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Abstract

For a given multi-agent system where the local interaction rule of the existing agents can not be re-designed, one way to
intervene the collective behavior of the system is to add one or a few special agents into the group which are still treated as
normal agents by the existing ones. We study how to lead a Vicsek-like flocking model to reach synchronization by adding
special agents. A popular method is to add some simple leaders (fixed-headings agents). However, we add one intelligent
agent, called ‘shill’, which uses online feedback information of the group to decide the shill’s moving direction at each step.
A novel strategy for the shill to coordinate the group is proposed. It is strictly proved that a shill with this strategy and a
limited speed can synchronize every agent in the group. The computer simulations show the effectiveness of this strategy in
different scenarios, including different group sizes, shill speed, and with or without noise. Compared to the method of
adding some fixed-heading leaders, our method can guarantee synchronization for any initial configuration in the
deterministic scenario and improve the synchronization level significantly in low density groups, or model with noise. This
suggests the advantage and power of feedback information in intervention of collective behavior.
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Introduction

Multi-agent methodology is a natural and popular way to model

a system consisting of many locally interacting individuals (units).

Collective behavior such as phase transition, flocking/schooling/

herding [1], pattern formation, swarm intelligence [2], synchro-

nization [3][4][5], crowd panic [6], locust collective motion [7]

and group decision [8], are widespread and abundant at the

macroscopic level of multi-agent systems.

In a distributed multi-agent system, there is no central

controller. Usually agents interact locally. The set of rules (or

mechanisms) describing the interaction between two agents are

called ‘local rules’. If the local rule is elaborately designed, the

system will show expected and useful function, such as swarm

intelligence. However, for some systems, the self-organized

collective behavior is not what we expect. Then, how do we

intervene in the system and change the collective behavior? One

way is to re-design the multi-agent system. For example, re-design

the local rule of the agents. That is actually about the problem of

how to design a distributed system. Examples include formation

control [9] for robots, ant colony algorithm [10] and distributed

algorithm for constraint satisfaction problems [11], etc. By doing

this, the system will self-organize to the desired collective behavior.

Another method is to put some special agents into the system to

coordinate the collective behavior, such as leaders with stronger

influence [12], virtue leaders [13] and mediators [14], etc. Both of

these methods require additional abilities of the existing normal

agents to recognize and interact with the special ones.

The other way is to use nondestructive intervention methods. In

many real world systems, such as birds and crowds, the interaction

rules among individuals are part of the natural mechanism. They

can not be re-designed to achieve the desired collective behavior.

Therefore, the coordination should not change the interaction

rules of the existing agents (normal agents). Meanwhile, in these

decentralized systems there is no central controller who sends

orders to agents, nor can global parameter be adjusted to change

the collective behavior either. In this case, how do we softly

intervene in the system and guide the collective behavior?

For some multi-agent systems, adding a few agents into the

system is allowed. One way to intervene in the system is to add one

(or more) special agent(s), called a ‘shill’, which is treated as a

normal agent by normal ones. The shill is not like the stronger

influential leader [12], virtue leader [13] or mediator [14] which

should be treated differently by normal agents. The influence of a

shill and that of a normal agent are equal in strength, while

stronger influential leaders or mediator have more influence on

others than normal agents. Thus, by adding a shill, influence is

‘softly’ put on the system, which is called ‘soft-control’ [15][16].

Examples of such include adding some shills to promote

cooperation in the population playing repeated Prisoner Dilemma

games [17], or using ad hoc team agent(can be regarded as a shill)

as a teacher to lead the other agent in the multi-armed bandit

problem to maximize team utility [18], etc.
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Synchronization is one of the most basic yet important collective

behavior, which has profound impacts on many systems [3] [4]. A

related classical model for studying synchronization, the Vicsek’s

model [19] (including its variant MAS models) is widely studied by

physicists, mathematicians and control scientists in the current

decade [20]–[32]. In these models, each agent moves with a

constant speed and its heading is updated based on the average

headings of its neighbors (including itself). It is a simple but

nontrivial model. It display a rich set of phenomena, such as

flocking/schooling/herding behavior, strong coupled and dynam-

ical interaction networks, and the phase transitions of synchroni-

zation.

In situations where the initial configuration of the system does

not satisfy the synchronization condition, intervention is needed to

help synchronize the system – shills are added into the system.

There are four related approaches: (1)For the Vicsek’s model

without noise, an early attempt to intervene and guide synchro-

nization is described in [15][16], where a shill with a fixed desired

heading is simply placed near the agent with the worst heading at

every time step. Then the system can converge to the desired

heading asymptotically. (2)Later in [30], a number of leaders

(fixed-heading shills with desired moving direction) are randomly

distributed among the group of normal agents inside the initial

area. Leaders simply move with a fixed heading forever and they

have impact on their neighboring normal agents. They provide a

theoretical proof of the proportion of leaders needed to guide a

group to synchronization almost surely when the group size is

large enough. (3)For the linear-Vicsek’s model without noise,

Jadbabaie et al. [20] added a special agent (fixed-heading shill with

desired moving direction) to guide the group. They point out that

the key is to maintain the connectivity of union of neighboring

graphs consisting of all agents within some contiguous and

bounded time intervals. However, they did not provide the

algorithm of how the special agent moves to guarantee such

connectivity. (4)Based on a different flocking model, Couzin et al.

