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Abstract

We present an efficient approach to discriminate between typical and atypical brains from macroscopic neural dynamics
recorded as magnetoencephalograms (MEG). Our approach is based on the fact that spontaneous brain activity can be
accurately described with stochastic dynamics, as a multivariate Ornstein-Uhlenbeck process (mOUP). By fitting the data to a
mOUP we obtain: 1) the functional connectivity matrix, corresponding to the drift operator, and 2) the traces of background
stochastic activity (noise) driving the brain. We applied this method to investigate functional connectivity and background
noise in juvenile patients (n = 9) with Asperger’s syndrome, a form of autism spectrum disorder (ASD), and compared them
to age-matched juvenile control subjects (n = 10). Our analysis reveals significant alterations in both functional brain
connectivity and background noise in ASD patients. The dominant connectivity change in ASD relative to control shows
enhanced functional excitation from occipital to frontal areas along a parasagittal axis. Background noise in ASD patients is
spatially correlated over wide areas, as opposed to control, where areas driven by correlated noise form smaller patches. An
analysis of the spatial complexity reveals that it is significantly lower in ASD subjects. Although the detailed physiological
mechanisms underlying these alterations cannot be determined from macroscopic brain recordings, we speculate that
enhanced occipital-frontal excitation may result from changes in white matter density in ASD, as suggested in previous
studies. We also venture that long-range spatial correlations in the background noise may result from less specificity (or
more promiscuity) of thalamo-cortical projections. All the calculations involved in our analysis are highly efficient and
outperform other algorithms to discriminate typical and atypical brains with a comparable level of accuracy. Altogether our
results demonstrate a promising potential of our approach as an efficient biomarker for altered brain dynamics associated
with a cognitive phenotype.
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Introduction

There is a current debate in the autism field related to the

concept of ‘‘disconnection’’ in the autistic brain that became

popular from psychological and neuroimaging evidence. Proposals

of disruption of coordinated timing in neuronal activity in autism

were advanced [1], along with the possibility of reduced brain

synchronization [2], but other suggestions appeared indicating

that while the brains of those with autism can be perhaps generally

characterized as disconnected, local networks may be more

connected [3]. Neuroimaging evidence has traditionally supported

the concept of reduced functional connectivity in autism, e.g.,

under-connectivity has been documented in the baseline resting

state of cortical networks [4]. Conversely, evidence indicating

enhanced connectivity between brain regions has appeared very

recently, suggesting that the ‘‘under-connectivity theory of autism’’

may not suffice to describe the brain coordination dynamics

characteristic of this condition. For example, enhanced thalamo-

cortical connectivity in high-functioning autism has been reported

[5], and stronger connectivity between specific cortical areas at

rest has also been noted [6], as well as increased connectivity in

striatal regions of children with ASD [7]. These findings

emphasize that it may not be a matter of less connectivity in

autism, but of a different style of coordination dynamics between

specific areas and perhaps also globally.

Most of these studies have relied on metabolic measurements. A

complementary approach is the analysis of electroencephalo-

graphic signals, which have greater time resolution thus allowing

for the study of transient coordination patterns. Indeed, the crucial

aspect of these patterns in normal cognition is their transience:

widespread long-lasting synchrony is normally associated with

unconsciousness or disease [8]. Thus, studies evaluating electro-

encephalographic or magnetoencephalographic recordings report-

ed evidence for distinct patterns of brain coordinated activity

derived from synchronization measures [9–11]. The documenta-

tion of unique coordination patterns can reveal which brain areas
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operate with different levels of coordination and when these

differences occur so that, perchance, therapeutical interventions

may target specific brain areas. These investigations may as well

contribute to the diagnosis of autism early in development [12].

However, as a note of caution, one should keep in mind that the

notion of functional connectivity in the literature encompasses a

wide variety of mathematical techniques applied to different

recording modalities, and hence a direct comparison between

studies may be misleading.

While connectivity measures are providing important insight into

brain function, an area that remains very much under-investigated

relates to the detailed analysis of the background, resting nervous

system activity. Examination of noise and fluctuations in neurophys-

iological signals rather than concentrating on averages and magni-

tudes as is customary, is crucial for a complete understanding of

nervous system function and its relation to behavior [13], as sensory

stimuli are known to modulate the ongoing neural activity [14]. From

a practical perspective, studying ongoing activity is easier than

performing cognitive/behavioral tasks in experimental recordings.

