 (parameters: -g 1 -r

200–best –strata) allowing for unique non-gapped alignments to

the genome [27]. We modified the TopHat source code to add the

parameters ‘‘–best –strata’’ to the standard set of parameters used.

Resulting alignments were summarized to the evaluate number

of uniquely aligned reads per sample along with information such

as singleton vs. both-ends mapped, and number of spliced

alignments per sample (Table 1). Aligned reads were converted

to UCSC genome browser tracks and uploaded to the browser to

allow for visual inspection of normalized signal at any genomic

location. The UCSC browser tracks contain RPM (Reads Per

Million) normalized read counts. Deep sequencing data files are

stored in the Sequence Read Archive (SRA) under Study

Accession No. SRP017598 that contains sample accession

numbers to fastq data files.

Analysis of Differential Gene Expression
DEG’s were identified using DESeq version 1.8.2 [77] and

Cufflinks version 1.3.0 [78,79]. These methods represent two

widely accepted and complementary analysis approaches of RNA-

Seq data. For DESeq analysis, we first obtained RefSeq gene

annotation for all known genes in the rat genome, as provided by

the UCSC genome browser as of Oct 2011. RefSeqGene is

a subset of NCBI’s Reference Sequence (RefSeq) project and

defines genomic sequences that have sufficient literature support as

reference standards for well-characterized genes that generally

represent a prevalent ‘standard’ allele. This annotation included

17,194 unique transcript entries with genomic coordinates. Using

the reads mapped to the genome, we calculated the number of

reads mapped to each transcript in the above RefSeq annotation

table. These raw read counts were used as input to DESeq for

calculation of normalized signal for each transcript in the CTRL

and AFB1 samples, and differential expression was reported as

Fold Change along with associated p-values. DESeq calculates p-

values using a negative binomial distribution which accounts for

technical as well as biological variability. The DESeq approach is

well suited for count data (read counts) as is the case for RNA-Seq

experiments, and the method estimates variance in a local fashion

for varying signal strength [79].

Cufflinks is a complementary method that assembles transcripts

and estimates its abundance using read data. Transcript assembly

allows for identification of splice variants, new exon boundaries,

novel exons, or novel full length transcripts. The differential

expression is calculated by Cuffdiff based on transcript abundances

[79]. We used Cufflinks v1.3.0 with parameters set at: ‘‘–GTF-

guide refseq.GTF –frag-bias-correct –multi-read-correct’’. The

resulting Cufflinks assemblies of all eight samples were combined

together using Cuffcompare v1.3.0 with parameters ‘‘-r -M –N –

s’’. Cuffdiff v1.3.0 was then employed on the combined transcripts

to identify differentially expressed genes/transcripts with param-

eters set at ‘‘-r –frag-bias-correct –multi-read-correct’’.

Identification of Novel Transcripts
To identify novel transcripts assembled either in the CTRL or

AFB1 treated samples, we compared the genomic coordinates of

Cufflinks assembled transcripts to known genes annotated in the

RefSeq (17,194 unique transcripts) table. If a Cufflinks transcript

does not overlap with any known RefSeq transcript (i.e. they occur

in intergenic regions without any RefSeq annotation) it was

considered to be putatively ‘novel’.

Among those that were considered novel, we further narrowed

the list by requiring the putative novel transcript to be present in

more than one of the biological replicates. Since the Cufflinks

analysis assembled these transcripts individually for each replicate,

it is likely that the identical transcript may not be identified in each

sample. However by requiring the transcript to be present in at

least two of the four biological replicates, we could focus upon

reproducibly detected transcripts. Among those that were found in

more than one replicate, we further narrowed our list by requiring

the novel transcript display statistically significant differential

expression (absolute Fold Change .2, p-value,0.005 as calculat-

ed using the DESeq method). A table describing differentially

expressed Cufflinks transcripts, their normalized signal and fold
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change values, including those potentially novel ones is provided in

the supplemental table information.

Exon Classification and Annotation
We compared the list of exons obtained from Cufflinks

assembled transcripts to all exons present in the RefSeq annotation

table. The goal of this comparison was twofold; first, we wanted to

identify completely novel exons that were part of previously

annotated genes and secondly, we wanted to identify exons where

our data indicates partial disagreement with available RefSeq

annotation, thus indicating potentially novel exon boundaries for

the given exon [27].