[8] studied how a few informed individuals (who know the

direction to a resource) influence the moving decision of animal

groups. They reveal that the larger the population the smaller the

proportion of informed individuals that is required to guide the

group by simulations.

In the above approaches, shills of [15][16], informed individual

[8], leader [30] and special agent [20], are all fixed-heading
shills. These shills are too simple because they do not use online

feedback information to adjust their moving direction. A simple

shill has limited intelligence and power. Therefore, one simple

fixed-heading shill is unlikely to guide the group to synchroniza-

tion. With more shills, the system is more likely to become

synchronized. For this reason papers [8] and [30] focus on the

number of shills. Their method only works in the probabilistic

scenario for high density groups for the Vicsek’s model. This is

because once a normal agent moves outside the neighborhood of

fixed-heading shills, it will never be affected in the future. The

method in [15] can promise synchronization for any initial

configurations in the deterministic scenario, and only one shill is

needed. However, although the heading of the shill is fixed, it is

not moving in a fixed direction. Actually it is arbitrarily placed in

different target positions during evolution. Although online

feedback information of locations and headings of agents is

exploited by the shill, it is only used for the selection of target

positions, not for the decision-making of the schematic movements

of the shill. It does not solve the basic problem of how a shill moves

from one location to another without putting negative effects (i.e.,

drawing heading of agents to a non-desired direction) on the

group. There is no proof for the shill speed limitation and its

moving direction is not consistent with the heading of the shill.

Therefore, it is not a complete algorithm for intelligent shills.

In this paper, a comprehensive algorithm for an efficient and

intelligent shill is introduced: it has a new and subtle strategy called

‘consistent moving’, which uses online information of normal

agents’ locations to determine and update its heading at each step.

The shill periodically affects every normal agent and will

eventually synchronize the whole group towards the desired

heading. Both the mathematical analysis and the simulation results

prove that the system can be synchronized by adding one

intelligent shill with a limited speed. Merits of this new approach

are as follow:

(1) synchronization is guaranteed for any initial configuration in

the deterministic scenario by adding only one intelligent shill;

(2) the strategy is much more clever and the heading of the shill is

consistent with its actual moving route, so this is the first

comprehensive approach for intelligent shill with theoretical

analysis;

(3) by using feedback information, the intelligent shill is possible

to handle noise in the Vicsek’s model, which cannot be

achieved with fixed-heading shills.

We will demonstrate these advantages in the computer

simulations by comparing with the method of adding some

fixed-heading shills (leaders). It shows that one intelligent shill can

perform better when measured by the synchronization level,

especially in low density groups. Besides, the intelligent shill has

significant advantages in the case of noise. It implies that feedback

information is essential for intervention in the model with noise.

For nondestructive intervention of collective behavior of multi-

agent systems, adding shills is a feasible method. Although shills

have only the same strength of influence on neighbors as normal

agents do, they can have a bigger impact on the collective

behavior of the group, depending on the number of shills that are

added into the system and how intelligent the shills are. Without

using feedback information, shills are not intelligent and more

than one shill is needed to guide the group [8] [30]. Our approach

in this paper confirms shills can become more powerful with

feedback information. One intelligent shill is able to guide the

whole group, and it can also handle more complicated cases.

Methods

The Multi-agent model
Flocking of birds, schooling of fishes and herding of sheep are

ubiquitous in nature. In 1987, Reynolds, a computer scientist,

might be the first to propose a computer simulation which can

show flocking phenomena [1]. It is a multi-agent system with three

simple local rules for each interacting agent: Alignment, Separa-

tion and Cohesion. Later in 1995, from a different viewpoint

physicists Vicsek et al. introduced a simplified model, which only

keeps the Alignment rule - steer towards the average heading of

neighboring agents. Two agents are neighboring to each other if

the distance between them is not larger than a given constant r. In

spite of its simplicity, the self-order motion, a flocking-like

cooperative behavior, emerged in this simplified system. Although

in reality the physical and biological systems are more complicat-

ed, many of them are based on this model more or less [33]–[35].

