
A Case Study of the De Novo Evolution of a Complex
Odometric Behavior in Digital Organisms
Laura M. Grabowski1*, David M. Bryson2, Fred C. Dyer2, Robert T. Pennock2, Charles Ofria2

1Department of Computer Science, University of Texas-Pan American, Edinburg, Texas, United States of America, 2 BEACON Center for the Study of Evolution in Action,

Michigan State University, East Lansing, Michigan, United States of America

Abstract

Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to
recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales
required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital
organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different
environments that required information about past experience for fitness-enhancing behavioral decisions. One population
evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to
enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that
produced this striking example of a complex behavior.

Citation: Grabowski LM, Bryson DM, Dyer FC, Pennock RT, Ofria C (2013) A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital
Organisms. PLoS ONE 8(4): e60466. doi:10.1371/journal.pone.0060466

Editor: Paul Graham, University of Sussex, United Kingdom

Received November 16, 2012; Accepted February 26, 2013; Published April 8, 2013

Copyright: � 2013 Grabowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by the National Science Foundation, http://www.nsf.gov/, NSF grants CCF-0643952 and DBI-0939454; and the Cambridge
Templeton Consortium, http://www.cambridge-templetonconsortium.org/, "Emerging Intelligence: Contingency, Convergence and Constraints in the Evolution
of Intelligent Behavior." The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: grabowskilm@utpa.edu

Introduction

Like structural and physiological traits, behavioral traits are an

essential aspect of the biology of animals, and elicit similar

evolutionary questions. However, investigating the evolution of

animal behavior is slowed by the fact that behavior leaves little

evidence in the fossil record, and can generally be observed only in

living specimens under restricted conditions of the sort they would

experience in nature. Despite major advances during the last

century in studying and understanding animal behavior, de-

termining how behavioral traits evolved is, because of such

reasons, limited to examining the most recent periods in the

evolution of behavior. A promising new approach avoids these

limitations using digital evolution models, which instantiate evolu-

tionary causal processes in a virtual environment so that

hypotheses about the evolution of behavior functions can be

tested experimentally. Studying the evolution of complex behavior

in a virtual world offers the opportunity to observe behavioral

evolution in action, from simple capabilities to complex behavioral

repertoires. We can also examine the details of underlying genetic

structure to discern its relationship to behavior, an option that is

available only rarely and to a highly limited degree when studying

behavior in living specimens.

In this paper, we perform a case study that explores the

evolutionary history of an example complex behavior. The details

of this history provide insight into how evolution produces

complex behavior where no complexity existed before. Our results

also support theoretical views of how complexity evolves in nature.

The specific behavior that evolved in our experiments was the

ability to count steps in order to track distance traveled. This

behavior arose in open-ended evolution in experiments conducted

in the Avida system [1], in an environment where neither distance

tracking nor counting was directly selected for, but may have

provided a behavioral solution to certain environmental chal-

lenges. Results of related experiments have been reported in [2,3].

The current discussion focuses on the evolved step-counting

mechanism and the evolutionary transitions that led to that

mechanism. The evolved odometric behavior appeared in only

one population; other populations evolved different survival

strategies. Despite its rarity, the step-counting capacity is a proof

of principle and is sophisticated enough to warrant examination as

a case study for the evolution of complex behaviors.

Many researchers are keenly interested in the evolution of

biological complexity, and have approached this issue from

a number of perspectives. Adami et al. [4] applied information

theory to measure evolving genomic complexity in digital

organisms. They showed that genomic complexity increases under

the action of natural selection, as ‘‘informative’’ mutations (i.e.,

mutations that increase an organism’s ability to survive) are

preserved. Goldstein [5] explored the evolution of multicellularity

from the perspective of physics, hypothesizing a connection

between the transition to multicellularity and competing aspects

of fluid dynamics. Lenski et al. [6] used the Avida system to

demonstrate the evolution of complex features that originated

from random mutations and natural selection, building complex

functions from simple functions that evolved earlier. This work by

Lenski and colleagues is particularly relevant to our paper, and

provides a definition of complexity for Avida organisms. In

general, a function in Avida is complex if it requires the

coordinated execution of several individual instructions. More

than one mutation from the original ancestor organism are needed

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e60466

for any such sequence of instructions, and the order of execution of

the instructions must be correct (in terms of accomplishing the

particular function) and consistent. In Lenski et al. [6], for

example, the most complex logic function, logical equals (EQU)

required a program at least 19 instructions long. In this paper, we

examine another sequence of instructions that produced behavior

analogous to step-counting.

Within the context of biology, animal behavior provides many

examples of complexity. One such example is navigation. Even

seemingly simple animals accomplish sophisticated and complex

navigation tasks. A number of models have been proposed for

a variety of animal navigation behaviors, and several approaches

used in silico evolution. Among these models, Dale and Collett [7],

Vickerstaff and Di Paolo [8], and Haferlach et al. [9] are perhaps

the most relevant to the current discussion. Dale and Collett [7]

used an evolutionary algorithm to evolve motor controllers for an

‘‘animat,’’ or artificial animal, and compared the artificially

evolved navigation strategies to those of flying insects, specifically

wasps and bees. Their results suggested that insects’ navigation

strategies are mostly adaptations to the demands of reaching

a spatial position using visual information and compass directions.

Vickerstaff and Di Paolo [8] focused on modeling the homing

behavior of the Saharan desert ant, Cataglyphis fortis, by using

a genetic algorithm to evolve a neural model of path integration.