Here we present an analysis method that allows one not only to

determine functional connectivity in a standardized way, but also to

reconstruct the spatio-temporal characteristics of the ‘‘noise’’, i.e. the

random input driving the network in the resting state, which is

characterized by a minimal presence of, or attention to, sensory

stimulation. The approach is based on recent theoretical work from

one of our labs [15,16], showing that spontaneous brain activity can

be described as a stochastic system driven by Gaussian noise that may

be spatially and temporally correlated. Importantly, we find that not

only the functional brain connectivity, but also the spatial pattern of

stochastic background activity can serve as reliable discriminators

between individuals with autism and control participants. This

suggests thatourmodelprovidesanefficientbiomarker forAsperger’s

syndrome, and perhaps more generally, for autism spectrum

disorders as well as other cognitive phenotypes.

The outline of our results is as follows. We first investigate global

differences between the connectivity matrices in the control and

ASD groups. In particular, we show that the matrices of each

group cluster in a high-dimensional space. We then investigate

which specific features of the matrices account for this clustering.

Specifically, we show that certain pair-wise interactions are

significantly different. Finally, we demonstrate that in addition to

having some different functional connections, the brains from

control and ASD differ in the spatial distribution of background

noise driving the network.

Results

In the absence of stimulation, the non-linear dynamics of the brain

reduces to noise-driven fluctuations around a state of equilibrium,

which in realistic neural-mass models of brain dynamics corresponds

to a hyperbolic fixed point [15,17,18]. The presence of background

noisedoesnotallowthesystemtoquenchat the fixedpointbut instead

the noise perturbs the system in a continuous manner so that

fluctuates around the equilibrium. Thus, consistent with the

approach used by several authors [15,16,19–21], large-scale

spontaneous brain activity can be described as a linear multivariate

stochastic system,which in its continuousversion in time is equivalent

to an Ornstein-Uhlenbeck process [22] (see Methods)

dxi

dt
~
XN

j~1

Wijxjzgi, ð1Þ

where Wij is the functional connectivity matrix, i.e. the coupling

between the j-th and the i-th nodes; xi is the neural activity of the i-th

node with respect to baseline, measured as the signal from the i-th

MEG channel; gi are the residuals (background, uncorrelated white

noise)of the i-thchannel;andN is thenumberofnodes (channels).The

sign of Wij can be thought of as functional excitation and inhibition,

although these do not necessarily represent excitatory and inhibitory

synaptic connections at the cellular level. From a physiological

perspective Wij can be thought of as the net effect of many excitatory

and inhibitory synapses plus other neuromodulators convergingonto

theareaassociatedwithanode.TheunitsofWij arereciprocalof time,

i.e. frequency units.

Wij can be obtained from the empirical data xi(t) with a linear

regression to equation (1). The background noise driving the

network gi(t) can also be obtained as the residuals of the linear

regression. The details of this fitting procedure are provided in

Methods. The determination of the connectivity matrix and the

background noise are the core of our approach and is what allow

us to investigate significant differences between the brains of

control subjects and those with ASD.

Figure 1a shows a stereographic projection of the MEG sensors

distributed over the scalp onto a planar circle. Although the sensor

grid has 151 sensors, we only show the positions of the 141 sensors

that were used in all the subjects of our study. The other 10 were

discarded because they contained artifacts or very low signal-to-

noise ratios in at least one subject, thereby precluding their use in

comparative analyses. Thus, the dimensions of the functional brain

connectivity matrix for each subject are 1416141. The sensors

cover the occipital (O), frontal (F), central (C), parietal (P) and

temporal (T) areas. Each ordered pair of sensors (i,j) defines an

entry in the connectivity matrix Wij (Fig. 1b) which is obtained

from the data using a linear regression to equation (1), as

mentioned above.

After obtaining the connectivity matrices for the control subjects

(n = 10) and the ASD subjects (n = 9), we investigated if these

matrices where significantly different when considered as a whole.

To this end, we first ‘‘reshaped’’ the matrices as column vector

(Fig. 2A), so that each brain was now represented as a point in a

high-dimensional space with 1416141 = 19,881 dimensions.

Then, we investigated the separability of the brains from both

groups using a support-vector classifier (see Methods). The accuracy

of the discrimination between both groups was 84% (Table 1). The

good separability of the control and ASD groups can be visualized

by looking at the projections of the vectors onto their first three

principal components, as displayed in Fig. 2B. Note that even in

this low-dimensional projection, both groups can be almost

perfectly discriminated.

