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Abstract

The Drosophila blastoderm embryo undergoes rapid cycles of nuclear division. This poses a challenge to genes that need to
reliably sense the concentrations of morphogen molecules to form desired expression patterns. Here we investigate
whether the transcriptional state of hunchback (hb), a target gene directly activated by the morphogenetic protein Bicoid
(Bcd), exhibits properties indicative of inheritance between mitotic cycles. To achieve this, we build a dataset of hb
transcriptional states at the resolution of individual nuclei in embryos at early cycle 14. We perform a spatial point pattern
(SPP) analysis to evaluate the spatial relationships among the nuclei that have distinct numbers of hb gene copies
undergoing active transcription in snapshots of embryos. Our statistical tests and simulation studies reveal properties of
dispersed clustering for nuclei with both or neither copies of hb undergoing active transcription. Modeling of nuclear
lineages from cycle 11 to cycle 14 suggests that these two types of nuclei can achieve spatial clustering when, and only
when, the transcriptional states are allowed to propagate between mitotic cycles. Our results are consistent with the
possibility where the positional information encoded by the Bcd morphogen gradient may not need to be decoded de novo
at all mitotic cycles in the Drosophila blastoderm embryo.
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Introduction

Transcription is a molecular process where the enzyme RNA

polymerase (RNAP) makes RNA copies from the DNA

templates [1–3]. It is an inherently stochastic process that is

reflective of the random nature of the underlying molecular

events necessary for RNAPs to transcribe through a gene. These

molecular events may include, for example, the remodeling of

chromatin, the binding or unbinding of transcription factors and

the loading or clearance of RNAPs [4–8]. The prevailing

theoretical framework on regulation of transcription considers

only the ‘‘recent’’ biochemical events that lead to successful

transcription of a gene [9–12]. But can a gene’s transcriptional

state be also influenced by the ‘‘past’’ events or its ‘‘past’’

experiences? We raise this question because mitosis is known to

abort transcription [13,14], yet active transcription of many

patterning genes becomes detectable almost immediately after a

mitotic cycle in the Drosophila blastoderm embryo [15–18]. Thus

the discussions about the recent and past events in our current

work make an exclusive reference to mitosis.

In Drosophila, embryonic patterning along the anterior-posterior

(AP) axis requires the morphogen gradient of Bicoid (Bcd) [19–22].

Bcd is a transcriptional activator that binds to the enhancers of its

target genes such as hunchback (hb) and activates their transcription

[5,9,17,23]. The mechanisms of sensing the concentrations of

morphogen molecules by a gene or cell are crucial to our

knowledge of how the positional information provided by a

morphogen gradient is decoded during development [24–26].

Theoretical studies suggest that there are fundamental limits to the

time period necessary for a cell or gene to accurately ‘‘sense’’ or

‘‘read’’ the differences in morphogen concentrations to make a

response to form a desired expression boundary [27,28]. This time

period is dependent on, among other things, both the diffusion

constant and the nuclear concentration of Bcd at the boundary

position. Based on available measurements, the time it takes the hb

gene to accurately read the nuclear Bcd concentration and form a

de novo expression boundary has been calculated to be on the order

of tens of minutes or longer [17,29,30]. This is in contrast to the

observation that active transcription (at and beyond the boundary)

of hb gene copies can take place almost immediately after mitosis,

on the order of less than a minute [17,18]. To reconcile these

conflicting properties of the early Drosophila embryos, a memori-

zation mechanism of an unknown nature has been proposed,

where the hb transcriptional state of a nucleus can be influenced by

the state of its parent nucleus [17]. This hypothesis provides a

rational explanation for how the positional information provided

by the Bcd gradient can be decoded to form reliable and precise

boundaries of its target genes in early embryos that are undergoing

rapid mitotic cycles in roughly every 10 minutes, a time period

that would not allow de novo decoding and boundary formation.
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However, due to a lack of experimental tools suitable for tracking

the transcriptional states of hb gene copies between mitotic cycles,

this important hypothesis has remained untested.

In this study, we perform a spatial point pattern (SPP) analysis to

evaluate the spatial properties of hb transcriptional states at the

resolution of individual nuclei. SPP relates to the distribution

characteristics of, i.e., spatial relationships among, a series of point

locations [31]. Many biological examples, such as a sheet of cells,

can be reduced to a pattern of mapped points [31,32]. Here we

treat each nucleus within the monolayer of a blastoderm embryo

as a point and its transcriptional state as an event. Our study

suggests properties of spatial clustering for nuclei with both or

neither copies that are undergoing active transcription in

snapshots of embryos. Our statistical and simulation analyses are

consistent with the possibility that the hb transcriptional states of

the nuclei can be propagated (i.e., inherited) between mitotic

cycles. The statistical and simulation methods used in our current

study may be of general value in investigating developmental

problems that require knowledge about the spatial properties of

cellular and molecular decisions.