Their results produced the same sort of systematic errors observed

in the desert ants and the systematic searching behavior the ants

perform once they reach the estimated nest location. Haferlach

et al. [9] also used a genetic algorithm to evolve a neural model of

path integration, using biologically plausible direction cells, with

input encoded in a manner analogous to polarization-sensitive

insect interneurons. Studies such as these provide interesting and

valuable insights, but it should be noted that they differ from the

current study in several key aspects. First, the experiments for the

current case study were not designed to test a hypothesis related to

navigation. Instead, the experiments focused on the evolution of

memory use, with navigation providing only the context for the

experiments. Second, the behavior that we are examining in this

paper, i.e., step-counting, was not directly selected for during

evolution, and in fact its appearance was a complete surprise.

Third, the experiments that gave rise to the case study organism

discussed in this paper were performed using a different un-

derlying representation (i.e., a genetic program) and a different

type of methodology, namely digital evolution. Studies similar to

[7–9] that explicitly test hypotheses about animal behavior can be

performed using the Avida system. A recent example of such

a study is Goldsby et al. [10], in which the authors tested the

hypothesis that the evolution of temporal polytheism in eusocial

insects relates to pressures resulting from the relative risk

associated with various tasks and aging. Their results demonstrate

the Avida experiments can proceed biologically relevant insights

into behavior despite the differences between the Avida organisms

and living ones.

Odometry, i.e., measuring distance traveled, is an important

aspect of certain navigation behavior. Here, we use the term

odometry to refer to measuring distance only, as opposed to

integrated measures of distance such as path integration.

Navigation behavior in ants is well studied, and many sensory

and behavioral components of their navigation behaviors have

been described in detail, for example vector navigation [11],

landmark use [12], and compasses for navigation [13]. Odometry

mechanisms in ants are less well explored (for a review, see [14]),

but evidence exists [15] for ‘‘stride integration,’’ combining the

length and number of steps to measure distance traveled. This idea

of measuring distance traveled using self-movement provides the

context for our case study.

The remainder of the paper is organized as follows. We present

an overview of the Avida system and some details of the

experiments for the case study. We then present the results of

the experiments, first explaining in detail the evolved behavior

itself and then how the digital organism’s genome produced that

behavior. We then provide an in-depth analysis of how the

structure and function of the step-counting section of the

organism’s genome emerged over evolutionary time.

Materials and Methods

Digital evolution [4] places a population of self-replicating

computer programs in a computational environment. The

population evolves as these ‘‘digital organisms’’ compete for

resources, replicate, and mutate. Digital evolution approaches

furnish tools for investigating evolutionary processes in biology,

and for harnessing the power of evolution to develop solutions to

computing and engineering problems. Avida [1] is a widely used

digital evolution software platform and has repeatedly provided

insights into evolutionary processes, including effects of mutation

rates [16,17], sexual reproduction and genetic architecture [18],

inclusive fitness theory [19] and, of course, the evolution of

complexity [4,6].

The Avida world contains a population of digital organisms.

The size of the world remains fixed throughout the duration of an

experiment, limiting the number of individuals in the population.

Each individual Avida organism, or ‘‘Avidian,’’ is composed of its

genome (a circular list of program instructions that are similar to

assembly language) and a virtual central processing unit (CPU)

that executes the instructions in the organism’s genome. The

default CPU has three general-purpose registers (AX, BX, and

CX), two stacks, and several heads (IP, the instruction pointer;

FLOW, a target for jumps; READ and WRITE, targets for

copying). Execution of the organism’s instructions acts on the

elements of its virtual CPU, and instruction execution incurs a cost

measured in virtual CPU cycles. An Avidian must execute

instructions to perform any function, including replication,

movement, and sensing. The basic set of Avida instructions is

Turing-complete [20] and the existing capabilities of the system

may be extended by adding new instructions.

An Avidian replicates by copying the instructions in its genome

into a block of memory that becomes its offspring. During the

copying process, errors may occur that result in differences

between the genomes of parent and offspring (i.e., mutations). A

new offspring is produced when the parent organism has finished

copying its genome and divides. The new offspring is placed in

a random cell on the grid, replacing any organism that was

occupying that cell. Thus, an organism that replicates more

quickly than another will tend to have more descendants in future

populations. Avidians may replicate sooner if they perform user-

defined tasks that speed up their execution rate. When an Avidian

performs a task, it will receive a bonus that will increase its future

metabolic rate, allowing it to execute more instructions in a unit of

time than an organism with a lower metabolic rate [1].

Avida genomes may grow or shrink due to insertion or deletion

mutations and selective pressures. This approach allows organisms

to extend their genomes to allow for more complex instruction

sequences that may be required for more complex tasks. An

organism’s initial execution speed is proportional to the length of

its genome, so organisms that increase in length are not penalized

solely for having a longer genome.

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e60466

Our experimental environments were inspired by maze-

learning experiments with honey bees [21], in which the bees

learned to follow different visual cues through a maze to a food

goal. Similar to the bee maze experiments, in our experiments

each digital organism had its own isolated environment (called

a ‘‘state grid’’) containing a path that it could follow to gather food

and increase the rate of its metabolism (the rate at which it

executed genomic instructions). An organism needed to gather

sensory information from the environment and react appropriately

to cues. The experiments were designed to explore the evolution of

memory use, and effective strategies in these environments

required the evolution of different ways of storing and reusing

experience. The evolved organisms were able to take sensory input

from their environment and make behavioral decisions based on

that input. Organisms were able to react consistently to sensory

cues from the environment, and were able to remember past

experience in making new behavioral choices [2,3].

We added three types of new instructions for movement,

sensing, and comparison to the basic Avida instruction set for our

experiments. (1) Movement. The sg-move instruction enables an

organism to move one cell in the direction of its current

orientation in the state grid. Orientation changes are accomplished

by sg-rotate-right and sg-rotate-left, instructions that change the

organism’s orientation by 450 in the specified direction. (2) Sensing.

The sg-sense instruction places a value into one of the organism’s

virtual registers, based on the contents of its current grid cell.