Having shown that the functional connectivity matrices for

control and ASD subjects are different when considered as a

whole, we proceeded to investigate if those differences resulted

from difference in the global properties of the matrices. We first

investigated the maximal real part of the eigenvalues, which

corresponds to a linear stability analysis of system (1). In order for

(1) to be a valid model of brain dynamics in the resting state, all

eigenvalues must have a negative real part. Otherwise, the brain

would be linearly unstable, i.e. epileptic. Figure 2C shows the

distribution of the maximal real part of the eigenvalues. There is

one data point per matrix corresponding to the eigenvalue with

largest real part. The medians of the distributions for the control

and ASD cases are not significantly different (p.0.05; Wilcoxon’s

ranksum test), indicating that both groups have brains that are

equally stable and dissipate perturbations over the same time scale

of less than 1 s. We then investigated whether the brains were

balanced differently, i.e. whether the distribution of excitation and

inhibition across the network nodes was different. A means of

Connectivity and Noise as Biomarkers for Autism
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keeping a network balanced is by ensuring that each node receives

as much excitation as inhibition. This would lead to a high

correlation (in absolute value) of the input I+ vector, which is the

sum across all rows of the excitatory entries in Wij, with the I-

vector, which is the sum across all rows of the inhibitory entries in

Wij. This is indeed the case for both the control and ASD groups

but there are no significant differences between them (Fig. 2D).

Another means of keeping the network balanced is by ensuring

that each node provides on average as much excitation as

inhibition to other nodes in the network. This would lead to a high

correlation (in absolute value) of the output O+ vector, which is

the sum across all columns of the excitatory entries in Wij, with the

O- vector, which is the sum across all columns of the inhibitory

entries in Wij. That is also the case for both the control and ASD

groups but again, there are no significant differences between

them (Fig. 2D). Neither are significant differences for the rest of

the correlations, I+/O+, I+/O2, I2/O+ and I2/O2 (Fig. 2D).

Since global properties could not account for the differences

between connectivity matrices, we also investigated all pairwise

interactions, Wij and their possible alterations in ASD relative to

control (Fig. 3). To this end, for each Wij we collected all the values

across the control and ASD subjects (Fig. 3A) and built the

distributions of these values for both groups (Fig. 3B). We then

asked if the difference of the means was significant using a random

permutation test (see Methods). This test also returns the z-score for

the actual difference of the means, Zij. We recall that a z-score of

1.5 roughly corresponds to a 95% percentile and hence, larger

values indicate a highly significant difference. Figure 4A shows the

actual difference of the meansDWij:W ASD
ij {W control

ij , where the

Wij are averaged for each group, weighted by the z-score and

averaged across all inputs (left) or outputs (right). The most

relevant changes appear in nodes located in frontal, parietal, and

temporal areas. Probably more informative is the normalization of

these changes relative to the magnitude of the connections in the

control case (Fig. 4B), i.e., DWij=DW control
ij D. This representation

clearly shows that the major significant change in functional

connectivity occurs between parietal and frontal areas. Another

way of visualizing these changes is presented in Fig. 5A, for the

largest absolute changes, and 5B for the largest relative changes.

By far, the increase in functional excitation between a parietal and

a frontal area is the largest relative change in connectivity. All

together these results demonstrate that there are specific changes

in connectivity in ASD relative to control that account for the

separability of the brains from these groups when considered as a

whole.

We then asked whether in addition to significant connectivity

changes, the background noise driving the brain activity in the

resting state could also be different in ASD compared to control.

To test this, we obtained the traces of background noise gi(t)as the

residuals from the linear regression of the MEG signals to system

(1), as described in Methods. We first note that the residuals are

normally distributed, as shown in Fig. 6A for the residuals of an

arbitrary channel. In addition, the residuals are almost perfectly

white, as shown by a sharp centered peak in the autocorrelogram.

These results are very important as they provide a validation for

model (1). Indeed, if the residuals were neither normally

distributed nor white, one would conclude that there is some

structure in the data, e.g. a temporal modulation, which cannot be

accounted for by a multivariate stochastic linear model. An

additional validation for model (1) is provided by the excellent

agreement between the covariance matrix of the residuals, Qij, as

obtained directly from the residuals, and the Qij obtained

analytically from the connectivity matrix, as explained in Methods.

This agreement is shown in Fig. 6C for an arbitrary subject as a

perfect correlation between the theoretical and experimental

values. Altogether, these results demonstrate that model (1) is more

than an appropriate and convenient parametric description of the

brain dynamics in the resting state: it is the actual form of these

dynamics.

The matrices Q from control and ASD can be well discrim-

inated with a support-vector classifier, as was the case with the

connectivity matrices, W above. Interestingly, the discrimination

based on the covariance matrix of the noise is even better: 94%

accuracy (Table 2) compared to the 84% accuracy based on the

connectivity matrices (Table 1).

The determination of the background noise traces allows us to

investigate its spatial structure as well. Indeed, whereas the noise is

not temporally correlated (white), it displays spatial correlations.