The Vicsek-like model we adopt in this paper is described

bellow: there are n agents all moving simultaneously in the

unlimited two-dimensional space. They are represented by

heading set h~(h1,h2, � � � , hn) and location set

X~(X1,X2, � � � ,Xn), where Xi~(xi,yi)[R2 denotes the

Nondestructive Intervention to Multi-Agent Systems
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x{coordinate and the y{coordinate of the location of agent i.
The velocity of agent i at time t is Vi(t)~(v cos(hi(t)), v sin(hi(t))),
constructed to have a constant speed v and a heading given by the

angle hi(t)[½0,2p). Neighbors of agent i at time t are those agents

which are either in or on a circle of a constant radius r centered at

agent i’s current position. So the neighborhood is defined as

Ni(t)~fjDEXj(t){Xi(t)Eƒr,j~1,2,:::,ng: ð1Þ

Agent i updates its heading and position according to equations

as follow:

hi tz1ð Þ~arctan

P
j[Ni tð Þ

sin hj tð Þ
� �

P
j[Ni tð Þ

cos hj tð Þ
� �

0
B@

1
CA, ð2Þ

Xi(tz1)~Xi(t)zVi(t)Dt: ð3Þ

where hi(tz1) is the angle of the sum of the velocity vector of all

neighboring agents, and the time unit Dt~1 is the time interval

between two updates.

Adding an intelligent shill
The computer simulation of the above model shows that given

different initial configurations (initial locations and headings of n
agents), the system will exhibit different phenomena: agents evolve

to a same heading, i.e., synchronization; or agents separate into

several subgroups with different headings and never merge again

especially when the space is unlimited (see Fig. 1(a)–(b)). Papers

[27][28] show that when the density of the group is high enough,

the group will self-organize to synchronization with large

probability. It is more likely to separate into several sub-groups

than in model with periodical boundary space. So an important

question is: how do we intervene in the system and lead all agents

synchronizing towards a desired heading if the self-organized

heading is not what we expect or the group separates into

subgroups? In this paper, one intelligent shill is added into the

group to guide the system to synchronize towards a desired

heading (see Fig. 1(c)–(d)). Because the shill is artificial, we can

design its moving strategy for this purpose. The rest part of this

paper solves the following problem:

Problem definition. considering the Viksek-like model

defined above. Given any initial configurations that consist of n
normal agents randomly and uniformly distributed inside a finite

size area (a square with length L) and with headings randomly

picked up from ({p=2,p=2) with uniform probability. Agents

move in the unlimited two-dimensional space following local rules

of (2) and (3). A shill is added to guide all normal agents

synchronizing towards a desired heading h�~0, i.e.,

max
i[f1,���,ng

cos hi(t)?1 when t??. What is the strategy (dynamics)

for the shill to complete the task?

As we have pointed out, the difficulty is how the shill decides the

moving direction for each step using online feedback information.

Especially, how a shill moves from one target agent location to

another without putting negative effects on others is challenging.

This paper gives a solution by proposing a novel strategy for the

shill called ‘consistent moving’ (demos see Video S1). In the

following, attributes of the shill are described, and then the moving

strategy is introduced.

The position, heading and speed at time t of the shill are

denoted as X0(t), h0(t) and vs(t) respectively. The neighborhood

structure of a shill is the same as normal agents. The shill will affect

a normal agent i if it is in the neighborhood of agent i, i.e.,

EX0{XiEƒr. Since normal agents treat a shill as a normal one,

normal agents still keep their update rules defined in equations (2)

and (3) except that the definition of neighborhood Ni(t) includes

the shill as well:

Ni(t)~fjDEXj(t){Xi(t)Eƒr,j~0,1,2,:::,ng: ð4Þ

Therefore, the way normal agents treat a shill is the same as the

way they treat normal ones. So shills have only the same strength

of influence on neighbors as normal agents do.

There are differences between the shill and the normal agent:

(a)The shill does not need to follow the normal agent’s local rule of

equation (2). Its moving strategy can be re-designed, which is

called ‘consistent moving’ in this paper; (b)The shill can use online

feedback information of normal agent location; (c)The shill is

allowed to speedup and slowdown during the evolution, so vs is not

a constant but satisfies vs(t)ƒv0 for all t§0, where v0 denotes the

maximal shill speed.

To affect the heading of a normal agent i, the shill should be

inside the neighborhood of agent i. While the shill is neighboring

to agent i, if the heading of the shill h0 is zero (the desired

heading), hi (the heading of agent i) will be drawn towards to

direction zero rapidly within a few steps, which is considered as a

positive effect on agent i; if h0 is not zero, the shill will lead hi to

other direction, which is considered as a negative effect on agent i.
So to guide agent i and make hi?0, the shill first moves close to

the left side of agent i (see Fig. 2(a)), then changes to heading zero,

moves forward and hits agent i. It should keep staying with agent i
for a few steps till hi is small enough (Dhi Dve). Therefore, to guide

one agent is not difficult. But to guide the whole group we need to

consider two basic problems in the shill moving strategy:

(1) When to affect a normal agent? Does the shill need to affect

all normal agents one by one repeatedly? Which agent should be

selected as the next target to be affected? What are the criteria for

selection? Jadbabaie et al. [20] gave a preliminary result on a

condition of synchronization for the linearized Vicsek’s model,

which showed that the connectivity of the union of neighbor

graphs within some time-interval can guarantee synchronization.