Specific values are described below. (3) Comparisons. We supple-

mented the basic Avida instruction set with new comparisons, if-

grt-X (if greater than X) and if-equ-X (if equal to X) that permit an

organism to compare the contents of its BX register with a set

value. The value used for the comparison is determined by a NO-

OP (nop) label immediately following the comparison instruction

and thus could be directly evolved as a constant. The new

instructions provided the Avidians a simple mechanism for

comparisons with constants, while allowing for simpler evolved

genomes.

Each environment in the experiments that evolved the case

study organism contained some combination of the following cues:

1. Nutrient: A cue that indicates the current cell is on the path,

and provides energy that adds to the organism’s metabolic

bonus (the ‘‘food’’ on the path). This cue has a sense input

value of 0 with the sg-sense instruction.

2. Directional cue: A cue that indicates to turn either right or

left (450 in the specified direction) in order to remain on the

path. Cells with directional cues also contain nutrient. The sg-

sense instruction returns 2 for right and 4 for left turns.

3. Empty: A cue that indicates cells that are off the path.

Movement into an empty cell depletes energy that an organism

gains by moving into a cell on the path. The sg-sense

instruction returns -1 for empty cells.

Other environments were used for additional experiments, but

are not relevant to the current case study [2,3]. The environments

for the case study were the simplest of all the experimental

environments, containing only right turns or left turns. We used

these environments for two reasons. First, in such an environment,

an Avidian needed to sense and react to the minimum number of

cues in any one environment (nutrient, one type of turn cue, and

empty), reducing the overall complexity of the task. Second, these

environments are analogous to the ‘‘continuous turn’’ environ-

ments of the Zhang et al. experiments [21] that provided the

inspiration for our experimental environments.

The metabolic rate bonus an organism received was determined

by how well it followed the path. An organism that traversed the

entire path without stepping off received the maximum bonus.

The bonus calculation is based on the number of unique path cells

an organism encountered less the total number of movements into

cells that are off the path (a negative value is not permitted).

Organisms were not penalized for taking extra steps on the path,

but neither did they receive additional credit. The calculated

bonus doubled for each step on the path that was not counteracted

by a movement into an empty cell off the path. Refer to [2,3] for

additional experiment details and background information.

During evolution, organisms were presented with one of four

different paths, selected randomly. Two paths contained only right

turns and two contained only left turns. Each individual

experienced only one path in its lifetime, and different paths

could be experienced by different organisms in the same

generation.

We ran 50 experimental populations with a maximum of 3600

individuals for 250,000 updates (the native time unit in Avida,

approximately 11,200 generations in the case study population).

Each population was seeded with an organism that had only the

ability to replicate. The ancestor organism’s genome is 100

instructions long and includes replication-related instructions and

a large number of nop instructions. Other instructions and

functions may appear only through mutations. Our experiments

used a 0.085 genomic mutation rate for a length-100 organism

(0.0075 copy mutation probability per site, insertion and deletion

probabilities of 0.05 per divide) [1].

Results and Discussion

In this section, we present the results of the experiments for the

case study organism. The discussion is organized in three parts: (1)

Evolved Behavior describes the observed behavior of the case

study organism in test environments, (2) Evolved Odometry
provides a detailed instruction-by-instruction analysis of how the

evolved step-counting mechanism operates, and (3) Evolving the
Step Counter examines the evolutionary history of case study

organism from the initial ancestor.

Evolved Behavior
When functioning in an environment where all cues signal left-

turns, the evolved case study organism traversed the length of the

path, stepping exactly one cell off the end of the path and stopping

(Figure 1A). This strategy gave a high metabolic rate bonus, since

the organism took only one step off the path. We thought that this

type of strategy was the best that an organism could do, since there

is no way for it to detect the next cell except by stepping into it and

sensing. Indeed, this was the observed strategy that evolved in

other populations in several different experimental setups [2,3].

However, in right-turn environments, the case study organism

somehow improved on its left-turn paths performance, navigating

the path without moving into any empty cells (Figure 1B), earning

it all possible metabolic bonuses, with no penalties at all. This

surprising result spurred us to investigate how this outcome was

possible.

Since the ancestral environments (i.e., the environments

experienced during evolution) were all similar, we tested how

the behavior generalizes in similar but novel environments. These

environments have the same fundamental features as the ancestral

environments, but turns occurred at different positions, path

lengths differed, and the specific trails were never experienced

during evolution. We placed the organism in several different

novel environments: (1) an ancestral left-turn path that was

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e60466

modified by extending the end of the path; (2) a completely

unfamiliar left-turn environment; (3) an ancestral right-turn path

with an extended end; and (4) an unfamiliar right-turn environ-

ment.

Figure 2 shows the organism’s performance in each of the above

conditions. The results reveal the key feature of this organism’s

algorithm (first described in [3]): the organism counts the number

of steps it has traveled on a right-turn path and turns around at

a specific distance. The organism is able to follow the extended

right-turn path of Figure 2B, but it uses its step-counting

mechanism and turns around before it completes this modified

ancestral path. The organism also manages to navigate the

extended left-turn path (Figure 2A); its behavior is qualitatively

identical to its behavior when traversing the original ancestral

path. The unfamiliar right-turn path (Figure 2D) is longer than

any ancestral path and the extended right-turn path in Figure 2B.

The organism appears to traverse the entire path, stopping after

one step off the end of the path; in fact, the organism fails to

replicate in this environment. This result reveals that the step-

counting mechanism does not function reliably in all right-turn

environments, but is crucial to replication in those environments.

The organism’s strategy also fails in the unfamiliar left-turn

environment (Figure 2C); the organism turns the wrong direction

at the first turning, takes a few steps in empty cells, and stops

moving, once again without completing replication. This behav-

ioral evidence suggests that the evolved strategy is brittle in

unfamiliar environments. The explanation for the differences in

behavior is found through a closer examination of the step-

counting mechanism.