Figure 1. Sensor distribution and functional connectivity. A)
Stereographic projection of the MEG sensors. The sensor grid covers
frontal (F), parietal (P), central (C), temporal (T) and occipital (O) areas
from both hemispheres. B) Each sensor provides a recording channel.
The recorded signals are then used to infer the functional connectivity
matrix, Wij describing the coupling between the areas associated with
the i-th and j-th sensors.
doi:10.1371/journal.pone.0061493.g001

Connectivity and Noise as Biomarkers for Autism
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The spatial patterns of the correlated noise are evident from a

principal component analysis of the residuals (see Methods). To this

end, we first compute the principal components as the eigenvec-

tors of Qij. Then we calculate the weighted average of the

eigenvectors with their eigenvalue as the weight. The resulting

vector is plotted as a spatial pattern to visualize the dominant

spatial correlations of the background noise for each brain (Fig. 7).

We note that quite generally, temporal MEG sensors are spatially

correlated as denoted by a similar coloring of these zones. In

control brains, the spatial structure is in general patchier than in

ASD brains. To quantify these observations, we computed the

spatial complexity of these patterns with an algorithm that was

recently introduced in the literature [23]. Briefly, this algorithm

measures how well 2-dimensional interpolation can predict the

value of the pattern at the position of a given sensor, given the

values in the surrounding sensors (see Methods). The values of

spatial complexity are significantly higher in control than in ASD

(Fig. 7, inset; Wilcoxon ranksum test, p,,0.01). This demon-

strates that spatial correlations are constrained to smaller patches

on the brain in control subjects, whereas they extend over wide

areas in ASD subjects, in other words, there is more variability in

the spatial pattern of the background activity (or noise) in children

without autism.

Discussion

Our study has revealed alterations in brain connectivity and

background noise in juvenile ASD patients, more specifically, signs

of increased excitation were found from occipital to frontal areas.

Perhaps even more interestingly, we found that background noise

is spatially correlated over wide areas, that is, its spatial complexity

is lower in ASD recordings. The analysis has been performed

using a novel analytical method to investigate brain activity by

determining two of its most fundamental aspects: the direction of

functional connections and the temporal and spatial structure of

the stochastic inputs driving cortical networks.

There is an increasing demand for adequate discrimination of

patients in a variety of psychiatric syndromes using relatively safe

and non-invasive methods such as EEG, MEG or neuroimaging

recordings. The analytical techniques involved range from pattern

recognition of neuroimaging data, as recently shown to classify

patients with attention deficit hyperactivity disorder [24], to

complexity measures derived from EEGs [12] and graph theory

using MEG data [25]. These methodologies normally rely on

Figure 2. Global properties of the functional connectivity. A) Reshaping the connectivity matrices as high-dimensional vectors. B) Projection
of the vectorized connectivity matrices onto the first three principal components. The matrices of control and ASD are clearly separable. C) Linear
stability analysis of the connectivity matrices reveals no significant differences between control and ASD. The y-axis plot the largest real part of the
eigenvalues of each matrix. D) There are no significant differences in the correlation between nodal input and nodal output (I: input; O: ouput; +:
excitatory; 2: inhibitory).
doi:10.1371/journal.pone.0061493.g002

Table 1. Separability indices for the connectivity matrices, W .

Percentage p-value

Accuracy 84 0.0029

Specificity 80 0.0780

Sensitivity 88 0.0054

F-Score 84 0.0013

The fractions of correctly classified individuals were 8/9 for ASD and 8/10 for
Control.
doi:10.1371/journal.pone.0061493.t001

Connectivity and Noise as Biomarkers for Autism
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quantification of activity, sometimes translated as ‘‘functional

connectivity’’, ignoring a most fundamental aspect of nervous

system activity: that of the continuous presence of ongoing,

background activity. As denoted by some investigators, sensory

inputs act as modulators of the ongoing activity [14], and it is in

this ‘‘noisy’’ background where intrinsic aspects of each nervous

system can be found. Our analysis has the advantage of describing

functional interactions through a deterministic component, the

functional connectivity, and through a stochastic component, the

background noise. We found even better discrimination using the

latter, which according to the aforementioned comments should

not come as a surprise. Of singular interest is the fact that the

spatial variability of the noise is reduced in the recordings from

ASD individuals. It is increasingly recognised that decreased

variability in physiological signals is associated with disease

[26,27], and specially a reduction of variability in brain signals

seems associated with psychiatric and neurological conditions [8].

Hence, our results support the view that cellular activities in brains

should present a certain level of fluctuations in order to process

information in the considered normal manners. Indeed, evidence

for reduced fluctuations in brain signals associated with poorer

behavioural performances has been provided recently [28]. From

a practical stance, the evaluation of spontaneous brain activity has

been proposed as a biomarker in neuropsychiatric disorders [29]

and, from a more academic perspective, fluctuations in neuro-

physiological activity has been proposed to improve the explora-

tion of the brain’s dynamic repertoire [30].