Inspired by this result, the first principle of the ‘consistent moving’

strategy is: the shill should periodically affects every agent
directly or indirectly with heading zero.

In a period, the order for target agent selection does not affect

whether or not the shill can complete the task, but it might affect

the convergence time. The simplest schedule in a period is to affect

agents in a fixed order: 1?2?3, � � � ,?n. But we found from

simulations that if an agent shows the trend of moving far away

from the group centroid, it should be selected by the shill with a

high priority. Otherwise that agent will move far away from the

group and the shill will have to spend much more time to catch up

with it. So in this paper the agent which has the biggest growth of

distance from the group will be picked up first.

(2) What is the moving route of the shill from one location to the

next target agent location? This is the core of the strategy. Note

that if the shill is not always moving with the desired direction

(heading zero), it will have negative effects on its neighboring

normal agents. However, if the shill moves with a fixed heading of

zero, it could never get to some locations. One solution is to allow

the shill to change heading but make sure not to put negative effect

on any normal agent during its movement. This can be described

Nondestructive Intervention to Multi-Agent Systems
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as the second principle: ‘the shill should always keep
heading zero (the desired heading) if it has neighboring
agents; only when it has no neighbors can it have a non-
zero heading’. A subtle algorithm is designed based on this

principle. It is a comprehensive algorithm for an intelligent shill.

The simplest idea for a shill to move from one target agent

location to another is shown in Fig. 2(a). It first goes forward with

heading zero till far away from the group, then makes a big U-turn

outside the group area and gets back to the left side of the whole

group, finally hits the target with heading zero. With a speed

which is faster than v the shill can make this kind of route and it

will not meet any normal agent during the U-turn process even

considering the normal agents are moving. The mathematical

proof shows that the shill with a limited v0 can affect every agent

inside a period and lead the group to synchronization.

However, this simple route is not efficient. In fact, the shill can

find a shorter route shown in Fig. 2(b). The shill can move inside

the group area with a much more refined and careful path as long

as it avoids meeting any normal agents when its heading is not

zero. This shortcut is very subtle in this case. It is produced by a

finite-state machine (See Appendix S1), which is based on the

simple route idea with some heuristics for finding shortcuts.

With a shill, the overall system evolves in this way: firstly, n

normal agents and a shill randomly and uniformly distributed

Figure 1. Snapshots of computer simulation. Velocities of agents are displayed for two cases: a self-organized group and a group with one shill.
The number of agents is n~100 in each case. Normal agents are represented by the little circle with red line pointing to the moving direction. (a) and
(b) are for the self-organized case. (a) t~0, r~1, v~0:03. n~100 agents are randomly distributed inside a square with L~10. (b) After 503 steps, the
system reaches to a situation of several separated subgroups with different moving directions. So the group does not self-organize to a same
heading -synchronization. (c) and (d) are for the case with a shill: (c) t~0, a shill with v0~0:3 is added into the same group as shown in (a). The shill is
denoted as a dark little dot with blue arrow pointing to its heading direction. The blue circle centered at it indicates its neighborhood area (the radius
is r~1, which is the same as the radius of normal agents). (d) With the help of the shill using ‘consistent moving’ strategy, after 1999 steps, headings
of all agents converge to a desired heading (zero), i.e., max

i
cos hi§0:9999.

doi:10.1371/journal.pone.0061542.g001
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inside a finite size area. During evolution, at each step, normal

agents update their headings according to equations (2) and the

shill updates its heading according to the finite-state machine (Fig.

S1 in Appendix S1). And then they simultaneously update their

positions using equation (3). In computer simulations, the

evolution stops when the system reaches the synchronization

criterion, i.e., max
ief1,2,���,ng

cos hi(t)§1{e with ew0.

The section of theoretical result below will give a rough upper-

bound for the speed of the shill which can guarantee the evolution

will stop in finite steps for any ew0. This means that the shill with

a speed not larger than the bound value can guide all agents’

headings converge to zero. The computer simulation results will

exhibit that with v0~1:5v, 2v and 5v, the evolution can stop in

finite steps for e~0:0001, which means that in practice the shill

can synchronize the group with a speed much lower than the

theoretical bound.

Results and Discussion

Theoretical result
For compact construction and easy understanding, we will

present the theoretical result in this subsection, and give a detailed

mathematical proof in Appendix S2.

From the above section, we know the following two principles,

denoted by L, are satisfied:

i) The shill always keeps the desired heading h� when
it has neighboring agents. That is to say, the heading
of the shill felt by normal agents is always h�;

ii) All agents will be directly or indirectly affected
periodically by the shill in a time period H.

Note that in (i), h�~0 in this paper. But in fact, the proof is truth

for any h�[({p=2,p=2).