Evolved Odometry
To understand the odometry mechanism and trace its

evolutionary origin, we need to look at the level of the genome.

For this analysis, we traced the organism’s execution in both right-

and left-turn environments. These traces contain detailed in-

formation about the state of the organism’s virtual CPU elements,

the sensory input from the environment, and the movement

history of the organism. These details allow us to observe the

moment-by-moment execution of the organism’s program.

The evolved organism is 185 instructions long, with an executed

size of 156 instructions. As discussed in [3], most (but not all) of the

critical code of this organism is organized in two modules: one

loop that contains the step-counting routine and handles much of

the movement for right-turn situations, and another that handles

moving with left turns and has a nested copy loop for replication.

The 16-instruction step-counting module is located at genome sites

117–132. Table 1 shows this part of the organism’s genome,

detailing each instruction and its effect when executed. Table 2

provides an example excerpt of the execution flow of the evolved

organism’s genome.

The step-counting routine is executed on both right- and left-

turn paths, but the behavior it produces differs. When the

organism traverses a right-turn path, the code keeps track of the

forward movements of the organism, in effect measuring the

distance the organism has traveled. The counting loop exit

condition is set up by setting the CX register to the value of 128,

by executing the get-head instruction that reads the current

position of the Instruction Pointer (IP) into the CX register. Each

step the organism takes in the loop is followed by an increment of

the BX register. After 127 steps, the last increment of the BX

register causes loop exit. Proper termination of the counting loop is

essential for the organism’s replication when traversing right-turn

paths, since execution must reach the h-divide instruction in a code

section near the end of the genome, or it will never complete its

replication.

When the organism is in a left-turn environment, the counting

loop monitors the number of rotations the organism executes,

ensuring that it has the orientation that will keep it on the path

Figure 1. Trajectories of evolved case-study organism on paths experienced during evolution. The organism’s trajectory is shown with
the black line, beginning at the green star and ending at the red octagon (note: in some cases the organism doubles back along its own path). On the
left-turn path (A), the organism traverses the path, steps off the end and stops to finish replication. On the right-turn path (B), the organism has
retraced its steps from the end of the path to its final location (red octagon).
doi:10.1371/journal.pone.0060466.g001

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e60466

after exiting the counting module. The organism remains in the

same location and executes the loop four times, performing a 1=8
turn in each iteration. This number of iterations is determined by

the sg-sense instruction (site 123, modified by the following nop-C

so that the sense value is placed in the organism’s CX register).

When the organism is in a cell with a left-turn cue, the sg-sense

instruction returns a value of 4. The value in the BX register is

incremented with each loop iteration, and when the value reaches

4, execution exits the counting loop. The code section following

the counting module contains another set of four 1=8 turns; the

counting mechanism thus ensures that the organism will be facing

forward on the path, the proper orientation to continue progress

on the left-turn path. The sense value of 4 also determines how

many instructions will be skipped by the jmp-head instruction. On

left-turn paths, execution skips four instructions (sites 126–129),

including the sg-move instruction at site 129, guaranteeing that the

organism remains stationary while it corrects its orientation.

As the preceding analysis illustrates, the step-counting mecha-

nism evolved to have interesting dynamics during execution.

Instructions have different results in various environments and

Figure 2. Example trajectories of the step-counting organism traversing unfamiliar paths. (A) Modified ancestral left-turn path, with
extended path end. The organism successfully travels the entire path, stepping exactly one cell off the end and then stopping. (B) Modified ancestral
right-turn path, with extended path end. The organism turns and retraces its steps before reaching the path end. (C) Unfamiliar left-turn path. The
organism turns incorrectly at the first turn. The organism neither traverses the path nor replicates in this environment. (D) Unfamiliar long right-turn
path. The organism traverses the entire path but fails to self-replicate.
doi:10.1371/journal.pone.0060466.g002

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e60466

different instructions execute in differing conditions. To look more

closely at which instructions contributed to path-following in the

different environments, we ran knock-out experiments that

systematically test the effect of each genome site by re-running

a modified version of the organism’s genome with the tested site

converted to a neutral NULL instruction. We tested the organism

in an ancestral environment of each type (i.e. right-turn and left-

turn). Table 3 shows the results of these tests for the counting

module, with cells containing ‘‘XXXXX’’ indicating that the

instruction is required for the organism to successfully navigate the

indicated path direction and empty cells show that the instruction

does not contribute to successful task completion. Two sites (the h-

copy instructions at sites 121 and 122) are not needed for either

environment, six instructions contribute only in right-turn

environments, two instructions are needed exclusively in left-turn

environments, and six instructions are needed for both types of

environments.

This analysis reveals an impressive degree of plasticity in the

organism’s execution, even in these simple, structured environ-

ments. More than half of the necessary instructions in this code

segment contribute differentially to the organism’s performance,

depending on the current environment. Perhaps the most

interesting piece of information that emerges is that the counting

routine is critical for the organism to follow a left-turn path, but

not for traversing right-turn paths. Since the step-counting

behavior is most apparent on right-turn paths, this result seems

puzzling at first. To better understand the results, we focused on

one instruction in the counting sequence that is central to the

counting algorithm–the increment instruction (inc). We ran

execution traces of the organism in ancestral environments,

replacing the inc in knock-out experiments. Trajectory traces

taken from these executions are shown in Figure 3. In both left-

and right-turn environments, the organism’s behavior is observ-

ably poor, managing only a few steps on the path before stopping

(at the first turn in the left-turn environment) or wandering off the

path (in the right-turn environment). When we look at the level of

the genome, we can see why inc was necessary for the path-

following task in left-turn environments but not in right-turn

environments. In these experiments, the path-following task is

linked to replication. An organism that does not replicate will not

receive a metabolic rate bonus for any part of the path-following

task. In left-turn environments, the increment instruction is

required to ensure loop exit from the step-counting loop so that

the organism can reach the replication loop later in its genome.

