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Abstract

Background: Previous studies have indicated that type 1 diabetes may have an infectious origin. The presence of temporal
clustering—an irregular temporal distribution of cases—would provide additional evidence that occurrence may be linked
with an agent that displays epidemicity. We tested for the presence and form of temporal clustering using population-
based data from northeast England.

Materials and Methods: The study analysed data on children aged 0–14 years diagnosed with type 1 diabetes during the
period 1990–2007 and resident in a defined geographical region of northeast England (Northumberland, Newcastle upon
Tyne, and North Tyneside). Tests for temporal clustering by time of diagnosis were applied using a modified version of the
Potthoff-Whittinghill method.

Results: The study analysed 468 cases of children diagnosed with type 1 diabetes. There was highly statistically significant
evidence of temporal clustering over periods of a few months and over longer time intervals (p,0.001). The clustering
within years did not show a consistent seasonal pattern.

Conclusions: The study adds to the growing body of literature that supports the involvement of infectious agents in the
aetiology of type 1 diabetes in children. Specifically it suggests that the precipitating agent or agents involved might be an
infection that occurs in ‘‘mini-epidemics’’.
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Introduction

Both genetic and environmental factors are implicated in the

aetiology of type 1 diabetes [1]. The involvement of environmental

factors is suggested because incidence has exhibited general

temporal increases and does not display geographical uniformity

[2–7]. Furthermore, increased incidence has been reported in

areas of less dense population or less deprivation [8–12]. These

and other findings suggest that infectious agents might be involved

in aetiology [13–16].

An earlier analysis of population-based data on type 1 diabetes

in children in northeast England found marginally significant

evidence of space-time clustering [17]. This evidence was strongest

for females and for cases in more densely populated areas. A

subsequent analysis of annual incidence rates in the same region

demonstrated a 6-year cyclical pattern, suggesting the possible role

of an infectious agent in the aetiology of this disease [18].

The present study is concerned with the detection of irregular

temporal distributions of cases of type 1 diabetes in children. A

general irregular temporal distribution of cases that is not confined

to one particular time period is known as ‘temporal clustering’.

This sort of clustering could arise because there are a small

number of time periods with greatly increased incidence or a large

number of time periods with moderately increased incidence.

Temporal clustering might provide further evidence that the

disease has an infectious or local environmental component. This

irregular pattern contrasts with seasonal effects that occur at the

same time each year and necessitates different statistical methods

from those used to identify seasonality. We also sought to minimise

the potential for confounding arising from population movements

or population heterogeneity. We therefore used novel methodol-

ogy to analyse data from an area with a stable population, with low

levels of inward or outward migration, and whose population is

ethnically homogeneous [19–21]. As a positive control, we also

applied this methodology to data for a known infectious disease,

namely influenza.

Materials and Methods

Patients
The proposal for this work was reviewed by the institutional

R&D department. This department decided that ethical review
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was not required, as the patient data used were deemed to be non-

identifiable.

The study analysed data for children aged 0–14 years who were

diagnosed with type 1 diabetes between 1 January 1990 and 31

December 2007 and resident in a region of northeast England,

namely Northumberland, Newcastle upon Tyne and North

Tyneside. In order to help to ensure a high level of case

ascertainment, cases were identified from several independent

sources, as follows:

1. paediatric and adult clinic databases;

2. diabetes team admission diaries;

3. in/out patient records;

4. a regional adult diabetes register.

Subjects considered to be at high risk of developing type 1

diabetes (such as first degree relatives) were not actively screened

in our locality in the absence of intervention studies or treatment

options at the time. Hence presentation was not by any other

means.

There were originally three paediatric services in the study

region managing young patients with diabetes up to the age of 16

to 18 years, although two of these services merged in 2001. In our

subjects, the diagnosis of type 1 diabetes was made by the

managing paediatricians (all of whom had a major interest in

diabetes) on the basis of a blood glucose concentration that was

greater than 11.1 mmol/l in association with a classical history of

polyuria, polydipsia and weight loss. The number of cases of non-

type 1 diabetes in our region is very small. To be certain about

this, we reviewed the clinic population from one of the two services

in the locality and the number of established cases of non-type 1

diabetes (type 2 diabetes or patients with single gene defects such

as HNF1alpha or HNF1beta) managed within the service during

the period of the study was less than 2%. Patients with established

type 2 diabetes were not included in the analysis. We also

conducted cross-checks to be certain that the management of

childhood cases in primary care was not common practice; these

checks identified only one instance where a young person aged less

than 15 years was not referred promptly to regional paediatric

services. Paediatricians in the surrounding area (including

Cumbria and Southern Scotland) were also contacted so that we

could be certain that patients born in the study region were not

being managed in clinics elsewhere.