An essential problem we concerned about is that can the shill

with a limited speed accomplish periodical intervention? We know

that if all normal agents can be covered by a limited circle in every

time step, the shill can finish its task with a limited speed. On the

other hand, if the minimal circle which covers all normal agents

becomes bigger and bigger during evolution, the shill will have to

keep accelerating to make sure it can catch up and affect all agents

in a fixed period. Thus, the question can be translated to whether

all normal agents can be covered by a limited circle during the

whole evolution process.

For the group, we define a dynamic reference point
�XX (t)~(�xx(t),�yy(t)) as follows:

�xx(tz1)~�xx(t)zv cos h�

�yy(tz1)~�yy(t)zv sin h�,

�
ð5Þ

where (�xx(0),�yy(0)) is the center of the minimal circle covering all

normal agents in the initialization. Fig. 3 shows the dynamical

circle covering locations of all normal agents. Note that the

reference point is virtual and has no influence on the other agents.

We will see that at time t all normal agents will be covered by a

circle centered at (�xx(t),�yy(t)) with a fixed radius.

Theorem 1 If the shill strategy satisfies condition L, it can lead

i) headings of all normal agents exponentially converge to the desired value

h�, and

max
i,j[f0,1,2,���,ng

Dtan hi(t){tan hj(t)Dƒblt{1D0,

where

Figure 2. Examples of the moving route from location of agent 1 (X1) to location of agent 2 (X2) for the shill (starting from location
x0). The big dash-line square indicates the current group area (note that to show ideas of the shill route, for convenience, the group area shown here
is supposed to be static. In fact, the actual consistent moving strategy considers the cases that normal agents are moving when the shill moves, i.e.,
the group area keeps changing, which is much more complicated.). Two moving routes for the shill are shown: (a) a simple U-turn route: first it
goes forward to a location which is much far away from the whole group(dash line part (1)), then it makes a big U-turn (dash line parts of (2)–(3)–(4))
far away outside the group area and gets back to the left side of the whole group, finally goes forward and affects agent 2 (dash line part (5)). Its
heading is set to be zero in parts (1) and (5), while it can have different headings during (2)–(3)–(4) because there are no neighboring agents. (b) A
more efficient route for the shill moving from agent 1 to agent 2. Radius of the small dash line circle centered at the shill represents the
neighborhood size r which is the same as the radius of normal agents. The shill tries to find a shorter route which maintains a ‘safe’ distance (larger
than r) away from any normal agent when its heading is not zero. It is much more efficient than the simple U-turn route.
doi:10.1371/journal.pone.0061542.g002
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b~s{1, l~s
1
m, s~1{( cos �hh

nz1
)m, m~nH,

�hh~ max
i[f0,1,2,���,ng

Dhi(0)D, D0~ max
i,j[f0,1,2,���,ng

ftan hi(0){tan hj(0)g,

ii) locations of all normal agents can be covered by a circle with a fixed

radius R� at every step, and

�ddi(t) ¼: E �XX (t){Xi(t)EƒR�, Vt§0, Vi[f1, � � � ,ng,

where

R�~DzvbD0
2{l

1{l
,

D is the radius of the minimal circle enclosing all the normal

agents at time 0:

The mathematical result shows that with the help of a shill using

‘consistent moving’ strategy, the size of the group area is always

limited during the evolution. This means the distance between any

two normal agents is always limited. So with a limited speed, the

shill can move from one agent’s location to any other agent’s

location within limited steps.

It can be found that with some speed not larger than 2R�z3v,

the shill can pass across the whole group in one step and have no

neighbors in the next step. Thus, for any given period H, we can

set vb – the bound value of the shill speed, to be 2R�z3v. In

particular, some speed not larger than vb~2R�z3v can ensure

the shill to take the big U-turn route shown in Fig. 2(a) and directly

affect each normal agent at least once in a period of H~5n.

Therefore, the shill can accomplish its task to synchronize all

normal agents with a limit speed.

Note that vb is only a rough upper-bound value, which is in

order to show that with a limited speed the shill can perform the

periodical intervention and synchronize the system. Actually we

can see in the following computer simulations, the shill with a

speed much lower than vb can synchronize the group in practice.

Computer simulations
The settings of parameters in simulations are as follow:

neighborhood radius r~1 and normal agent speed v~0:03,

which are adopted from the Vicsek’s paper [19]; the initial

location area is a square with length L~10; different group sizes

n~10,30,50,100,200,300,400 are tested, so the corresponding

initial densities r~n=L2~0:1,0:3,0:5,1,2,3; different shill maxi-

mal speeds v0~1:5v,2v,5v,10v,? are tested. v0~? means that

once the shill affects the target agent, it will slow down a bit if there

are neighbors around, otherwise it will get to the position of the

next target agent in the next step, no matter how big the distance

between them. For each realization, the simulation will stop when

the synchronization criterion max
i

cos hiw0:9999 is satisfied. For

each n and v0, we test 500 realizations starting from different

random initial configurations. For each realization, the total

number of steps (denoted as totalStep) is measured, which means

that the system is synchronized after totalStep steps.