Materials and Methods

Experimental Dataset
Our dataset was constructed based on our FISH data

detecting the nascent transcripts of hb in early cycle 14 wildtype

embryos (w1118) at the peak time of active transcription of hb

gene copies [5,18]. These nascent transcripts were detected by a

283-nucleotide probe against the hb intron RNA sequence. This

intron is located 145 bp downstream of the transcription start

site from the Bcd-responsive hb promoter P2. Thus, the detected

signals, which were discrete fluorescent dots inside the nucleus,

referred to as intron dots, capture individual copies of hb

undergoing active transcription near the P2 promoter [2,5,9].

Our current dataset consists of data from 14 whole-mount

embryos, which had been flattened to maximize the number of

nuclei captured. In our analysis, ,6 confocal z-section images

at 0.5 mm intervals were taken to capture all intron dots in the

nuclei in one of the flattened sheets of the nuclear monolayer.

Thresholds to identify an intron dot included both signal cluster

size and signal intensity, and they were optimized to minimize

false positive and false negative cases and to detect a stable

intron dot expression pattern along AP axis as discussed

previously [5].

Each embryo was oriented with its major axis (i.e., AP axis)

parallel to the x-axis on the image, with the anterior tip set as

the origin. The center of each nucleus was identified by

MATLAB and its x-y coordinates were recorded. Each image

contains 3000,4000 nuclei within the area of

,600 mm6250 mm (Figures 1 and S1). An experimental field

of 100 mm6100 mm (i.e., 130 mm to 230 mm on x-axis and

250 mm to 50 mm on y-axis) was cropped for further analysis

(Figures 1 and S1). We chose this location after considering the

following specific issues. 1) We avoided the edges of the

embryos to minimize errors due to out-of-focus detection of

nuclei. 2) We avoided the anterior tip of the embryo, where the

nuclear density is known to deviate significantly from other

parts of the embryo [33]. 3) We avoided the boundary of the hb

expression domain because this boundary itself represents a

spatial pattern that would interfere with our analysis. Changing

the location of the cropped field by 65 mm along either axis

did not affect any of our conclusions.

Characterizations of Nuclear Density and Inter-nuclear
Distances

The overall densities of the nuclei of individual types or all types

combined were calculated as d = N/A, where N denotes the

number of nuclei of the type of interest within the entire field that

has an area size A = 1006100 mm2 (see Results for definitions of

nuclear types). The local densities of the nuclei (of either individual

or combined types) were estimated at each nuclear position in the

pattern by di = ni/pR2, where ni denotes the number of nuclei of a

type within a distance R from the center of nucleus i. Here we

chose R = 8 mm, a value greater than the diameter of a typical

nucleus (,6 mm) at this stage of embryonic development.

Center-to-center distances between all pair-wise nuclei were

computed as follows. A nucleus in an experimental field was

identified as the reference and the distance from that nucleus to

every other nucleus in the field was measured. This procedure was

repeated for every nucleus as a reference on this field and then

repeated for each of the 14 experimental fields. For a given

nucleus, the nearest-neighbor distance (NND) is the minimum

value among its distances to all other nuclei [34]. We calculated

the regularity index (RI), which was defined as the mean NND

divided by its standard deviation [34]. Theoretically, for a random

distribution of points in two dimensions, RI < 1.91 [34]. This

value was used as a standard against which the RI values obtained

from our experimental or simulated fields were evaluated

(Figure 2).

Since our experimental embryos were flattened to maximize the

number of intron dots captured, we performed an analysis to assess

the impact of embryo flattening on the spatial distributions of

nuclei. For each blastoderm embryo (N = 10), we performed

confocal imaging both before (i.e., free in mounting medium) and

after flattening. We found that flattening an embryo led to an

expansion of ,30 mm along x- or y-axis (from 562617 mm to

Figure 1. Spatial point pattern of nuclear transcriptional states.
Shown is an embryo with nuclei masked according to hb transcriptional
states, i.e., the number of hb intron dots detected. Blue: 0-dot nuclei;
green: 1-dot nuclei; red: 2-dot nuclei; black: nuclei with over 2 dots. (B)
is the cropped experimental field from the solid square in (A). See
Figure S1 for locations of the experimental fields in all 14 embryos.
doi:10.1371/journal.pone.0060876.g001
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590620 mm along x-axis and from 224621 mm to 255622 mm

along y-axis). The distances between neighboring nuclei in the

flattened sheets are increased by ,4% relative to the 3-

dimentional distances between the neighboring nuclei on the

periphery of non-flattened embryos. Under both conditions, the

nuclei were found to be regularly and evenly spaced, suggesting

that flattening did not cause any significant localized nuclear

movements within the experimental fields chosen for our analysis.