The main connectivity change in ASD relative to control

showing enhanced functional excitation from occipital to frontal

areas is an indication of another general characteristic of aberrant

brain function that is becoming apparent in current research:

enhanced neural excitability seems to underlie neuropsychiatric

disorders [8] and has been proposed to be the basis for social

dysfunction in general [31]. In this regard, autistic-like symptoms

in mutant mice is normalized by improving inhibitory neuro-

transmission using GABA agonists like clonazepam [32]. Perhaps

this tendency to show more excitability underlies the well-known

epileptic co-morbidity in autism [33]. Abnormal connectivity in

autism has been described mostly based on neuroimaging

(metabolic) data [3,34], as was mentioned in the introductory

paragraphs above. In our study we find that fronto-occipital

sensors display the major differences between the control and ASD

group. Alterations of the frontal cortex have been noted in autism,

and particularly an abnormal spatial organization in the microg-

lial-neuronal components [35]. Recent tensor imaging studies

have also revealed white matter abnormalities in autism, in

particular, a possible atypical lateralization in some white matter

tracts of the brain and a possible atypical developmental trajectory

of white matter microstructure in persons with ASD [36]. Because

our measures are derived from MEG signals, and thus detect local

population activity mostly in the cortex, we speculate that the

observed differences reflect a different activity in frontal cortical

areas as these receive processed inputs from other cortical regions,

specially sensory ones. Activity in sensory cortices is as essential as

that of the normally more considered and studied higher-order

association areas; for instance, in behaviors as diverse as the

discrimination between free and forced actions, it is the activity at

the sensors recording primary sensory cortices that best differential

both actions [37]. Because of the great importance of visual inputs,

it is perhaps not surprising to see an alteration in occipito-frontal

signals.

The term ‘‘functional connectivity’’ has been ambiguously

employed to date. In some studies functional connectivity is

synonymous with covariance, in some others with synchrony or

coherence, etc. We propose here a concept of functional

connectivity that has three important advantages: 1) Contrary to

previous approaches, we do not focus on the analysis of functional

connectivity in the context of psycophysical experiments but rather

on ongoing, resting-state activity. This facilitates the estimation of

functional connections because the activity of the underlying

neural networks does not saturate, so the neural interactions can

be well resolved. 2) Our method detects the direction of functional

connections, i.e. whether area A excites (or inhibits) area B more

strongly or vice versa. Other methods have been previously

proposed to detect directionality of network interactions: a)

Granger causality, b) the imaginary component of the coherency,

and c) the coupling function of phase oscillators. However,

methods a) and c) are model-dependent, i.e. they make

assumptions about the nature of the signals that oftentimes do

not apply to EEG/EMG recordings; and method b) is defined in

the frequency domain, so its value depends on the frequency

components of the signals. This limits its applicability as a measure

of connectivity, which one wants to define by means of a number

rather than as a function. 3) To our knowledge, our method is the

only one to date that allows one to infer the temporal and spatial

structure of the stochastic inputs driving the cortical networks in

the brain’s resting state. This is quite remarkable, as the

classification of controls and ASD is even more accurate

Figure 3. Investigation of pairwise functional connections. A) For each pair of channels, (i,j) the distribution of values of Wij across subjects is
built for the control case and ASD. B) The comparison of these two distributions allows us to detect significant connectivity changes in ASD relative
to control.
doi:10.1371/journal.pone.0061493.g003

Connectivity and Noise as Biomarkers for Autism
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considering the spatial covariance of the noise, Q than using the

connectivity matrix, W , indicating that noise in the brain is an

important feature of the cognitive phenotype.

MEG recordings have some limitations to keep in mind. The

signals detected by MEG and the source estimates derived from

these signals reflect population-scale levels of activity in large

Figure 4. Changes in functional brain connectivity in ASD relative to control. A) Changes weighted by their z-score and averaged across
inputs or outputs (top) and in absolute value (bottom). B) Same as in A) but normalized so that the changes are relative to the connection strength in
control.
doi:10.1371/journal.pone.0061493.g004

Connectivity and Noise as Biomarkers for Autism
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neuronal networks. Every individual neuronal component from

which an MEG signal is comprised possesses complex non-linear

relationships with its synaptically connected neighbors and

surrounding glia. The complexity of these interactions cannot be

accessed with precise detail from the level of the MEG signal

because it provides measurements that are too coarse to reveal

such dependencies. As a result, insights gained from the

investigation of MEG data are limited to coarse relationships

between large populations of cells rather than the detailed

understanding of interactions between individual cells. Moreover,

spontaneous activity at any given sensor may contain activity from

multiple distributed sources, and conversely, the activity of a single

Figure 5. Dominant changes in functional connectivity as an arrow plot. A) Absolute changes weighted by their z-score. B) Relative
changes weighted by their z-score. Clearly, the dominant change in ASD relative to control is an increase in functional excitation from parietal to
frontal areas.
doi:10.1371/journal.pone.0061493.g005

Connectivity and Noise as Biomarkers for Autism
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signal source can introduce coordinated changes at multiple

sensors (cross-talk), which could lead to spurious interactions

among MEG sensors. With these caveats in mind, all of our

analyses focused on changes in one group (ASD) relative to the

other (control). For example, we do not make any conclusions

from the absolute connectivity between areas A and B in the brain,

but rather from the change in connectivity between A and B in

ASD compared to control.