Without inc in the counting loop, execution is trapped in an

infinite loop, and the organism cannot replicate. In right-turn

environments, however, counting loop exit is triggered when the

sensing instruction (sg-sense) at genome site 123 places a value of

0 in the CX register. When this event occurs, the BX register

already holds a value of 0; when the comparison instruction ‘‘if-

not-equal’’ (if-n-equ) at site 131 executes, it evaluates as false, since

BX and CX both are 0. The false comparison causes execution to

Table 1. Detail of evolved counting organism’s genome.

Site Instruction Instruction Functionality

117 h-search Marks the start of counting module.

118 sg-rotate-r Turn right 450 .

119 if-grt-0 CX register contentsw 0?

120 nop-C This comparison is TRUE when on a right-turn path.

121 h-copy Copy when (executes only when on a right-turn path).

122 h-copy Copy (always executes).

123 sg-sense Put current sense input into CX register.

124 nop-C

125 jmp-head Move the IP the number of instructions designated by the value in CX register.

If sense input was nutrient, CX = 0; IP does not change.

If sense input was right, CX = 2; IP skips 126–127 and moves to site 128.

If sense input was left, CX = 4; IP skips126–129 and moves to site 130.

126 sg-rotate-l Executes only when sense input is nutrient (i.e., CX = 0).

When executed, undoes right turn at top of loop.

127 if-equ-X BX register contents = 1?

This comparison is TRUE on a right-turn path.

128 get-head Put the current value of IP into CX (i.e., CX = 128).

Executes only when on a right-turn path.

129 sg-move Take a step. Does not execute on a left-turn path.

130 inc Increment value in BX (i.e., BX = BX+1).

131 if-n-equ If contents of BX are not equal to contents of CX, execute the next instruction.

Instruction tests for loop exit conditions.

132 mov-head Exit on right-turn path after taking 127 steps, then incrementing BX to 128.

Exit on left-turn path after turning 1800 without taking any steps.

Detail of the instructions in the counting module of the evolved counting organism’s genome. Site refers to the position in the genome of the instruction, Instruction
is the specific Avida instruction, and Instruction Functionality describes how the instruction operates.
doi:10.1371/journal.pone.0060466.t001

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e60466

skip the following mov-head instruction, terminating the counting

loop. Execution then continues with the instructions following the

loop, eventually reaching the replication loop later in the

organism’s genome.

The entwining of replication and path-following also helps

illuminate the behavior observed in the unfamiliar environments

shown in Figure 2. In the right-turn environment of Figure 2B, the

organism’s backtracking behavior is triggered when it encounters

a familiar pattern of cues at the beginning of the path. In the

unfamiliar environment of Figure 2D, the early sections of the

path do not match the familiar pattern from the ancestral

environments, and the step-counting routine does not work

effectively. In this situation, the organism continues to move along

the path, as its execution fails to break out of the counting loop.

Although the behavior appears successful at first glance, closer

examination of the execution trace reveals that the organism fails

to replicate in this novel situation. In the left-turn environment of

Figure 2A, the organism is able to follow the trail that is modified

at the end. However, as in the right-turn environment of

Figure 2D, in the left-turn environment of Figure 2C the organism

cannot handle changes in the pattern of cues near the beginning of

the path. The organism’s genome ‘‘expects’’ the first turn to

happen after only two or three steps at the beginning of the path.

When this is not the case, the organism fails to recognize the

correct turn direction, and its execution enters an infinite loop as

described previously.

The preceding discussion underscores that the counter was not

the only feature that determined how well the organism

performed. During the course of evolution, the counter became

tuned to function in the context of the environments and other

structures in its genome. In the next section, we look more closely

at how the counter was shaped over evolutionary time.

Evolving the Step Counter
Environmental regularities provide evolution the chance to

capitalize on factors that are consistent over generational time.

Since our original intent in these experiments was to probe

evolving memory use [2,3], some degree of regularity was

important for our model. The population that produced the

step-counting organism evolved in environments that had several

regularities, some of which are inherent in the path-following

problem itself. The sensory cues are the same across all

generations, and the fundamental arrangement of the paths is

similar (straight segments punctuated by occasional turns, with the

Table 2. Example execution segment.

Exec Site Instruction Facing Flow BX CX Remarks

95 117 h-search N 117 1 0 Move flow-control head to current position

96 118 sg-rotate-r NE 117 1 0 450Turn right

97 119 if-grt-0 NE 117 1 0 CX register contentsw 0? No! Skip next instruction.

98 122 h-copy NE 117 1 0 Copy instruction (regardless of path)

99 123 sg-sense NE 117 1 0 Put 0 in CX (We are currently on a nutrient)

100 125 jmp-head NE 117 1 0 Jump ahead CX instructions (in this case, don’t move)

101 126 sg-rotate-l N 117 1 0 Turn left; compensate for the previous right turn to go straight

102 127 if-equ-X N 117 1 0 By default X = 1; Since BX is 1, execute next instruction

103 128 get-head N 117 1 128 Put the current value of IP into CX (i.e., CX = 128)

104 129 sg-move N 117 1 128 Take a step onto the right turn cue

105 130 inc N 117 2 128 Increment value in BX (i.e., BX = BX+1).

106 131 if-n-equ N 117 2 128 BX ! = CX (yet), so execute the next instruction.