K-function Analysis
To calculate Ripley’s K-functions [31], we binned the measured

distances and counted the overall number of nuclei at each

distance r from a reference nucleus. In effect, our exercise created

annuli around the reference nucleus and measured the number of

nuclei inside circles at different r intervals. ‘‘Edge effect’’ may arise

for a reference nucleus within distance r from the boundaries of a

field. We compensated this effect by surrounding the field under

examination with 8 identical copies of this field (effectively forming

a larger sheet that contains 9 identical ‘‘tiles’’). By doing this, we

were able to analyze the complete SPPs of any nuclei within the

field (the center tile), including those close to the edge. We used the

2 mm r intervals for the annuli in our current study; we also

performed analyses with increasing interval sizes and observed

comparable results up to a 5 mm r interval size. Eq. 1 defines K-

function, K(r), where d is the nuclear density.

dK(r)~ mean number of nuclei within

distance r of a reference nucleus
ð1Þ

In a bivariate pattern, the nuclear densities of Type i and Type j

are di and dj, respectively. A complete description of the second-

order properties of the bivariate pattern requires a consideration of

all possible pairs between the opposite types. We define the

bivariate K-functions K ij(r) by

djKij(r)~mean number of Type j nuclei

within distance r of a Type i nucleus
ð2Þ

Various benchmark hypotheses when described by the K-

function have well-defined expressions. In particular, the CSR

hypothesis states that K(r) = pr2. Independence between two

opposite types has Kij(r) = pr2, irrespective of the individual point

patterns or the forms of Ki(r) and Kj(r). In our study, all K-

functions were transformed to H-functions to allow visual

illustration of departures from the benchmark hypotheses (see

Eqs. 3–4 and the related texts in Results).

Tests of Significance
To test statistical significance, we used a Monte Carlo approach

for estimating two properties of each experimental field, 1) the K-

functions and 2) the proportions of different types of nuclei that

surround a nucleus of a given type. In this simulation, we used

each experimental field as a ‘‘mold’’ for the locations of all the

nuclei inside the field. Then, we randomly assigned a type to each

and every nucleus while maintaining the overall proportions of the

three types as observed experimentally for that mold. To evaluate

significance, we performed Kolmogorov-Smirnov tests to compare

experimental and simulated data.

To consider the proportions of different types of nuclei that

surround a nucleus of a given type, we used the Voronoi diagram

that identifies the immediate-neighboring nuclei that share an

edge in a mold [35]. For each and every nucleus, we recorded the

number of immediate-neighboring nuclei belonging to each of the

three types in either experimental or simulated fields. For each

mold, we performed 199 simulations and estimated the 95%

confidence interval (CI) using the results that ranked as the top or

bottom 5 simulations. In addition to the Monte Carlo approach,

we also theoretically predicted the CI by treating each of the 14

experimental patterns as a draw from a probability distribution.

Specifically, we assumed that, in a population of N nuclei, the

number of a given type (n) follows a binomial distribution with

probability Pi, i.e., n , B(N, Pi). Then the 95% CI was determined

by

{1:96ƒ

n{NPiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPi(1{Pi)

p ƒ1:96: ð3Þ

The parameter Pi was estimated for each nuclear type in the

experimental fields.

Modeling Nuclear Lineages and Mitotic Inheritance
To simulate the nuclear lineages, we used the nuclear positions

shown in Figure 1B as the mold and randomly assigned every 8

neighboring nuclei within the mold into a clone. This clone

represents the nuclei that would have been derived from a single

nucleus at cycle 11 after undergoing 3 mitotic cycles. Then, we

randomly divided each of the 8-nuclei clones into two 4-nuclei

clones. These two clones represent the nuclei that would have

been derived from the two nuclei at cycle 12 after undergoing 2

mitotic cycles. Finally, we randomly divided each of the 4-nuclei

clones into two 2-nuclei clones, which represent the nuclei that

would have been derived from two nuclei at cycle 13 after

Figure 2. Basic features of the nuclear monolayer. Shown are
regularity indexes (RI) derived by the measurement of nearest-neighbor
distances. Black: results from 14 experimental fields; white: results from
14 random simulations, each of which was constrained by the total
nuclear number and the proportions nuclear types observed in the
corresponding experimental field. The dashed line shows the theoret-
ical expectation of 1.91 for randomly distributed points (see also
Materials and Methods). In simulations, nuclei of different types or all
nuclei combined behave indistinguishable from each other or the
theoretical expectation. Error bars show the standard deviations
calculated from 14 experimental or simulated fields. p-values from
paired Student’s t-tests to compare the means of experimental and
simulated RI values were shown over the bars.
doi:10.1371/journal.pone.0060876.g002
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undergoing one mitotic cycle. Effectively, this exercise led to the

generation of nuclear lineages from cycle 11 to 14 without

specifically modeling or knowledge of the nuclear positions and

movements prior to cycle 14.

To simulate the spatial patterns of transcriptional states of nuclei

in blastoderm embryos, we assumed, based on reported experi-

mental data [17], that the probability of hb gene copies undergoing

active transcription (referred to as the transcribing probability

thereafter) at cycles 11 to 14 is 90%, 90%, 50% and 50%,

respectively. In simulations where there is no inheritance, we

assumed the number of active copies in each nucleus as a random

draw from a binomial distribution, which is a function of

transcribing probability at each cycle. In simulations where

inheritance was allowed, the two daughter nuclei (at each new

cycle) were assigned to exist as the same type as their parental

nucleus. Upon entering the cycle 13 interphase, active copies were

randomly switched off to achieve the experimentally observed

reduction in the transcribing probability. We performed 99

simulations for each of the two scenarios.