When case identification was undertaken and the database

compiled, a date of 1st July was entered if cross-referencing

demonstrated the year of diagnosis but there was uncertainty

about the specific date of diagnosis. Inspection of the data at the

time of the current analysis indicated that 58 out of 526 cases,

mostly diagnosed in the 1990s, had been assigned to 1st July. These

58 cases were excluded from analyses of variation within years.

However, because the year of diagnosis for these cases was correct,

they were retained in the analysis between years.

An earlier analysis of space-time clustering in this study region

[17] had slightly fewer cases than that used here for the analyses

within years (i.e. 457 vs. 468). This is because the earlier analysis

was restricted to cases with accurate geo-referencing. However,

this restriction is not necessary here, because we are examining

temporal clustering and are confident that all of the cases arose

within the study region.

Statistical methods
The analysis was undertaken using the approach described by

Muirhead [22] and by Muirhead and Butland [23] to look for

disease clustering, but applied here to temporal rather than spatial

clustering. In brief, this involved a test derived by Potthoff and

Whittinghill [24,25] to look for extra-Poisson variation, assuming

that the numbers of cases in the study units (taken here to

represent time periods) are distributed as negative binomial with

the ratio of the variance to the mean equal to a constant, namely

1+b. If b equals 0, then the observations are distributed as Poisson,

whereas if b is greater than 0, then the observations exhibit extra-

Poisson variation, i.e. are over-dispersed relative to Poisson.

Having conditioned on the total number of cases, the Potthoff-

Whittinghill (P-W) statistic can be recast as:

S (number of pairs of cases in the time period/expected number of cases in

the time period)

where the sum is over all the time periods under study. By

focusing on the numbers of pairs of cases, this statistic magnifies

the impact of those time periods during which larger numbers of

cases are observed than would be expected under Poisson

variation; in other words, those periods during which clustering

of cases arises. The standardised version of the P-W statistic used

here [23] provides an estimate of b, i.e. the degree of extra-Poisson

variation, and is the most powerful test to detect small values of b
[24,25].

Muirhead [22] and Muirhead and Butland [23] proposed an

extension of this approach to study a hierarchy of geographical

areas. This has been implemented here but based on time periods

rather than geographical areas, the aim being to distinguish

between short-term and longer-term effects. For example, having

conditioned on the total number of cases observed in each

calendar year, a version of the P-W statistic can be calculated using

the numbers of cases in each month and summing contributions to

the P-W statistic over years. In this way, an estimate can be

obtained of the extra-Poisson variation between months within

years; in other words, removing effects that might occur over

periods of years or decades when trying to identify effects arising

over months. In addition, data aggregated over quarters of a year

(defined as January to March; April to June; July to September;

and October to December) and over fortnights (defined pragmat-

ically as the first 15 days of the calendar month, or the first 14 days

for February, versus the remainder of the month) have been

analysed, so as to look (for example) for effects between fortnights

within months, between months within quarters, and between

quarters within years. Periods shorter than a fortnight were not

considered, so as to minimise the possible impact of referral

patterns (e.g. differences between weekends and weekdays, as

reported by Mooney et al [26]).

Expected numbers of cases were calculated using annual

population sizes for the study region, standardised by sex and

age at diagnosis. For periods of equal length within any calendar

year, the expected number of cases was assumed to be constant.

Statistical significance was assessed by conducting 10000

simulations of the standardised P-W statistic under the assumption

of Poisson variation, i.e. b equal to 0. Particular attention was

directed to p-values less than 0.05. Since the aim was to test for

over-dispersion (i.e. b.0, reflecting a tendency for cases to

aggregate) rather than under-dispersion (b,0), one-sided tests

were used. Diagnostics described by Muirhead [22] were used to

see if particular time periods had a strong influence on the

evidence for extra-Poisson variation. Sub-group analyses were

conducted using data split by age (0–4, 5–9 and 10–14 years) and

sex. Data were not availability on ethnicity. However, over 98% of

people living in the study region were known to be white British

[21].