107 132 mov-head N 117 2 128 Restart loop by jumping to flow head (117)

108 117 h-search N 117 2 128 Would move flow head, but already there

109 118 sg-rotate-r NE 117 2 128 450Turn right

110 119 if-grt-0 NE 117 2 128 CX register contentsw 0?

111 121 h-copy NE 117 2 128 Copy instruction (since we’re on a right-turn path)

112 122 h-copy NE 117 2 128 Copy instruction (regardless of path)

113 123 sg-sense NE 117 2 2 Put 2 in CX (We are currently on a right-turn cue)

114 125 jmp-head NE 117 2 2 Jump ahead CX instructions (i.e., move to 128 instead of 126)

115 128 get-head NE 117 2 128 Put the current value of IP into CX (i.e., CX = 128)

116 129 sg-move NE 117 2 128 Take a step onto the next nutrient

117 130 inc NE 117 3 128 Increment value in BX (i.e., BX = BX+1).

118 131 if-n-equ NE 117 3 128 BX ! = CX (yet), so execute the next instruction.

119 132 mov-head NE 117 3 128 Restate loop by jumping to the flow head (117)

Example excerpt of the execution flow in the counting module of the evolved counting organism’s genome. The execution depicted occurs on the map in Figure 1(b),
starting from the star and facing north. It covers the organism taking a step forward, turning right based on the cue found there, and then taking another step forward.
Exec is the number of instructions that have been executed, Site refers to the position in the genome of the instruction, Instruction is the Avida instruction being
executed, Facing indicates the compass direction the organism is pointed on the grid, Flow is the genomic position pointed to by the flow-control head, BX and CX
are the values stored in the respective registers and Remarks describes how the instruction operates in its current context. Values that are affected by the current
instruction are in bold.
doi:10.1371/journal.pone.0060466.t002

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e60466

same turn direction in any single path for the current experi-

ments). The small set of ancestral environments meant that any

individual organism had a 0:25 probability of being placed in the

same environment as its parent, and a 0:5 probability of being

placed in the same environment type as its parent (i.e., right or left).

Other regularities were artifacts of development of the environ-

ments. Although unintended, these regularities could also be

exploited to enhance fitness during evolution. All of the ancestral

paths had short straight sections and relatively frequent turns. The

ancestral right-turn paths contained 127 path steps beyond the

third turn in the path. The overall path lengths varied from 130

cells to 141 cells, and the right-turn path lengths differed by only

one cell (length 132 and 133). In the light of the preceding

discussion of how the counting mechanism functions, it is

reasonable to infer that there is a correlation between the

environmental regularities and the evolved counting mechanism.

To piece together a narrative of how evolution produced the

step-counting mechanism, we traced the lineage of the evolved

organism back to the original ancestor of the population. We

examined a number of pieces of information, including metabolic

rate and fitness statistics for the line of descent, and genomes and

execution traces of organisms from selected points in time.

Combining all these data, we are able to reconstruct the

organism’s evolutionary history.

The story begins as a classic tale of gaining adaptive advantages

through random mutations. In the environments of this study, the

first ability an organism needs beyond replication is movement. An

ancestor of our step-counting organism found that ability with

a mutation in update 92, within the first 7 generations of evolution.

This one mutation nearly doubled the organism’s fitness. Through

the next 300 or so generations, most of the progress to enhance

fitness is made by gradual addition of sensing and more

movement.

The step-counting mechanism was built from the inside out, by

putting together two separate instructions sequences, then the loop

that contained them. The instructions that would become the step-

counter never resided inside the organism’s copy loop. The

structures in the step-counter (see Table 1) that emerged early in

evolution are sites 123–125 (the sequence sg-sense/nop-C/jmp-

head, which we will call the ‘‘jump sequence’’) and 129–132 (sg-

move/inc/if-n-equ/mov-head, which we will call the ‘‘control

sequence’’). These sequences are crucial to the operation of the

evolved step-counter. The jump sequence serves to execute or

omit instructions following the sequence based on the sensory

input from the environment. The control sequence contains the

increment instruction (inc) that counts the loop iterations, the

comparison instruction (if-n-equ) that controls exit from the

counting loop, and the mov-head instruction that marks the point

of iteration.

The jump sequence begins to form in update 2700 (around

generation 290) with the appearance of the jmp-head instruction.

The sg-sense instruction appears in update 3322 (generation 354–

364). The intervening instruction retains the original nop-C from

the ancestor’s genome, completing the jump sequence. This

structure remains fixed through the rest of evolution. Although the

jump sequence did not confer an immediate fitness advantage, it

becomes crucial to the operation of the completed step-counting

mechanism.

The control sequence emerges somewhat later. The several

instructions that make up the sequence mutate in and out of

a number of locations within the genome. In update 12,839
(generation 1565–1585), three simultaneous point mutations occur

to produce the sequence sg-move/inc/if-n-equ. These mutations

are initially deleterious, reducing the organism’s fitness level to

approximately 97% of its parent’s fitness. At this time point, the

sequence is followed by the if-grt-X instruction. That situation

persists until update 15,396, when if-grt-X mutates to mov-head,

and the sequence is finished, nearly quadrupling the organism’s

metabolic rate. Like the jump sequence, the control sequence is

preserved through the rest of evolution.

At this point in time, the two foundation sequences of the

counter have appeared, but there is no loop yet to contain them.

By around generation 3000 (update 23,095), mutations have

created two contiguous loops, one containing the jump sequence

and the other holding the control sequence. The two loops are

consolidated in update 26,833 (generation 3300), establishing the

essential structure of the counting loop. This change is initially

neutral, with fitness remaining unchanged from parent to off-

spring. The structure of the loop was set, but required tuning to

deliver an advantage.