Can one intelligent shill synchronize the system within

limited steps? How does the shill maximal speed v0 affect the

performance? What if v0 is much smaller than the theoretical

bound vb? How does the group size n affect the performance?

Fig. 4 answers the above questions. It shows that one intelligent

shill with ‘consistent moving’ strategy can synchronize the group

within limited steps.

With v0~1:5v,2v,5v%vb, the shill still works for the synchro-

nization task within finite steps. Because small v0 requires longer

time for the shill to catch up with target agents, the system needs a

larger totalStep to reach synchronization. Note that v0 should be

larger than v (the speed of normal agents), otherwise the shill will

never catch up with and affect a running-away normal agent.

The impact of group size n is twofold. When the group size n is

larger, the shill needs to affect more agents. From this aspect,

larger n requires more steps for synchronization. On the other

hand, because the initial area is fixed, larger n means higher initial

density. As the theoretical result shows, higher density implies

larger probability of self-organized synchronization [26]. There-

fore, larger n (density) means that the system is more likely to self-

organize to synchronization and the group is more connected. The

radius of the minimal circle which covers all normal agents will be

smaller. It takes less time for the shill to guide the group. From this

aspect, larger group needs less intervention from the shill. These

two effects work together and the overall impact of n can be found

from Fig. 4: when v0 is small, cases with small n (low density

groups) take a longer time (larger totalStep) for convergence; when

v0 is large, cases with larger n take a longer time for convergence.

For example, the peak of totalStep for the case of v0~1:5v locates at

n~30, and then shift to n~50 for v0~2v, n~100 for v0~5v and

n~200 for v0~10v. This is because when the shill moves with a

slow v0, it takes a long time to catch up with the target agent, so

the group is more likely to separate into several subgroups soon in

the beginning if the initial group density is low. Consequently

distances between two target agents become very large and the

shill takes a much longer time to move from one target agent

location to the next target agent location. Thus, the convergence

time is significantly increased. When v0 increases, the shill can

efficiently stop the separation in the beginning and quickly move

to the next target agent location, so what matters the totalStep is the

number of normal agents that are needed to be affected in one

period. Therefore, cases with larger n need longer time for

convergence.

It is worthy to point out that small n (low initial density) is more

challenging for the shill when v0 is small. Because for dense

groups, the best choice of the shill is the U-turn route which can be

Figure 3. The locations of all normal agents can be covered by
a circle centered at a reference point (little dot) with a fixed
radius R� at every step. Solid-line circle represents the location area
of time t. As the reference point is moving with speed v and desired
direction h�~0, the location area of time tz1 is presented by the
dashed-line circle.
doi:10.1371/journal.pone.0061542.g003
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produced by simple algorithms. But for low density cases, the

group tends to separate into several subgroups more quickly in the

beginning; to be efficient, the shill needs to find subtle shortcuts

passing inside the group like Fig. 2(b), which can significantly

reduce the convergence time compared to the simple U-turn

route. Our method, the finite-state machine shown in Fig. S1 of

Appendix S1, can automatically produce both simple U-turn route

for low density groups and subtle shortcuts for dense groups. So

the shill using this strategy shows computational intelligence and it

can efficiently guide the group.

Comparing with a number of fixed-heading shills - model

without noise. As mentioned in the introduction section,

adding a number of fixed-heading simple shills is a method to

coordinate headings of a group with dense population. It is proved

that if the proportion of fixed-heading shills (informed agents) is

equal to or greater than 2:7111
log3=4 nffiffiffi

n4
p

 !
[30], all agents can be

led to move along the expected direction with probability of 1

when the group initial density is big enough. Compared to the case

of adding one intelligent shill, which method is better? What if the

group density is low? We know that the group can converge to

heading zero with one intelligent shill, so do headings of all agents

converge to zero with some fixed-heading simple shills? If not,

what is the convergence value?

In simulations, nf simple shills with fixed heading zero are

added into the system. They are randomly distributed uniformly in

the initial square area. And then let the system evolve till

maxi cos hi converges to a static value. nf ~0:1n,0:2n,0:5n,0:8n

and n are tested for n~10,30,50,100,200,300 and 400 respec-

tively. Fig. 5 shows the synchronization level, i.e., mean convergence

value of maxi cos hi, for three cases: ‘adding nf fixed-heading

shills’, ‘self-organized’ (without intervention) and ‘adding one

intelligent shill’. We can see that for the self-organized behavior,

the synchronization level is the lowest, but it increases with n. It almost

self-synchronizes when n~400. This is the reason why we do not

test nw400 for L~10. For the case of adding one intelligent shill,

the convergence value is always 1. For the case of adding some

fixed-heading shills, larger nf leads to higher synchronization level.