Prior to classifying exons, we wanted to ensure to analyze only

exons that had a statistically significant signal. To accomplish this,

we first calculated the read count per Cufflinks assembled exon,

and computed a signal threshold as described below. The

threshold to detect significant novel Cufflink exons from each

sample was computed as:

j~Fn{1 0:95 Fn Dð Þ½ �

In this equation, Fn denotes the empirical distribution function

of read counts from all RefSeq exons where:

D~Q3z1:5 Q3{Q1ð Þ

The preceding expression denotes the outlier limit in which Q1

and Q3 represent the first and third quartiles of all unique read

counts from all RefSeq exons, respectively.

Following this analysis, we removed exons that were detected as

outliers based on their read counts. Using empirical relative

frequency distribution of read counts for the remaining exons in

each sample, a minimum number of reads were determined at

p,0.05 per sample. This criterion was applied to each sample and

exons that passed the criteria were used for further exon

classification analysis. Further details can be found in Trapnell

et al [27].

Cufflinks exons were classified by comparing them to all RefSeq

exons. If a Cufflinks exon exactly matched a RefSeq exon (i.e.,

exon start and end positions are identical), it was labeled as

‘Exact’. If a Cufflinks exon did not overlap a known RefSeq exon

by one or more base pairs, and the exon was located in between

the transcription start and end site of a gene, we labeled it at as

a ‘Novel-T’ exon (T for within a Transcript); otherwise it was

labeled as ‘Novel-U’ (U for Unknown). If a Cufflinks exon

overlapped with a RefSeq exon such that it was completely

contained within the RefSeq exon, it was labeled as ‘Within’. If the

Cufflinks exon had partial overlap with the RefSeq exon it was

labeled as ‘Overlap’ (for more details refer to supplemental

information, Figure S8).

Mapping of Microarray probes to Cufflinks Transcripts
Comparisons between gene expression values measured by

microarray vs. RNA-Seq were performed by first mapping all

available microarray probes to their corresponding rat transcripts.

The available microarray data was generated in a previous study

using Agilent Rat Whole Genome Oligonucleotide microarrays in

a 4644 format, using the identical rat liver RNA from these same

samples [25] that were used for RNA-Seq analysis in the current

study. To compare signal/fold change obtained from Microarray

and RNA-Seq platforms for all possible transcripts from the rat

transcriptome, we first created mapping between all Agilent

probes to the rat genome (Rn4) using bowtie2 local alignment

(parameters –local -M 10 -D 30 -R 10 -N 1) [80]. We used the

default mode of bowtie2 where it searches for multiple alignments

to the genome and then reports the best scoring local alignment.

Using these alignment results, we found 26,310 microarray probes

that overlapped exons of Cufflinks transcripts. We used this set of

26,310 probes for further analysis since they directly corresponded

to the set of cufflinks transcripts for which fold change/p-values

were calculated from RNA-Seq data.

Microarray Data Normalization
Agilent whole genome microarray data (feature extraction

software produced raw microarray signal) for the eight samples

were log2-normalized and summarized for each probe using

a median polish algorithm. The signal from multiple probes

overlapping the same Cufflinks transcript was summarized using

a median polish algorithm. Thus, for each Cufflinks transcript that

overlapped one or more microarray probes, we obtained

a microarray signal and calculated CTRL vs. AFB1 treated fold

changes and corresponding p-values. Here the p-value was

computed using empirical distribution of Student’s t-statistic

derived from 10000 random sample label permutations [81]. To

identify differentially expressed genes identified by the microarray

study, we employed an absolute Fold Change.2 and p-value

,0.005 cutoff uncorrected for multiple testing.

RNA-Seq Data Normalization
The raw RNA-Seq read counts for Cufflinks transcripts were

first log2 transformed at RPM= reads per million and then

quantile normalized.

Combining and Correlating RNA-Seq and Microarray
Data
In order to perform correlation analysis on microarray and

RNA-Seq data, we used array data from 26,310 microarray

probes that map to Cufflinks exons as described above. We used

the Cufflinks transcripts that have overlap with one or more

microarray probes. The dataset was divided into 4 quartiles

ranked on the basis of the average control signal (across replicates)

in the microarray platform. Using this microarray and Cufflinks

transcript data, we calculated Spearman (Rank) correlation

statistics and corresponding asymptotic p-values based on a t-

approximation for data points in each quartile. For this particular

analysis, we did not correct for transcript length assembled by

Cufflinks since our objective was to compute fold differences for

each corresponding transcript in Control vs. Treated groups for

comparison of transcript expression. This approach allowed us to

correlate microarray signal to RNA-Seq signal and obtain a p-

value for the correlation.