Results

The SPP Dataset and Basic Features of the Nuclear
Monolayer

To analyze the spatial point pattern (SPP) of nuclei with distinct

hb transcriptional states, we constructed a dataset from images of

14 Drosophila embryos at early nuclear cycle 14 (see Materials and

Methods). These images represent snapshots capturing robust hb

transcription at the resolution of individual copies of the gene

inside the nuclei of the embryo [5]. Here an intronic probe for hb

was used in FISH to detect its nascent transcripts in whole-mount

embryos. These nascent transcripts were detectable as distinct

fluorescent dots, referred to as intron dots, each representing, in

the snapshot, a copy of hb undergoing active transcription near the

Bcd-responsive P2 promoter (see Materials and Methods). Our

dataset includes the identities and locations of the nuclei

containing 0, 1 or 2 intron dots (Figure 1A blue, green and red).

We define all nuclei with a same number of intron dots as being

one type. Thus there are three types of nuclei: Type-0, Type-1 and

Type-2 (a minimal number of nuclei with erroneously more than 2

dots detected were also treated as Type-2 nuclei; Figure 1A black).

The fractions of the three types of nuclei in our current dataset (see

Table S1 for nuclear counts in individual embryos) are well

explained by a binomial distribution, which argues against

bistability of transcriptional states [9].

It has been shown that Bcd induces hb transcription in a highly

cooperative manner [5]. This cooperative action [36,37] effec-

tively divides an embryo into two broad domains along the

anterior-posterior (AP) axis [5,17,38]. Here we refer to the anterior

portion of the embryo with Bcd-dependent active hb transcription

as the transcribing domain, whereas the posterior portion lacking

Bcd-dependent active hb transcription as the non-transcribing

domain. In our current study, we focus exclusively on the

transcribing domain. Here our goal is not to analyze directly

how the two domains are established (i.e., boundary formation as a

function of the Bcd input in a threshold response) but, rather,

within the transcribing domain, how the nuclei with distinct hb

transcriptional states are distributed spatially. To facilitate our

analysis, we cropped the images to obtain areas (i.e., experimental

fields) of an identical size within the transcribing domains of

individual embryos (see also Materials and Methods and

Figure 1B). Since visual inspections (Figure 1B) are not adequate

for extracting and describing the characteristics of the spatial

relationships among the nuclei of a given type, we approached this

problem through the use of statistical methods.

Several methods have been developed to analyze SPP data

[31,32]. In our study, we used first-order statistics to characterize

the basic features of the nuclear monolayer in cycle-14 embryos

with regard to nuclear density and variations. Here the

experimental fields have a mean nuclear density (d) of 0.024

nuclei/mm2 (averaged among different embryos) and a standard

deviation (SD) of 0.002 nuclei/mm2. The overall densities of

Types-0, -1 and -2 nuclei in the fields are 0.00460.001,

0.01160.002 and 0.00960.002 nuclei/mm2, respectively. Previous

studies have shown that an embryo at early cycle 14 interphase has

relatively uniform nuclear density throughout, with a dominant

exception at its terminal regions [33,39,40]. In our chosen

experimental fields (see Materials and Methods), the local densities

of all nuclei, Types-0, -1 and -2 nuclei are 0.02660.003,

0.01360.005, 0.01360.004 and 0.01560.004 nuclei/mm2, re-

spectively (all values are averaged among different nuclear

positions with SD shown). These results show that, consistent

with previous reports, our experimental fields, which were chosen

to be devoid of the terminal regions of the embryo (see Materials

and Methods and Figure S1), do not exhibit major variations in

local nuclear densities.

To further evaluate the basic features of the nuclear monolayer,

we calculated the regularity index (RI). RI is defined as the ratio of

the mean of the nearest-neighbor distance (NND) to its standard

deviation. It measures the uniformity of NND, providing a widely-

used criterion for evaluating spatial regularity [41,42] (see also

Materials and Methods). NND calculation does not take into

account the actual size of the nucleus. Thus the relatively uniform

size and spacing of the nuclei in the monolayer are features of

spatial regularity of the nuclei themselves under the framework of

the RI analysis (see also below for further support to this notion).

Figure 2 plots the RI values of the three types of nuclei and all

types combined (solid bars; RI = 2.8161.61, 4.4961.29,

3.9061.48 and 12.4962.96, for Types-0, 1, 2, and all types,

respectively). To statistically evaluate spatial regularity, we

generated a random distribution of nuclei within a two-dimen-

sional field and calculated RI values for the simulated data. Here,

both the field size and nuclear number, but not nuclear positions,

were constrained by our experimental measurements of an

experimental field. This analysis was performed for each of the

14 experimental fields. We found that the experimentally

measured RI values (Figure 2 solid bars) are significantly higher

than their corresponding values derived from random simulations

(Figure 2 white bars; RI = 1.8960.14, 2.0160.17, 1.8760.09 and

1.9760.11, respectively; p = 0.04, 1027, 1025 and 10213, respec-

tively). In each case, these values are also higher than the

theoretical value calculated for random spatial distributions of

points (see Materials and Methods for details about this theoretical

value and simulations). These results confirm quantitatively that

the nuclei themselves within our experimental fields of the nuclear

monolayer have regular spacing and uniform size.