The statistical approach used here contrasts with that employed

in analyses of seasonality in type 1 diabetes (e.g. [27,28]). These

studies involved fitting models that allowed for peak and troughs in

Clustering of Type 1 Diabetes in Time
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rates, possibly with a long-term linear trend (e.g. as in [29,30]).

However, these models did not allow for variation between years

in peaks or troughs, whereas the approach taken here does not

assume that a similar pattern would arise each year.

Check on methodology
As a positive control, the P-W methodology was also applied to

data on laboratory-confirmed influenza hospitalisations at ages 0–

4 years, based on locations in California that participate in the

United States Centers for Disease Control and Prevention’s

Emerging Infections Programs (http://www.cdc.gov/ncezid/

dpei/eip/). Data on the numbers of cases per week, for each flu

season from 2006–07 through to 2011–12, were obtained via

http://gis.cdc.gov/GRASP/Fluview/FluHospRates.html. These

data covered weeks during the final quarter of each calendar year

and the first quarter of the following year, as well as additional

weeks either side of each quarter for some flu seasons. The

calculation of expected numbers of cases took account of the

number of weeks in each quarter and flu season. A total of 370

cases arose during the study period.

Results

Influenza
Figure 1 shows the weekly numbers of influenza hospitalisations

in locations in California and Table 1 shows the results from

applying the P-W method to these data. There was highly

significant extra-Poisson variation in the numbers of cases not only

between flu seasons and between quarters within flu seasons, but

also between months within quarters (p,0.001 in each instance).

This reflects the patterns evident from Figure 1. In contrast, there

was no significant extra-Poisson variation between weeks within

months (p = 0.13; see top-left corner of Table 1). Thus the

variation in weekly numbers of cases mainly reflects effects at the

level of months and longer periods.

Type 1 diabetes
Figure 2 shows the annual number of type 1 diabetes cases

within the study region in northeast England by year of diagnosis.

A clear long-term cyclical pattern is evident, in line with that

reported by McNally et al [18]. The P-W analysis found strong

evidence of extra-Poisson variation in the numbers of cases

between years (p,0.001; see the bottom right-hand corner of

Table 2). No one year had a strong influence on these results. A

sensitivity analysis that excluded diagnoses of 1st July gave a higher

estimate of extra-Poisson variation between years (b of 3.666

rather than 1.936), possibly reflecting the greater proportion of

such diagnoses in the early part of the study period. Sub-group

analyses found evidence for extra-Poisson variation between years

(p,0.05) separately for females and males, and at ages 0–4 and

10–14 years, but not at ages 5–9 years.

Figure 3 shows the total number of cases observed during each

calendar month, separately for consecutive six-year periods (1990–

1995, 1996–2001 and 2002–2007) so as to reduce the impact of

long-term variation; diagnosis dates of 1st July have been excluded.

This Figure not only indicates variation within years, but that the

form of this variation changed during the study period. The P-W

analysis suggests that this variation within years occurs principally

between quarters of a year. In particular, there was statistically

significant evidence of extra-Poisson variation in the numbers of

cases between quarters within years (p,0.001; see penultimate

entry on the diagonal in Table 2); no one quarter had a strong

influence on this result. The evidence for extra-Poisson variation

between quarters within years was most marked for females and at

ages 5–9 and 10–14 years. In contrast, there was no significant

evidence of extra-Poisson variation between months within

quarters, nor between fortnights within months, either overall

(Table 2) or in sub-group analyses (results not shown). Indeed,

there was some evidence of under-dispersion in the numbers of

cases between fortnights within months. The analysis between

months within years, as well as the analyses between fortnights

within either years or the full study period, also showed significant

extra-Poisson variation (p,0.05; Table 2), probably reflecting the

impact of variation both between quarters and between years.

Discussion

This analysis has not only confirmed the long-term cyclical

variation of childhood type 1 diabetes reported previously [18],

but has also established effects over shorter periods. Having

allowed for annual differences, the numbers of cases in each

quarter of a year showed greater variation than would be expected

under the Poisson distribution. In contrast, there was no evidence

of extra-Poisson variation within quarters of a year. These results

indicate that temporal clustering of cases occurs over periods of a

few months, in addition to cyclical variation over years. This

pattern of occurrence is consistent with the involvement of

exogenous agents, such as an infection, that may exhibit

epidemicity. We also checked the methodology using data for

influenza in children, based on a similar total number of cases as

for the diabetes dataset and again with confirmed diagnoses. The

P-W method detected temporal clustering of influenza at levels of

months, quarters of a year and flu seasons. Consequently, the

methodology used here should have good power to detect

clinically meaningful clustering.