Principal Component Analysis (PCA)
We calculated the normalized expression level for all genes in

the RefSeq table as implemented in DESeq. We performed PCA

using RefSeq gene level signal data for RNASeq_DESeq and

microarray platforms. Samples were plotted in three dimensional

plots across the first three principal components.

Pathway Analysis
A list of differentially expressed genes from either the

microarray or RNA-Seq platforms was generated using a Fold

Change.2, p-value ,0.05 criteria and used as an input for

Ingenuity Pathway Analysis (IPA) software (licensed use of
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IngenuityHSystems, www.ingenuity.com). Canonical pathways

that were found to be enriched in the DEG datasets were

determined. The significance value associated with overrepresent-

ed pathways measures the likelihood that association between an

experimental gene set and molecules in Reference gene sets for

a specific process or pathway is due to random chance. In general,

p-values less than 0.05 indicate a statistically significant, non-

random association. The p-value is calculated with the right-tailed

Fisher’s Exact Test. Ingenuity uses public databases (e.g.

HumanCyc) and performs in-house curation to formulate and

update signaling pathways. In our study, pathways were

constructed with the Build pathways function using either the

‘Connect’ feature for RefSeq annotated DEGs of our microarray,

DESeq and Cuffdiff datasets or the ‘Grow’ feature. The Connect

feature displayed annotated relationships among DEGs within

each dataset, while the Grow feature showed upstream and

downstream relationships among DEGs in the DESeq dataset.

The ‘Connect’ feature shows relationships among transcripts that

have been annotated by IngenuityHSystems according to the

following categories: direct and indirect Interactions, expert and

third party Data Sources, various Species, Tissues and Cell lines,

Diseases, Molecules (e.g. chemicals and pharmaceuticals) and

Biofluids. A pathway of ‘Connect’ relationships was constructed by

applying these annotated categories for each DEG dataset from

DESeq, microarray and CuffDiff. Hub genes (bolded, enlarged

gene symbols in pathway) were defined as those transcripts

showing regulation or interaction with equal to or more than five

other transcripts. The ‘Grow’ feature uses a specified transcript of

interest as a starting point to find relationships (upstream,

downstream, direct and indirect relationships) between that

transcript and other molecules of interest. The E2f1 pathway

was constructed by the ‘Grow’ feature using only the DEG dataset

from DESeq analysis, filtered by direct and indirect Interactions

from all molecules that are upstream or downstream on specified

transcripts. ‘Grow’ started on the E2f1 transcript and we then

tested subsequent downstream DEGs in which we defined

regulatory transcripts (bolded, enlarged gene symbols in pathway)

as those with equal to or greater than five connections (interactions

or relationships). Objects representing upregulated genes (e.g.

Figures 7, 8) are colored red and downregulated genes are colored

green for which increasing color intensity is associated with

increasing fold change.

qPCR Validation of Gene Expression
We have previously validated differential transcript expression

of Adam8, Ddit4l Cdh13 Abcb1b Grin2c, Mybl2, Abcc3, Akr7a3,

Akr7a2, Cxcl1 and Wwox in the liver of AFB1-treated male rats

[26]. qPCR analysis was performed on an ABI Model 7500 Real-

Time instrument (Applied Biosystems, Foster City, CA, USA).

SuperScript II First Strand cDNA system (Invitrogen, Carlsbad,

CA, USA) was mixed with RNA from fresh frozen samples for

reverse transcription using random hexamers. Gene changes were

determined using the 22DDCt method by normalizing to b-actin
expression which did not vary significantly with AFB1 treatment.

Primers and further details are provided in prior work [26].

PCR Amplification, Cloning and Sequencing
Two potentially novel genes were investigated on chromosome

1.q55 and 15.q11. Based upon RNA-Seq data, primers (Figure S7)

were designed for PCR amplification of products from liver cDNA

created from Oligo(dT)-primed reverse transcription reactions of

liver RNA isolated from AFB1 treated rats. PCR products were

gel-purified, cloned and Sanger sequenced. Briefly, amplicons

were gel purified in 2% agarose, cut out, melted and purified on

silica gel spin columns (Qiagen, Valencia, CA, USA) and TOPO

TA cloned into chemically-competent Escherichia coli (TopTen

cells, Invitrogen) according to the manufacturer’s protocol.

Transformed cells were selected for positive clones on 50 mg/mL

Kanamycin LB agar dishes and screened for inserts by agarose gel

electrophoresis prior to Sanger sequencing of plasmids using

forward and reverse M13 sequencing primers (Forward:

GTAAAACGACGGCCAG; Reverse: CAGGAAACAGCTAT-

GAC). At least 4 sequences were obtained for each amplicon from

two different animals.
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