Type-0 and Type-2 Nuclear Patterns are Formed Non-
randomly

To investigate the spatial distributions of the nuclei, we

conducted an analysis using second-order statistics. Unlike the

distance-based NND method, second-order statistics describes the

characteristics of the point distributions as a function of area size.

Here we used Ripley’s K-function, which has been extensively

employed in analyzing spatial patterns in biology [43,44]. The K-

function analysis uses all inter-nuclei distances to evaluate a spatial

point pattern. It measures the number of events that occur inside

Spatial Correlation of Transcriptional States
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the area of a circle with a radius r from a reference event. In

essence, a circle of a specific radius r is passed over a pattern, and

the number of events that occur inside this circle is counted. This

counting is repeated at different radii for this nucleus and then

repeated for all nuclei. Thus, the K-function is presented as a plot

against r. Note that the definition of K-function has been arranged

such that it is only a function of r. It is independent of the nuclear

density d of the experimental fields (see Materials and Methods).

Since the K-function analysis is conducted at multiple radii, it can

reveal a pattern’s characteristics that are dependent on the scales

of neighborhood size being evaluated. This particular feature of K-

function analysis circumvents the limitations of the NND method

and, thus, can reveal deeper information about spatial patterns.

In our study, all K-functions were transformed to.

Hi(r)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ki(r)=p

p
{r: ð4Þ

Subtraction of r facilitates a visual presentation illustrating

departures from complete spatial randomness (CSR). In this

analysis, CSR is the null hypothesis stating that the positioning of

the nuclei of a given type (the events) within the experimental fields

follows a homogeneous Poisson process. Thus violations of this

null hypothesis may arise from major variations in the local density

of events. In Eq. 4, a positive Hi(r) value means that, on average,

there are more nuclei of Type i inside the area of a circle with a

radius r than expected of CSR. Thus, a positive Hi(r) value

indicates spatial clustering when evaluated at r. Conversely, a

negative Hi(r) value indicates repulsion among the nuclei at r.

Figure 3 shows the H-functions of different types of nuclei

plotted against r. On scales approaching the nuclear diameter

(4,8 mm at early cycle 14), the H-functions of the nuclei of each

individual type or all types combined are all negative, indicative of

a repulsive effect among these nuclei. This result is simply

reflective of the basic feature of the nuclear monolayer discussed

above, namely, the relatively uniform size and spacing of the

nuclei themselves. However, on scales exceeding the typical size of

the nucleus, the H-functions of Types-0 and -2 nuclei both become

positive (Figure 3A and C). These results show that the nuclei of

these two types have properties of spatial clustering. In our

analysis, Type-1 nuclei exhibit no significant difference from CSR

(Figure 3B).

Type-0 and Type-2 Nuclei are Distributed as Dispersed
Clusters

If Types-0 and -2 nuclei are indeed spatially clustered, there is a

possibility that the nuclei of these two opposite types may exhibit

properties of mutual repulsion. To evaluate this possibility, we

calculated the bivariate H-function (Eq. 5). Here we used a nucleus

of one type as a reference point (i.e., Type i) and counted the

number of nuclei of the opposite type (i.e., Type j, i ? j) that fall

within the area of a circle with radius r.

Gij(r)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kij(r)=p

q
{r: ð5Þ

For bivariate point patterns, where patterns of two opposite

events (i.e., the nuclei of two different types) are considered in

relation to each other, the null hypothesis is independence.

Under this null hypothesis, Hij(r) = 0. Hij(r) .0 indicates that, on

average, there are more Type-j nuclei (than expected of

independence) inside the area of a circle with a radius r from

a Type-i nucleus. This suggests an attraction between the nuclei

of the opposite types. Conversely, Hij(r) ,0 suggests repulsion

between the nuclei of the opposite types. Either attraction or

repulsion would reject the null hypothesis stating that these two

opposite events are determined independently of each other.

Based on the bivariate H-function analysis (Figure 3D), Types-0

and -2 nuclei exhibit properties of mutual repulsion (Figure 3D

purple). Using the same approach, the null hypothesis cannot be

rejected when the two opposite events are Type-0 and Type-1

nuclei or are Type-1 and Type-2 nuclei (data not shown).

To extend the evaluation and understanding of our exper-

imental data, we generated randomly simulated data based on

each of the ‘‘molds’’ derived from the 14 experimental fields

(see Materials and Methods). Figure 4 plots the H-function

profiles of the simulated data. Here we used Kolmogorov-

Smirnov tests to further evaluate the differences between the H-

functions of the experimental and simulated data (shown in

Figures 3 and 4, respectively). For each pattern, we determined

the range of r, within which the H(r) differences are significant

(p,0.05). The r ranges for Type-0 analysis, Type-2 analysis and

Type-0/Type-2 bivariate analysis are 6,44 mm, 12,80 mm and

6,100 mm. They document that the experimental and simu-

lated data differ in a consistent manner within broad r ranges,

which contrasts with the narrow r range of 30,34 mm for

Type-1 analysis. Together these results provide further support

to the observation that, in experimental fields, Types-0 and -2

nuclei are spatially clustered and these two types of nuclei

exhibit mutual repulsion.