To investigate the cross-talk between sensors we plotted the

covariance between two channels as a function of their relative

distance in Fig. S1A. The data points are from an individual in the

control group but the same pattern is observed in all individuals

from both groups. Clearly, for sensors that are less than 10 cm

apart, the correlation coefficient between covariance and distance

is negative and large in absolute value. There are two components

contributing to this negative correlation. One is biological,

meaning that anatomical connections are much more likely

between nearby areas. This is consistent with previous animal

studies showing that nearby neurons in the cortex display

synchronized activities in vivo [38–40]. The other is spurious,

indicating cross-talk between sensors. These two components are

mixed in the MEG setup and cannot be easily resolved. However,

we can show that the trend is comparable between all individuals

and indistinguishable between both groups, as shown in Fig. S1B.

The distribution of correlation coefficients is statistically the same

for control and ASD. This implies that as long as one focuses on

changes in functional connectivity of one group relative to the

other, the effects of any cross-talk between sensors should cancel

out, and therefore, the results will not be contaminated by the

limitations of the MEG setup.

Potential limitations in the design of the experiments cannot

account for the differences between groups uncovered with our

method either. To facilitate the participation of the children in the

experiments and minimize distraction, they were asked to press a

button at will with their right hand a few times during the

recording session (30 s for each subject). Button pressing was not

significantly different between both groups, as shown in Fig. S2A

(p = 1; Wilcoxon sum-rank test). Data preprocessing, in particular,

the removal of a few principal components (PC) from the

recordings to filter out eye-blinking and movement artifacts (see

Methods) did not have differential effects either. Specifically, the

number of removed principal components was not significantly

different, as shown in Fig. S2 (p = 0.83; Wilcoxon sum-rank test).

The gender mismatch is also unlikely to account for differences

between both groups. In control there were 6 males and 4 females,

whereas in ASD there were 9 males and no females. In this regard

we first note, that Asperger’s syndrome is between 4 times [41] and

12 times [42] more frequent in males than females, so it is

methodologically very challenging to have sex-matched groups.

However, the significant differences that we observe between ASD

and control cannot be attributed to a gender-ratio mismatch

because the control group is very homogeneous: for example,

there are no significant differences in the spatial complexity of the

background noise between the boys and girls within the control

group (p = 0.76; Wilcoxon rank-sum test). In brief, considering

that none of these parameters (button pressing, number of PC

removed and gender specificity) were different between groups, it

is very unlikely that they can account for the consistent differences

in functional connectivity and spatial complexity that we observe

between groups.

As in any population study, one must take into consideration the

possibility of finite size effects. In statistical terms, the fact that we

can establish significant differences in functional connectivity and

background noise in relatively small populations suggests that

those features are robust. Usually large sample sizes are required

to establish the level of significance and accuracy that we obtained

in our studies for a smaller sample size. We also note that all the

participating children from the ASD group had been clinically

diagnosed with Asperger’s syndrome. They clearly had behavioral

and cognitive differences with respect to children in the control

group. ASD certainly develops over time, but once it is diagnosed

based on cognitive parameters it should be possible to observe

differences in terms of neural dynamics as well. And that is what

we have addressed in this study.

Figure 6. Statistical properties of the background noise driving the brain network. A) The noise extracted from each channel is Gaussian.
B) The noise is not temporally correlated and is practically white. C) The covariance of the noise extracted from the data and the covariance of the
noise predicted from model (1) match perfectly.
doi:10.1371/journal.pone.0061493.g006

Table 2. Separability indices for the covariance matrices of
the noise, Q.

Percentage p-value

Accuracy 94 0.0002

Specificity 100 0.0044

Sensitivity 88 0.0174

F-Score 94 0.0002

The fractions of correctly classified individuals were 8/9 for ASD and 10/10 for
Control.
doi:10.1371/journal.pone.0061493.t002
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There are two natural extensions of our work for future studies.

The first extension is to investigate the applicability of our

approach to other cognitive phenotypes to identify alterations in

functional brain connectivity and background noise activity. The

second extension is methodological and consists in considering

nonlinearities in the stochastic model so that it can be applied

beyond the resting state to investigate how functional connectivity

is modulated by sensory stimulation, attention and other cognitive

tasks.