But its level is low when n is small. For example, in the system

consists of n~50 normal agents and nf ~50 fixed-heading shills,

the synchronization level~0:748348. So for low density groups, one

intelligent shill performs much better than a number of fixed-

heading shills when measured by the synchronization level. This is

because low density groups need much more fixed-heading shills

to directly or indirectly influence all normal agents. But an

intelligent shill with feedback information can periodically affect

every agent and synchronize the group.

Comparing with a number of fixed-heading shills - model

with noise. In the original Vicsek’ model [19], the heading

update rule includes a noise part: hi(tz1) equals to the angle of

the sum of the velocity vectors of neighbors plus a random number

Dh chosen with a uniform probability from the interval

½{g=2,g=2�. They define va ¼:
1

nv
D
Xn

i~1

Vi D as the order parameter,

which can be regarded as the synchronization level. va~1 if headings

of all agents are the same, i.e., the system synchronizes. In this case

with noise, does the intelligent shill work for the model with noise?

How does it compare to the method of adding some fixed-heading

shills? What are the performance characteristics of both methods?

Fig. 6 shows that with small noise, how mean value of

synchronization level changes during time evolution (from t~1 to

t~10000) for both methods. The group synchronization level is

decreasing obviously during time evolution even with the help by a

number of fixed-heading shills; while adding one intelligent shill

can maintain a high synchronization level. This is because the method

of adding fixed-heading shills has a serious problem when facing

noise: once an agent moves away (driven by noise) from the shills’

neighborhood, it might never be neighbors of shills since the space

is unlimited and shills are moving with a fixed direction.

Therefore, fixed-heading shills will lose more and more neighbors,

and have less and less impact on the group during evolution. On

Figure 4. Mean totalStep (over 500 realizations) for synchronization (max
i

cos hiw0:9999) under different settings of

n~f10,30,50,100,200,300,400g and v0~f1:5v,2v,5v,10v,?g, when one intelligent shill is added.
doi:10.1371/journal.pone.0061542.g004
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the other hand, a theoretical result [29] shows that if the shill can

affect all agents periodically, headings of all agents fluctuate

around the desired heading rather than reaching it, and the range

of the fluctuation depends on the magnitude of the noise. This

indicates that it is impossible to maintain fully synchronization

(va~1) in the model with noise, but if the shill can periodically

affect all agents, it can maintain a reasonable synchronization level.

With feedback information, the intelligent shill can adjust its

moving direction and try to catch up with those running-away

normal agents instead of losing them.

Fig. 7 demonstrates the mean va at t~10000 for both methods

under different settings of noise g~0:01,0:05,0:1,0:5 and group

size n~10,30,50,100,200,300,400 respectively. It shows that for

small noise gƒ0:1, adding one intelligent shill (with v0~5v) can

achieve a high synchronization level which is obviously higher than

adding 0:5n fixed-heading shills, especially for low density groups.

For g~0:05 and 0:1, compared to the case of ‘self-organized’,

adding one intelligent shill can significantly promote the synchro-

nization level, whereas adding 0:5n fixed-heading shills can not. But

for the case with big noise g~0:5, none of them can promote the

synchronization level. This is because with fluctuation the distance

between agents might keep increasing and become too large; then

the shill can not be able to periodically affect all agents with a

limited speed.

This result shows that for small noise, one intelligent shill using

‘consistent moving’ strategy can significantly promote synchroni-

zation and perform much better than the method of adding some

fixed-heading shills, because the intelligent shill can use online

information to adjust its heading and try to keep up with every

agent. Therefore, online feedback information of agent location is

important in this sense, especially in the procedure of next target

agent selection. This shows the advantages of intelligence through

feedback mechanism. We notice that tightly connected group(-

group with high density) has low tendency of dispersion caused by

noise because each agent in the group has many neighbors that

can cancel out most of the noise effect. It suggests future study of

the intelligent shill to achieve better synchronization level in the

noise model: for example, first the shill tries to drive all normal

agents moving towards a center to form a tightly connected group,

and then the shill use the ‘consistent moving’ strategy to guide

synchronization.

In a word, the most important difference between methods of

adding a number of fixed-heading shills and adding one intelligent

shill is the feedback mechanism which brings big benefits but

requires observation of information (in fact, global information is

not necessary during the procedure of shill moving from one

location to the next target agent location, see Appendix S1).

Except this, other difference lies in: (1)the former is a method that

works in the probabilistic scenario for high density groups, while

the latter is a deterministic method for any initial configuration for

any density. The former might not lead the group converge to the

desired heading starting from some configurations, especially when

the group density is low. (2)The former needs a number of shills,

while the latter needs one; (3) Shills in the former method move

with the same speed as normal agents, whereas the shill in the

latter can adjust its heading based on feedback information and it

needs a speed which must be faster than normal agents; (4)As

considering the model with noise, computer simulations show that

the latter performs much better than the former because the power

of feedback.