Distributions of Different Types of Nuclei in Spatial
Relations to Type-2 Nuclei

If Type-2 nuclei in our experimental fields form local clusters

and, conversely, Type-0 and Type-2 nuclei exhibit mutual

repulsion, there is a corollary that can be tested. It states that,

from a given Type-2 nucleus, it would take a shorter distance to

reach another Type-2 nucleus than to reach a Type-0 nucleus

in our experimental fields. To test this corollary through the use

of an independent method (other than the use of Ripley’s K-

function), we plot the empirical cumulative distribution functions

for the distances between a Type-2 nucleus and another nucleus

of any type. Figure 5A shows that pairs of Type-2 nuclei are

more likely to be closer (blue) than pairs of nuclei of different

types (green and red). Kolmogorov-Smirnov tests suggest that, at

the 1% significance level, all these three distributions are

different.

To further confirm the clustering property of Type-2 nuclei

observed by Ripley’s K-function, we performed another

analysis. If Type-2 nuclei in our experimental fields do form

clusters that are not random in nature, we would expect to

observe a difference between our experimental data (blue in

Figures 5B and S2) and randomly simulated data with regard to

the distributions of the types of nuclei immediately surrounding

a Type-2 nucleus. We calculated the envelopes of the 95%

confidence interval (CI) from either a theoretical model (red in

Figures 5B and S2) or random simulations (green in Figures 5B

and S2). The theoretical model and random simulations are

detailed in Materials and Methods. Among nuclei surrounding a

Type-2 nucleus, the proportions of both Type-0 and Type-2

nuclei lie outside the 95% CI, with the former being smaller

and latter being greater than random. Equivalent results were

also obtained for the proportions of different types of nuclei that

surround a Type-0 nucleus, but not when evaluating the

neighborhood of a Type-1 nucleus (data not shown). Together

these findings suggest that, in early cycle 14 embryos,
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transcriptional states of hb genes are likely to be correlated

among immediate-neighboring nuclei.

A Nuclear Lineage Model Evaluating the Outcome of
Inheritance of Transcriptional States

A simplified, idealized model of inheritance or memorization

can be stated as follows, although the actual biological system is

likely much more complex. A nucleus derived from a parental

nucleus upon a mitotic cycle adopts both the parental location

(i.e., either at or immediately adjacent to this location) and the

parental state of transcription (i.e., of the same type). To

determine whether this simple model may be able to capture

some of the key features of the experimentally observed spatial

distributions of the nuclei, we performed simulations using a

series of nuclear lineage patterns from cycle 11 to cycle 14.

Using the positions of experimentally observed cycle-14 nuclei

(the mold) shown in Figure 1B, we assigned randomly all nuclei

into 8-neighbor lineage clusters (see Materials and Methods and

also Figure S3). Based on experimental observations [17], we

used a 90% transcribing probability for hb gene copies at cycles

11 and 12, and 50% at cycles 13 and 14. This decrease in

transcribing probability was shown to coincide with a decay of

the maternal Hb, marking a transition from a virtually uniform

(also referred to as ‘‘synchronous’’) to stochastic hb transcription

[17]. The number distributions of the experimentally observed

three types of nuclei within the hb transcribing domain are well

described by a binomial function irrespective of the overall

transcribing probability [9,17].

We performed 99 simulations either with or without inheri-

tance. When inheritance of transcriptional states between mitotic

cycles was not implemented, all hb gene copies were allowed to

undergo active transcription in a random and independent

manner. In this case, the number of active copies in each nucleus

followed a binomial distribution, which was a function of

transcribing probability at each cycle (Figure 6A). When

inheritance was implemented, the two daughter nuclei (at each

new cycle) were assigned to exist as the same type as their parental

nucleus. Active copies were randomly switched off to achieve the

experimentally observed reduction in transcribing probability at

cycle 13 (Figure 6B). To evaluate the spatial distributions of the

simulated data, we computed the H-function profiles. Without

inheritance, Types-0 and -2 nuclei behave closely to CSR

(Figure 6C; see also Figure S4A for one simulated pattern). With

inheritance, the H-functions of these two types of nuclei become

Figure 3. H-function analysis of experimental fields. Shown are the profiles of H-functions with respect of the distance r for Type-0 nuclei (A),
Type-1 nuclei (B), Type-2 nuclei (C), Type-0/Type-2 bivariate (purple dots in D) and all nuclei combined (solid lines in D). The dashed line shows the
theoretical expectation of complete spatial randomness (CSR; see also Materials and Methods). Error bars show the standard deviations calculated
from 14 experimental fields.
doi:10.1371/journal.pone.0060876.g003
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positive values within the r range of 6,78 mm. These simulated

properties are robust to the choices of transcribing probabilities:

reducing the overall transcribing probability at cycle 11 and 12

from 90% to 60% or varying the probability at cycles 13 and 14

between 40% and 60% did not alter the outcomes (data not

shown). We note that the simulated clustering (Figure 6D; see also

Figure S4B) is tighter than observed in the experimental data

(Figure 3A and 3C), with both greater H(r) values and a narrower r

range, especially for Type-2 nuclei. This difference suggests that

the actual biological system may not follow the strict inheritance as

implemented in our idealized model (see below for further

discussions). This difference may also be contributed by additional

underlying differences between the actual biological system and

our simulated system. For example, the 8-nuclear lineage clusters

used in our simulations (3.460.5% EL; see also Figure S3A) are

tighter than the experimentally observed clusters (4.861% EL,

[17]).