Methods

Participants and Magnetoencephalographic Recordings
Data were drawn from a larger sample of children enrolled in a

previous study [10]. Data from nineteen children, 9 with

Asperger’s syndrome and 10 age-matched control children

without any know neurological disorder, were analyzed. Age

range was between 6 and 14 years for the controls (mean: 11.2

years; standard deviation: 2.6 years) and between 7 and 16 for

ASD (mean: 10.8; standard deviation: 3.5). The 9 children with

Asperger’s syndrome were males while the 10 controls were 6

males and 4 females. This gender mismatch is due to the fact that

Asperger’s syndrome is between 4 times [41] and 12 times [42]

more frequent in males than females, so it is methodologically very

difficult to have sex-matched groups (see additional comments on

gender mismatch in the Discussion). The children’s parents

provided written consent for the protocol approved by the

Hospital for Sick Children Research Ethics Board. Participants

met the criteria for ASD based on DSM-IV. Patients were

evaluated by the psychologists in the Autism Research Unit of the

Hospital for Sick Children or were recruited from the Geneva

Centre for Autism and Autism Ontario.

Magnetoencephalographic (MEG) recordings were acquired at

625 Hz sampling rate, DC-100 Hz bandpass, third-order spatial

gradient noise cancellation using a CTF Omega 151 channel

whole head system (CTF Systems Inc., Port Coquitlam, Canada).

Out of the 151 sensors, we discarded 10 that were not comparable

across all patients due to artifacts or a very low signal-to-noise

ratio. Our analysis thus focused on the recordings from the

remaining 141 sensors in all patients. Subjects were tested supine

inside the magnetically shielded room. Head movement was

tracked by measuring the position of three head coils every 30 ms,

located at the nasion, left and right ear, and movements less than

5 mm were considered acceptable. Children were instructed to

remain at rest during the recording session that lasted between 30

and 60 s per child. To facilitate the involvement of the children in

the experiment and minimize distraction, they were asked to press

a button at will with their right hand a few times during the

recording session. For each child, an epoch of 30 s was taken off

for analysis of functional brain connectivity. All children were

awake and had their eyes open during the experiment.

Figure 7. Dominant patterns of background noise driving the brain network. The spatial complexity of the background noise in control is
significantly higher than in ASD, as quantified in the inset (Wilcoxon ranksum text, p,,0.01). Numbers on top of the plots show the values of spatial
complexity.
doi:10.1371/journal.pone.0061493.g007
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Eye-blinking and muscular artifacts were present in most

recordings. These artifacts appeared across many channels with

high amplitude relative to baseline fluctuations and thus domi-

nated the first few principal components of the data. Removal of 1

to 6 principal components efficiently eliminated the artifacts

without affecting the actual baseline fluctuations.

Obtaining W from Recordings of Brain Activity
Rewriting system (1) in vector notation one has

d~xx

dt
~W~xxz~gg(t): ð2Þ

For a multivariate Ornstein-Uhlenbeck process like system (2)

the time-lagged covariance,C(t):S~xx(tzt)~xx(t)TT, where tis the

lag and the brackets indicate a temporal average, satisfies

C(t)~ exp Wtð ÞC(0),

where exp (:::) is the exponential matrix function. For t%1= Wk k,
with :::k k indicating the matrix norm, one has

C(t)& IzWtð ÞC(0)

where I is the identity matrix. This allows us to obtain an

expression for the connectivity matrix, Was a function of the lag, t

W~
1

t
C(t)C(0){1{I
� �

: ð3Þ

Then, to compute the empirical W , we choose tsuch that the trace

of the covariance matrix of the residuals S~gg(t)~gg(t)TTis minimal,

which corresponds to minimizing the mean quadratic error of

model (2). In our data, this is attained for the smallest possible

value of t with a sampling frequency of 625 Hz,

t~1=625 Hz~1:6 ms~dt, where dtis the integration time step.

Finally, we note that if the zero-lag covariance matrix of the

data, C(0), is not invertible, one may replace its inverse matrix,

C(0){1with its pseudo-inverse in equation (3).

Theoretical and Empirical Q
For a multivariate Ornstein-Uhlenbeck process like (2), the

covariance matrix of the residuals, Qis related to the covariance

matrix of the signals, C(0) and the drift operator (connectivity

matrix, W ) via

QT~{ C(0)W TzWC(0)
� �

dt,

where the subindex T refers to a theoretical calculation of Q.