The rest of the history of evolving the step-counter mechanism

has two interwoven story lines, one related to slow incremental

improvement of the genome to better suit the demands of the

environments, and the other more focused on careful tweaks that

tune the counter to both the environment and to interactions with

other segments of the organism’s genome. The counting loop is

nearly complete at update 157,397 (8734 generations), when the

counting loop is 15 instructions long and the same as the loop at

the end of evolution except that it contains only one h-copy

instruction instead of two. That final instruction is added two

generations later, and the counting loop is in its final form. The

organism that first has the counting code in its final form has

evolved a ‘‘perfect’’ solution for the ancestral left-turn paths, but

cannot successfully navigate the right-turn paths. The mechanism

for left-turn paths emerged earlier than that for right-turn paths,

reaching 84% of the maximum metabolic rate bonus by update

40,675 (approximately generation 5100).

Table 3. Instructions in the step-counting module used for
right- and left-turn paths.

Site Instruction Right paths Left paths

117 h-search XXXXX XXXXX

118 sg-rotate-r XXXXX XXXXX

119 if-grt-0 XXXXX

120 nop-C XXXXX

121 h-copy

122 h-copy

123 sg-sense XXXXX XXXXX

124 nop-C XXXXX XXXXX

125 jmp-head XXXXX XXXXX

126 sg-rotate-l XXXXX

127 if-equ-X XXXXX

128 get-head XXXXX

129 sg-move XXXXX

130 inc XXXXX

131 if-n-equ XXXXX XXXXX

132 mov-head XXXXX

Use of instructions in the step-counting module for traversing right- and left-
turn paths. Cells containing ‘‘XXXXX’’ indicate that the instruction is necessary
to complete the path following task on paths containing the indicated
direction; empty cells indicate that the instruction is not used for following
paths in the indicated direction.
doi:10.1371/journal.pone.0060466.t003

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e60466

Successful use of the counting loop for right-turn paths did not

emerge until update 191,896 (around generation 9625). This was

the first organism that was able to traverse both right- and left-turn

paths. The organism’s genome differs from that of its parent by

one instruction inserted before the counting loop. The insertion

changed the position in the genome of the get-head instruction to

site 128, thus resulting in the backtracking behavior that allows the

organism to complete its replication. Much of the progress

between the emergence of the left-turn path strategy and the

right-turn path strategy is slow incremental improvement resulting

from individual mutations. This incremental improvement con-

tinues after the strategies for both path directions have emerged.

The successful behavior remains the same, but fine tuning

continues to deliver gradually improving metabolic rate bonuses.

Deleterious mutations occasionally degrade performance for one

or more generations, but successful behavior consistently ree-

merges. The final step-counting organism was born at update

249,169 (generation 11,202), near the end of the 250,000 update

experiment.

It is evident that the evolved step-counting mechanism is

specifically adapted to the environments experienced during

evolution. The evolved solution allowed a conservative strategy

that produced effective fitness-enhancing behavior. Although the

evolved solution is environment-specific, it could serve as the basis

for a more flexible counting mechanism. The key to the way the

counting algorithm works is controlling how many times the

counting loop iterates. This control involves setting a register to

some value that will be used to determine when to exit the loop.

The existing counting method controls loop iteration with a specific

sensory cue in left-turn environments and a value given by genome

position in right-turn environments. A more generalized step-

counter would need to control loop iterations with some arbitrary

event, such as reaching a ‘‘goal’’ or accomplishing some

behavioral task (e.g., finding a food item). Imagine a scenario

where the Avidian must traverse a trail to find a large food reward,

then retrieve the food and retrace its steps to its starting position

(its ‘‘nest’’). In this situation, the organism would need to count its

steps to the end of the path, then use the counter again to return

home. In addition to generalizing loop iteration control, a general

step-counting algorithm needs to be self-contained, minimizing

interactions with other sites in the genome. The existing step-

counting algorithm contains some instructions that interact with

instructions elsewhere in the genome. The different operation of

the counting loop in left- and right-turn environments illustrates

the effects of such interactions. In left-turn environments, the

counting loop counts rotations, not steps, acting as error-

correction for orientation changes that occur later in the genome.

In right-turn environments, the number of loop iterations is

determined by the genome position of the get-head instruction. In

both cases, instructions located outside of the counting module

itself have a profound impact on the behavior of executing the

counting loop. If the genome outside the counting loop changes,

the executed behavior of the counting algorithm may in turn

change dramatically. If the counting routine has fewer de-

pendencies on other instructions, it will function more reliably

and in a broader range of conditions. The evolution of a more

flexible, generalized counting mechanism could occur in environ-

ments where counting, specifically step-counting, contributes

strongly to increased fitness, such as the foraging scenario

mentioned earlier.

Conclusions
We have presented a detailed analysis of a complex behavior

that evolved in Avida, to illustrate how we may use results such as

ours to inform questions about the evolution of behavior. Even

though Avida’s genetic program and discrete world differ in

Figure 3. Example trajectories of the modified step-counting organism traversing ancestral paths. The increment instruction in the
counting routine was replaced with a neutral instruction (nop-X). (A) Left-turn path. The organism stops at the first turn and fails to replicate. (B)
Right-turn path, with extended path end. The organism misses the second turn, wanders for a couple steps, stops, but successfully completes its
replication, although with a much reduced metabolic rate from the unmodified genome.
doi:10.1371/journal.pone.0060466.g003

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e60466

important ways from the genes and noisy complex world of

biology, results such as ours can be biologically relevant. Avida is

extensible and highly configurable, allowing researchers to design

experiments that probe specific hypotheses about the evolution of

behavior, in the same way that other representations and methods

(e.g., neural networks and genetic algorithms) have been used to

model hypotheses about behavior. The emergence of the step-

counting mechanism in our experiments was initially a complete

surprise. Because odometry was not the focus of our experiments,

the experimental setup was not designed to model a problem that

needed a distance measure, nor to capture data that would allow

for more quantified analysis. Counting requires a fair amount of

complex, sophisticated computation in Avida, and so is an

excellent problem domain for investigating evolving complex

behavior. In future work, we plan to focus directly on evolving

odometric behavior, using Avida and other model systems. We are

currently developing the design for Avida experiments that address

the evolution of a flexible step-counting mechanism. Through

those studies, we may shed more light on the evolutionary origin of

odometry and other complex behavior.