Discussion

Understanding how the spatial information is encoded by

morphogen gradients and decoded by cells is of fundamental

importance to developmental biology and biophysics [45–48].

Recent studies, fueled by both technological and conceptual

advances, have uncovered important insights into this problem.

Most of the existing studies have focused primarily and directly on

how the boundaries of gene expression patterns are established.

Unlike these studies, our current study focuses on a distinct, but

related (see below), aspect of transcriptional responses to

morphogen action. Specifically, we investigate the spatial distri-

butions of nuclei exclusively within the hb transcribing domain of

Drosophila embryos. Our previous studies of hb transcriptional states

were based on grouping of nuclei into bins along the AP axis to

permit direct evaluations of the threshold response to the Bcd

gradient on an embryonic scale [5,9]. A bin of 2% EL contains on

Figure 4. H-function analysis of simulated fields. Shown are results of an analysis that is identical to that of Figure 3, but simulated fields are
used here. Unlike simulations shown in Figure 2, the simulations performed here were based on the molds derived from the experimental fields, with
both the locations of the nuclei and the proportions of the nuclear types constrained by experimental observations. Note that the profiles of
individual nuclear types are all below 0. This is expected because the nuclei of a given type are spatially mixed with the nuclei of other types when
randomly distributed and thus the nuclei of a given type always exhibit a self-repelling SPP. Moreover, because the proportion of Type-0 nuclei is the
smallest, the H-function profile of this type is the most negative among all three types. Also note that the profiles do not converge to zero at
r = 100 mm, which is the boundary of the reference nuclei to compute distance, but not the limit of a complete SPP (see also Materials and Methods).
doi:10.1371/journal.pone.0060876.g004
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average ,2 nuclei along the AP axis. Meanwhile, the nuclear

lineage from cycle 11 to 14 has an average width of 4.861% EL

[17]. Thus the binning would arbitrarily break the territories of

any nuclear lineages and, consequently, lead to a loss of the full

spatial information on a finer scale. A bin within in the

transcribing domain can cross .10 different territories [17],

effectively eliminating (through averaging within the bin) any

nucleus-to-nucleus correlations that may exist within individual

territories. This feature is suitable for specifically evaluating

transcriptional states along the AP axis. In contrast to the binning

method, our current study preserves the native spatial information

about the nuclei in the monolayer within the hb transcribing

domain. This permits the extraction of the features about the

spatial relationships among the nuclei with regard to their hb

transcriptional states.

Our experimental results show that, due to the nearly uniform

size of the nucleus and the tight packing against one another in the

blastoderm embryo, the nuclei themselves are regularly spaced

when evaluated on a scale at or below the mean nuclear diameter

(Figure 2). However, on larger scales, nuclei with both or neither

hb copies undergoing active transcription (i.e., Type-2 and Type-0)

exhibit properties of spatial clustering. These results can be

explained by a model where transcriptional states of the nuclei are

inherited between mitotic cycles (Figure 6D). Thus, although our

current analysis focuses exclusively on properties within the

transcribing domain, it illuminates on the potential inheritance

of transcriptional states, an issue fundamental to how gene

expression boundaries are formed in response to the Bcd

concentration gradient during development (see Introduction).

Our findings are supportive of a hypothesis that active hb

transcription may not depend on de novo sensing–at all mitotic

cycles–of the nuclear Bcd concentration to form an expression

boundary [17].

In our analysis of the experimental data, nuclei with a single

active hb copy showed little or no evidence of spatial clustering. We

currently do not fully understand why Type-1 nuclei behave

differently from Type-0 and Type-2 nuclei. We note that our

simulations based on the experimentally obtained molds also

revealed a lack of spatial clustering of Type-1 nuclei (Figure 6D).

Type-1 and Type-2 nuclei are similar in the sense that they both

have at least one transcribing hb copy and are thus transcription-

ally ‘‘active’’ [4,17]. But they are vastly different from a statistical

point of view. The binomial distribution of the observed

probability of the three types of nuclei within the transcribing

domain dictates that Type-1 nuclei are the largest fraction at cycle

14 (when the overall transcribing probability is 50%; see Figure 6

legend for expected fractions of the three types based on binomial

distribution). Thus, among all three types, Type-1 nuclei have the

highest probability of being involved in potential type switches.