Several studies, e.g. [5,27,31], have reported seasonality in dates

of diagnosis of childhood type 1 diabetes, often with peaks in

October to January and troughs in June to August for centres in

the northern hemisphere. However, not all studies have reported

the same pattern; indeed, a recent analysis from Denmark [28]

suggested that the seasonal pattern might change over time. The

present study adds to the evidence for such an irregular temporal

pattern (i.e. temporal clustering). The statistical method used here

is well-placed to identify changing patterns of the form shown in

Figure 3 because-unlike the usual analyses of seasonality-it does

not assume that peaks or troughs occur at the same time each year.

Genetic factors, notably the HLA system, influence susceptibil-

ity to type 1 diabetes; however, the increases in disease incidence

Figure 1. Weekly influenza hospitalisations by calendar period
(California, 0–4 years).
doi:10.1371/journal.pone.0060489.g001
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seen in many countries in recent years [2–5,7] cannot be explained

by genetic factors alone and highlight the role of the environment

in disease evolution. Factors such as the increase in population

obesity and associated insulin resistance have been viewed by some

as a plausible explanation for the increase in diabetes incidence in

young people, but cannot easily be reconciled with the present

finding of temporal clustering [32]. The finding of such an

irregular pattern in incidence is consistent with the involvement of

an infectious agent which itself displays an irregular pattern in the

environment. Evidence for a role of infections in the aetiology of

type 1 diabetes comes from epidemiological studies of, for

example, birth order [33], interbirth interval [34], rural locality

[11], population mixing [35], day care attendance [36] and

recorded neonatal illnesses [37], whereas studies of recorded

infections in early life have been inconsistent [38–41]. Experi-

mental evidence also supports the role of an infectious agent or

agents in the development of type 1 diabetes [14,15],[42] and the

involvement of infections in northeast England is supported by the

previous identification of space-time clustering in our locality [17].

The evidence from the present study for temporal clustering over

periods of a few months suggests that an infectious agent or agent

may act as a final trigger in the development of the disease

amongst susceptible individuals.

A number of candidate viruses have been implicated in the

aetiology of type 1 diabetes including enteroviruses, rotavirus,

mumps, cytomegalovirus, rubella and Ljungan virus [13],[43–45].

For example, a recent systematic review found a strong association

between enterovirus infection and both type 1 diabetes-related

autoimmunity and clinical type 1 diabetes [46]. The type of

clustering found in the present study suggests that the underlying

pattern in the risk of such an agent being passed from a reservoir

host may exhibit a natural ‘‘epidemicity’’. The most common type

of reservoir for zoonotic infections, especially in temperate regions,

is wild rodent populations [47]. Patterns of variation in the risk of

transmission from them will reflect a combination of variation in

infection prevalence and in host abundance. Wild rodents in the

north of England are known to exhibit multi-annual cycles of

abundance, though these typically have a period of 3–4 rather

than 6 years [48], but it is also known that superimposed upon

host abundance patterns, infection prevalence and the timing of

peaks of prevalence may vary markedly from year to year, as a

result of interplay between prevailing weather, host demography

and infection dynamics [49,50]. However, making a direct and

detailed link between the intra- and multi-annual patterns

observed here, and intra- and multi-annual patterns in the

infection dynamics of wild rodents that are a potential natural

reservoir, will require further research focused specifically on

elaborating those dynamics.

The precise mechanism whereby an organism such as an

enterovirus might affect the evolution of type 1 diabetes is unclear

[51], although islet cell damage could be a key part of this process

(reviewed in [13]). The level of exposure could affect the immune

system in a manner that is dependent on factors such as age and

genotype. The hygiene hypothesis [52,53] has been proposed as a

potential explanation for the association between greater disease

incidence and improved sanitation. This trend has been observed

both between and within countries [8–10],[54]. High levels of

Table 1. Application of the Potthoff-Whittinghill technique to detecting temporal clustering of influenza hospitalisations among
children aged 0–4 years in Californiaa during the flu seasons from 2006–07 to 2011–12 inclusive.