Obviously, the covariance matrix of the residuals can also be

directly calculated from the data, which we refer to as empirical

estimation with subindex E. To this end, one first computes the

time derivatives of the signals, d~xx(t)=dtand obtains the residuals as

the difference ~gg(t)~d~xx(t)=dt{Wx(t). Then, one computes their

covariance matrix as

QE~S~gg(t)~gg(t)TT:

The fact that QT and QEare practically identical, as shown in

Fig. 6C, provides a strong validation of model (2).

Support Vector Classifier
The vectors representing reshaped connectivity matrices (see

Fig. 2A) are fed into the algorithm of the support vector classifier

[43,44]. The output of the algorithms returns a set of n ‘‘support

vectors’’,~ssi, weights ai, and bias bthat are used to classify a given

reshaped connectivity matrix, ~ww, according to the following

equation

c~
Xn

i~1

aiK(~ssi,~ww)zb, ð4Þ

where K is a kernel function. In the case of a linear kernel, which is

the one used here, it is the dot product: K(~ssi,~ww)~~ssi
:~ww and

equation (4) defines a plane in the high-dimensional space of the

reshaped matrices. Ifc§0, then ~ww is classified as a member of

group 1 (e.g. control), otherwise it is classified as a member group 2

(e.g. ASD). The results of the classification analysis are shown in

Table 1. A similar analysis can be performed to classify the

reshaped Q (see Table 2).

Group Separability and Cross-validation Techniques
Group separability was addressed by comparing the perfor-

mance of the support vector classifier with a linear kernel on the

original groups to the performance of the same type of classifier on

randomized groups (obtained by randomly permuting the group

labels) [45]. In our specific implementation, the randomization

was carried over 10,000 times. Classification performance was

computed for both, the original groups and the randomizations, by

leave-one-out cross-validation on every subject. A feature vector

for each subject is made using the connectivity matrix W (size:

1416141) reshaped into a one-dimensional list of values, a vector

of features of dimension 19,88161. The original Accuracy,

Specificity, Sensitivity and F-Score of the classifier were then

compared to those obtained for the randomizations. For each one

of these four parameters, p-values were obtained by finding the

average number of times that each parameter in the randomized

population had equal or larger values than those of the

classification from the original groups. This test provides a

measure of the statistical significance of the classifier performance

as well as general group differences. The results are shown in

Table 1. The same procedure applied to the covariance matrix of

the noise Q, produces the results shown in Table 2.

Random Permutation Test and z-scores
To determine if a given element of the connectivity matrix,

Wij is on average different in ASD from control, we applied the

following random permutation test. We took the n = 10 values

from the control group and m = 9 values from ASD group, as

depicted in Fig. 3. To test whether the difference of the means in

both groups was significantly different, we first gathered the n+m

data points into one group and draw n points randomly to form a

new group, allocating the remaining m data points to form a

second group. This way we created a random surrogate data set

from which the difference of the means was calculated. We then
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iterated this process 10,000 times to build a probability

distribution of the difference of the means for surrogate data. If

the difference of the means from the actual data was larger than

the 99 percentile of this distribution, then that value was

considered to be statistically significant with 99% confidence.

The p-value was calculated as the integral of the distribution from

left end (2‘) up to the actual value.

We note that the distribution of the difference of the means for

the surrogate data converges fairly quickly to a Gaussian as the

number of surrogate samples increases. This allows us to easily

compute the z-score of the change in connectivity as the actual

difference of the means divided by the standard deviation of this

distribution.

Spatial Complexity
Spatial complexity was calculated using a similar algorithm to

that already described in [23]. The spatial pattern was obtained as

the weighted average of the principal components (eigenvectors of

Q) according to their variance (eigenvalue). For each subject this

procedure results in a vector X of 141 values which is then fed into

the spatial complexity algorithm. The intuition behind the

algorithm is to capture the heterogeneity of the spatial distribution

of values. A pattern is considered to be spatially complex if it

contains values at some spatial location (sensor position) that are

badly predicted by the values of the neighbouring sensors. The

algorithm calculates the squared root of the mean squared

difference of each value in X with the value predicted at the

respective location by a smooth interpolation of its neighbour

values using MATLAB griddata v4 method. Higher values of this

algorithm correspond to more complex patterns.

Supporting Information

Figure S1 Quantification of cross-talk between sensors. A)
Covariance between the signals from a given pair of sensors

versus the relative distance between those sensors in a sample

subject. Red line displays best linear fit in a short-distance range.

The correlation coefficient is given by r. B) Distribution of

correlation coefficients between covariance and distance for all

subjects. Both groups are indistinguishable, meaning that the

cross-talk cannot account for differences between groups.

(TIF)

Figure S2 Experimental paradigm and data preprocessing

cannot account for differences between groups. A) Distributions

of button-pressing. B) Number of removed principal components

(PC).

(TIF)
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