These switches would likely take place at random locations in the

embryo, which may further contribute to both the observed lack of

clustering of Type-1 nuclei and the relatively loose clustering of the

other two types.

We note that, since our statistical analyses cannot draw direct

conclusions about causal relationships, experimental validations of

inheritance of the transcriptional states for Bcd target genes such

as hb will await technological advances in the future. We also note

that there are documented precedents for inheritance of

transcriptional states between mitotic cycles. For example, studies

of the transcriptional states of the globin genes within clonally-

expanded populations of mouse cells suggested that stochastic

decisions can be inherited and maintained between mitotic cycles

[49]. Positional effect variegation (PEV) is another example of

mitotic inheritance where the chromatin structure is known to play

a role [50,51]. In neither case, to our knowledge, has the timing of

the onset of active transcription of individual gene copies upon

exiting the mitosis been carefully evaluated. While these and other

examples of inheritance may be related to the inheritance that we

investigate here, the timing of the onset of active transcription after

mitosis in our case is very quick, which is on scales that are likely

measured by seconds or tens of seconds as opposed to minutes or

tens of minutes [4,17,18]. It has been proposed that promoters

with stalled RNAP can respond to induction more quickly [2,52].

There is evidence that the hb P2 promoter, similar to promoters of

many other patterning genes [53], contains stalled RNAP [54]. If

the stalled RNAP were responsible for the inheritance that we

investigate here, how would it arrive at the gene promoter so

quickly (after mitosis) in the first place? Stalled RNAP probably

Figure 5. Distributions of different types of nuclei in relations to a Type-2 nucleus. Shown are the empirical cumulative distribution
function plots of the distances from a Type-2 nucleus to another nucleus of any given type (A), and the proportions of nuclei of different types that
immediately surround a Type-2 nucleus (B). Here the analysis was performed on the entire dataset pooled from 14 experimental fields; see Figure S2
for results performed on individual embryos as in panel (B).
doi:10.1371/journal.pone.0060876.g005
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could not have survived the mitotic process. It has been proposed

that transcription takes place at discrete nuclear locations referred

to as the transcription factories [55,56]. Could the actively-

transcribing hb copies, i.e., the intron dots, take residence in these

factories? Could the Bcd molecules that are enriched at the intron

dot locations [5], and/or maternal Hb which plays a role in

increasing the transcribing probability of hb in earlier cycles [17],

also take residence in these factories? It remains a significant future

challenge to understand whether and in what fashion these

factories might contribute, if at all, to the memorization or

inheritance of transcriptional states between mitotic cycles. Despite

unresolved questions, our current study represents an important

step toward understanding both the decoding of positional

information during development and the fundamental transcrip-

tion process.

Supporting Information

Figure S1 Location of the experimental field within the
contours of all 14 embryos. The dots in different colors

represent the nuclear positions at the outer edges of 14 embryos;

the solid box represents the field, where our analyses were

performed.

(TIF)

Figure S2 Estimation of proportions of nuclei surround-
ing a Type-2 nucleus for individual embryos. Same as

Figure 5B but for individual embryos.

(TIFF)

Figure S3 Simulated nuclear lineages. Shown are nuclear

lineages generated from one random simulation based on the mold

shown in Figure 1B. We performed 99 simulations in total. In each

panel, neighboring nuclear lineages are distinguished by different

colors. (A-C) represent 8-nuclei lineages from cycle 11 to cycle 14,

4-nuclei lineages from cycle 12 to cycle 14, and 2-nuclei lineages

from cycle 13 to cycle 14, respectively. See Materials and Methods

for details.

(TIFF)

Figure S4 Simulated nuclear patterns of transcriptional
states. Shown are examples of simulated fields exhibiting the

transcriptional states of the nuclei, with (B) or without (A)

Figure 6. Nuclear lineage simulations with and without transcriptional inheritance. Shown are simulated examples (A and B) and the H-
function profiles (C and D) of the nuclear types with (B and D) or without (A and C) inheritance of transcriptional states. These depicted examples are
for illustrative purposes by showing the simulated transcription state lineages with nuclei aligned in one dimension; see Figure S3 for simulated
examples of 8-nuclei lineage clusters arranged in two-dimensional fields. For the initial conditions at cycle 11, the probability of hb busting is set at a
high level as observed experimentally (see also Material and Methods). With an overall transcribing probability of 90%, the majority of nuclei are Type
2 (81%), with Type-1 being 18% and Type-0 being 1% (not shown in the diagrams that are for illustrative purposes only). At cycle 13, a binomial
process is implemented in our simulation that randomly shuts off active hb copies so that the overall transcribing probability becomes 50% (with
Types-0, -1 and -2 being 25%, 50% and 25%, respectively). The type of each nucleus in (A) is assigned by the binomial random number generator of
MATLAB.
doi:10.1371/journal.pone.0060876.g006
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inheritance. These two simulations were based on the exact

nuclear lineage assignments shown in Figure S1.

(TIFF)

Table S1 Nuclear numbers of each type in the experi-
mental fields of all 14 embryos. For each type of nuclei, the

mean and the standard deviation among 14 embryos are given in

the last column.

(DOC)
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