PWb (SE)c

one-sided p-valued

Type of analysis Within months Within quarters Within flu seasons Within full study period

Between weeks 0.170 (0.149) 1.22 (0.11) 2.25 (0.11) 2.29 (0.10)

p = 0.13 p,0.001 p,0.001 p,0.001

Between months 5.83 (0.27) 9.94 (0.23) 9.21 (0.22)

p,0.001 p,0.001 p,0.001

Between quarters 20.21 (0.58) 14.45 (0.43)

p,0.001 p,0.001

Between flu seasons 6.79 (0.63)

p,0.001

Notes:
Based on locations participating in the California Emerging Infections Program.
aPW is the one-step estimate of b, the extra-Poisson variation, calculated as S/i(0) in the notation of Muirhead [22].
bSE is the standard error of PW in the absence of extra-Poisson variation, calculated as 1/!i(0) in the notation of Muirhead [22].
cp-values have been calculated using 10000 simulations of PW, assuming Poisson variation. All p-values are one-sided.
doi:10.1371/journal.pone.0060489.t001

Figure 2. Annual number of cases of type 1 diabetes at ages 0–
14 years in Northumberland, Newcastle upon Tyne and North
Tyneside by year of diagnosis.
doi:10.1371/journal.pone.0060489.g002
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exposure to infectious agents in the population as a whole may

refine immune responses, with the interaction between micro-

organism and individual potentially decreasing as well as

increasing the likelihood of disease development [55]. In

particular, discussion of the hygiene hypothesis in relation to

autoimmune diseases has highlighted the key role of timing of

exposure, in that certain viruses might provoke autoimmunity

when given late but be protective when given very early [53].

Laboratory studies of type 1 diabetes provide support for this

[56,57], whereas epidemiological studies of type 1 diabetes and

recorded infections in the first year of life are inconsistent [38–40].

Nevertheless, the lack of evidence for temporal clustering between

quarters within years at ages under 5 years in our study might be

explained by a protective effect of exposure to infectious agents at

very young ages. Furthermore, the time between exposure to virus

infections and disease onset is likely to vary between individuals

and may be shorter amongst susceptible individuals (i.e. those

exposed at an inappropriate stage of maturation). Thus, our

findings of temporal clustering at older ages are consistent with

virus infection or infections acting on the immune system of

susceptible individuals and leading to clinically observable disease

in some of these individuals shortly thereafter.

Suboptimal ascertainment with incomplete data collection and

the potential for patients from one locality to be managed in

centres outside the area studied are important considerations in a

study such as this. We collected and cross-checked data from

sources other than local paediatric clinic databases and also liaised

with neighbouring regions to make sure that these factors would

not be significant confounders in our analyses and that ascertain-

ment was high. We remain unable to reconcile highly significant

temporal clustering with aberrations in the way data have been

collected or with cases of diabetes in young people being classified

incorrectly.

In conclusion, the present study adds substantively to the

growing body of literature that supports the involvement of

infectious agents in the aetiology of type 1 diabetes in children.

Specifically it suggests that the precipitating agent or agents

involved might be an infection that occurs in ‘‘mini-epidemics.’’
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Table 2. Application of the Potthoff-Whittinghill technique to detecting temporal clustering of diagnoses of type 1 diabetes at
ages 0–14 years in Northumberland, Newcastle upon Tyne and North Tyneside during 1990–2007 inclusive.

PWa (SE)b

one-sided p-valuec

Type of analysisd Within months Within quarters Within years Within full study period

Between fortnights 20.310 (0.157) 20.110 (0.086) 20.004 (0.071) 0.132 (0.068)

p = 0.98 p = 0.90 p = 0.51 p = 0.032

Between months 0.010 (0.136) 0.189 (0.103) 0.459 (0.097)

p = 0.46 p = 0.039 p = 0.001

Between quarters 0.707 (0.197) 1.530 (0.168)

p,0.001 p,0.001

Between years 1.936 (0.343)

p,0.001

Notes:
aPW is the one-step estimate of b, the extra-Poisson variation, calculated as S/i(0) in the notation of Muirhead [22].
bSE is the standard error of PW in the absence of extra-Poisson variation, calculated as 1/!i(0) in the notation of Muirhead [22].
cp-values have been calculated using 10000 simulations of PW, assuming Poisson variation. All p-values are one-sided.
dThe analysis between years was based on all 526 cases, whereas the other analyses excluded the 58 cases with a diagnosis date of 1st July.
doi:10.1371/journal.pone.0060489.t002

Figure 3. Number of cases of type 1 diabetes at ages 0–14 years
in Northumberland, Newcastle upon Tyne and North Tyneside
by calendar month and period of diagnosis.
doi:10.1371/journal.pone.0060489.g003
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