Conclusions

We have studied nondestructive intervention by adding one

intelligent shill and proposed a smart strategy for the intelligent

shill to coordinate synchronization of a Vicsek-like model using

online feedback information, which is the first complete and

feasible algorithm for this purpose. The strategy obeys two

principles: (1)the shill should directly or indirectly affect all normal

agents periodically; (2)by using online feedback information of

Figure 5. Synchronization level(mean maxi cos hi) for n~10,30,50,100,200,300,400 respectively in the following cases: self-organized
without any intervention; one intelligent shill with v0~5v is added into the group; 0:1n,0:2n,0:5n,0:8n and n fixed-heading simple
shills are added into the group respectively.
doi:10.1371/journal.pone.0061542.g005
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Figure 6. Mean value (over 500 realizations) of va(t) during time evolution for n~30 and g~0:01 under 3 scenarios: (1)self-organized;
(2)one intelligent agent with v0~5v is added into the group; (3)0:5n ( = 15) fixed-heading shills are added into the group.
doi:10.1371/journal.pone.0061542.g006

Figure 7. Mean value (over 500 realizations) of va at t~10000 with noise g~0:01,0:05,0:1,0:5 respectively. Three scenarios are considered
for each case: (1)self-organized; (2)one intelligent agent with v0~5v is added into the group; (3)0:5n fixed-heading shills are added into the group.
doi:10.1371/journal.pone.0061542.g007
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normal agents, the shill should avoid putting negative effects on

normal agents when it is moving in a non-desired direction.

According to these two principles, we have designed a finite-state

machine for the dynamics (moving algorithm) of the shill which

can produce refined shortcut route based on the simple U-turn

route. This is called ‘consistent moving’ strategy. The mathemat-

ical analysis gives a bound vb which can ensure that the shill using

‘consistent moving’ strategy with a speed not larger than vb can

affect all normal agents inside one period. Therefore, the group

can converge to the desired heading. This means that an

intelligent agent with ‘consistent moving’ can synchronize the

group with a limited speed. Computer simulations show that a shill

with speeds v0~1:5v,2v,5v which are much lower than vb can lead

the group to a synchronized state (maxi cos hiw0:9999) within

finite steps. With larger v0, the group can converge faster.

Compared to the method of adding a number of fixed-heading

shills, our method performs better in terms of synchronization level,

especially for low density groups and model with noise. This is

mainly due to intelligence of the shill with feedback mechanism.

Based on our approach, there are a number of possible future

studies: (1) The goal of this paper is to prove that one intelligent

shill can guide the group to synchronization and there exists such a

strategy for the shill. We believe that the efficiency of the algorithm

for the shill can be improved by changing the heuristics and some

parameter settings. (2) In this paper, the desired heading is zero.

Actually, theorem 1 is true for any desired heading

h�[({p=2,p=2). The related ‘consistent moving’ strategy can be

obtained by the state transition diagram (Fig. S1 in Appendix S1)

with some minor modifications. (3) The ‘consistent moving’

strategy provides an algorithm of how a shill moves from one

agent location to another without putting any negative effect on

the group. This provide a base for further development of more

efficient strategies for the shill, as well as strategies for other

coordination purposes of Vicsek-like models, such as circus

movement of group, tracking of desired route, obstacle avoidance,

etc. Moreover, the strategy of the shill to lead synchronization can

be a base for other coordination purpose, because it will be much

easier to guide the group to turn or move to a destination after the

system is synchronized; (4)The strategy for the shill in 3-D space

model, and the strategy for the shill in a speed consensus problem

of a continuous model that includes both magnitude and direction

deserve further investigation; (5)To adding more than one

intelligent shills into the group, and to design strategies for the

intelligent shills to cooperate or compete for collective motions of

the group will be a challenging topic.

In fact, the intention of this paper is not only to complete a

special coordination task of a specific MAS, but also to suggest a

nondestructive intervention method by adding intelligent shills for

other MASs as well. For example, adding intelligent shills in a

multi-player group to change the group decision, adding intelligent

shills in crowd to avoid panic, adding intelligent shills on internet

to intervene public opinion, etc. On the other hand, this idea also

provides a possible solution for the design of man-made MASs. To

design a self-organized MAS to achieve an expected collective

behavior requires a lot of skills in the design of local interaction

rules. Adding one or more intelligent shills to coordinate the

collective behavior can release designers from the hard work of

subtle design.

In one word, this approach demonstrates the importance of

using feedback for intervention. Intelligent shills can significantly

outperform simple fixed-heading agents. As more attention has

been paid to control and intervention of collective behavior, we

need to design intelligent strategies for effective and efficient

intervention for complex multi-agent systems and varieties of

intervention purposes, not limited to synchronization only, but

other patterns of collective movements as well.
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