The step-counter organism provides an excellent example of

how complexity evolves, building sophisticated and specialized

capabilities from the simplest components. Components that were

later critical to the operation of a complex trait sometimes arose

without conferring any immediate benefit or even being delete-

rious at first. At various periods during evolution, there were

relatively sudden improvements in function compared to other

periods where evolution gradually fine-tuned a trait. Of course,

none of this was pre-planned; it is only in hindsight that we can

trace the circuitous path that evolution followed in producing what

turned out to be a useful complex trait. These results are consistent

with theoretical views about how complexity evolves in nature,

and show how complex behavioral traits can arise even in very

simple environments without direct selection.

Acknowledgments

We would like to thank Philip McKinley, Wesley Elsberry, Jeff Clune,

Michael Vo, Erica Rettig, and other members of the MSU Digital

Evolution Laboratory for valuable observations and dialogue, and David

Kirtley of the University of Texas-Pan American Department of Computer

Science for help with graphics. We also thank the anonymous reviewers of

this paper whose helpful comments resulted in a stronger paper.

Author Contributions

Conceived and designed the experiments: LMG DMB FCD RTP CO.

Performed the experiments: LMG. Analyzed the data: LMG. Contributed

reagents/materials/analysis tools: LMG DMB CO. Wrote the paper:

LMG.

References

1. Ofria C, Bryson DM, Wilke CO (2009) Artificial life models in software. In:

Adamatzky A, Komosinski M, editors, Advances in Artificial Life, Berlin:
Springer-Verlag, chapter Avida: A Software Platform for Research in

Computational Evolutionary Biology. 2nd edition, 3–36.
2. Grabowski LM, Bryson DM, Dyer FC, Ofria C, Pennock RT (2010) Early

evolution of memory usage in digital organisms. In: Artificial Life XII:
Proceedings of the Twelfth International Conference on the Synthesis and

Simulation of Living Systems. Cambridge, MA: MIT Press, 224–231.

3. Grabowski LM, Bryson DM, Dyer FC, Pennock RT, Ofria C (2011) Clever
creatures: case studies of evolved digital organisms. In: Proceedings of the

Eleventh European Conference on the Synthesis and Simulation of Living
Systems (ECAL 2011). Cambridge, MA: MIT Press, 276–283.

4. Adami C, Ofria CA, Collier TC (2000) Evolution of biological complexity.

Proceedings of the National Academy of Science 97: 4463–4468.
5. Goldstein R (2009) Evolution of biological complexity. In: Séminaire Poincaré

XII. Institut Henri Poincaré, 75–88.
6. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of

complex features. Nature 423: 139–144.
7. Dale K, Collett TS (2001) Using artificial evolution and selection to model insect

navigation. Current Biology 11: 1305–1316.

8. Vickerstaff R, Di Paolo EA (2005) Evolving neural models of path integration.
Journal of Experimental Biology 208: 3349–3366.

9. Haferlach T, Wessnitzer J, Mangan M, Webb B (2007) Evolving a neural model
of insect path integration. Adaptive Behavior 15: 273–287.

10. Goldsby HJ, Serra N, Dyer FC, Kerr B, Ofria C (2012) The evolution of

temporal polyethism. In: Artificial Life 13: Proceedings of the Thirteenth
International Conference on the Simulation and Synthesis of Living Systems.

Cambridge, MA: MIT Press, 178–185.

11. Wehner R, Wehner S (1986) Path integration in desert ants: approaching a long-

standing puzzle in insect navigation. Monitore Zooligico Italiano 20: 309–331.
12. Collett TS (1992) Landmark learning and guidance in insects. Philosophical

Transactions of the Royal Society of London B 337: 295–303.
13. Wehner R (1997) The ant’s celestial compass system: spectral and polarization

channels. In: Lehrer M, editor, Orientation and communication in arthropods,
Basel, Switzerland: Birkhauser Verlag. 145–185.

14. Wolf H (2011) Odometry and insect navigation. Journal of Experimental Biology

214: 274–276.
15. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: Stepping on stilts

and stumps. Science 312: 1965–1967.
16. Wilke CO, Wang J, Ofria C, Adami C, Lenski RE (2001) Evolution of digital

organisms at high mutation rates leads to survival of the flattest. Nature 423:

139–144.
17. Clune J, Misevic D, Ofria C, Lenski RE, Elena S, et al. (2008) Natural selection

fails to optimize mutation rates for long-term adaptation on rugged fitness
landscapes. PLoS Computational Biology 4: e1000187.

18. Misevic D, Ofria C, Lenski RE (2006) Sexual reproduction reshapes the genetic
architecture of digital organisms. Proceedings of the Royal Society B 273: 457–

464.

19. Clune J, Goldsby HJ, Ofria C, Pennock RT (2011) Selective pressures for
accurate altruism targeting: evidence from digital evolution for difficult-to-test

aspects of inclusive fitness theory. Proceedings of the Royal Society B 278: 666–
674.

20. Ofria C, Adami C, Collier TC (2002) Design of evolvable computer languages.

IEEE Transactions in Evolutionary Computation 17: 528–532.
21. Zhang SW, Bartsch K, Srinivasan MV (1996) Maze learning by honeybees.

Neurobiology of Learning and Memory 66: 267–282.

Case Study: Evolving Behavior in Digital Organisms

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e60466

