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Abstract

Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools
to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory
elements is brought back to the forefront of synthetic biology research. Here we developed a quantitative design method
for regulatory elements based on strength prediction using artificial neural network (ANN). One hundred mutated Trc
promoter & RBS sequences, which were finely characterized with a strength distribution from 0 to 3.559 (relative to the
strength of the original sequence which was defined as 1), were used for model training and test. A precise strength
prediction model, NET90_19_576, was finally constructed with high regression correlation coefficients of 0.98 for both
model training and test. Sixteen artificial elements were in silico designed using this model. All of them were proved to have
good consistency between the measured strength and our desired strength. The functional reliability of the designed
elements was validated in two different genetic contexts. The designed parts were successfully utilized to improve the
expression of BmK1 peptide toxin and fine-tune deoxy-xylulose phosphate pathway in Escherichia coli. Our results
demonstrate that the methodology based on ANN model can de novo and quantitatively design regulatory elements with
desired strengths, which are of great importance for synthetic biology applications.
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Introduction

The coming era of synthetic biology aims at design and

construction of complex biological networks to achieve our special

goals (e.g., high-level production of clinically valuable natural

products), which requires fine-tuning gene expression in the

cellular networks to achieve an expected metabolic behaviour

[1,2]. Genetic elements with desired strengths/activities, e.g.,

promoters/RBSs for transcriptional/translational controls, are the

most important tools to accurately control the expression of rate-

limiting genes in an engineered system. In the last decade, an array

of randomly mutated or synthetic promoter libraries with a wide

range of strength have been constructed and applied to control

protein expression or pathway engineering in E. coli and yeast

[3,4,5]. However, acquisition of a controllable regulatory element

from a random library needs laborious screening and multifaceted

characterizations to ensure homogeneity at the single-cell level [5],

especially in the situation of multiple genes regulated at different

expression levels in one system. More recently, great advances in

synthetic biology and its applications in engineering pathways and

producing valuable chemicals in microbes have brought back the

sequence-activity modelling approaches to the forefront. Re-

searchers have put immense interests to decipher the ‘regulatory

code’ (e.g., 210/235 region, RBS region) that translates DNA

sequences into expression strength [6,7,8,9], and built quantitative

models for strength prediction and rational design of regulatory

elements [10,11,12,13]. For instance, based on position weight

matrix (PWM) models, Rhodius VA et al [12] scored various motifs

of E. coli sE binding promoters and correlated promoter scores

with in vitro and in vivo measured strength, the correlation

coefficient values (R) ranged from 0.57 to 0.77 for in vitro and in

vivo strength fit was achieved. Besides promoter, Salis HM et al [10]

targeted translation initiation process and developed a equilibrium

statistical thermodynamics model for designing synthetic RBSs

(linear regression R2 ranged from 0.54 to 0.91), which correlates

the Gibbs free energy variation of translation initiation with the

translation rate. The above methods mainly targeting feature

motifs or key processes have reached a certain point of success. But

as Jensen et al [14] and De Mey M et al [11] indicated, promoter

strength could not be simply linked to anomalies in the feature

motifs such as 210 box and/or 235 box, and to the length of

spacer. Therefore, De Mey M et al [11] established a correlation
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between the entire sequence and strength by applying partial least

squares (PLS) regression method. This model exhibits promising

applications for quantitative strength prediction and rational

design of promoters, but still has great potential to improve its

accuracy. Hence, building precise computational models that can

predict the activity of regulatory elements and quantitatively

design elements with desired strength is still a real challenge in

gene expression area over decades.

Aforementioned quantitative prediction models commonly use

linear regression analysis or its derivative methods (e.g., linear

correlation of data after logarithm processing) to simplify the

complex process for model construction. Thus, it is hard to well

reflect the complex non-linear relationship between the sequences

and their strengths, which results in a low prediction accuracy and

poor generality. In addition, these models are supposed to have the

potential, but have not been further developed into in silico

methods for de novo design of elements with desired strength. In

contrast to the above methods, we introduced a non-linear

modelling methodology, artificial neural network (ANN), to

address these issues. ANN is essentially a mathematical model

constructed by simulation of the structure and function of human

brain neural networks [15,16]. It can be adapted to continuously

change the network structure based on input/output information

during learning phase, which could reflect the non-linear

relationships between quantitative characteristics and related

qualitative performance in complex phenomena. Thus, ANNs

have been widely used to various biological research fields such as

protein structure and stability prediction [17,18,19], RNA

secondary structure prediction [20], as well as promoter recogni-

tion and structure analysis [21,22,23,24,25,26,27,28]. In this work,

we constructed a high-performance ANN model to directly predict

the strength of regulatory element from its sequence. Based on this

model, we further developed an effective computational platform

for quantitative design of novel regulatory elements with desired

properties for synthetic biology applications.

Materials and Methods

Strains, plasmids, reagents and general manipulation
All strains and plasmids involved in this study are listed in

Table 1. E. coli DH10B was used for library construction and

strength quantification. E. coli BL21(DE3) was served for BmK1

expression and amorphadiene biosynthesis. Enzymes & reagents

for DNA manipulation and bacteria culture were purchased from

New England Biolabs, Takara, or Oxoid. All primers, designed

sequences, codon optimized [29] peptide BmK1 (bmk1, Genbank:

AAD39510), and amorphadiene synthase (ads, Genbank:

AAF98444) genes [30], were synthesized by Generay Biotech

Ltd. (Shanghai, China). Antibiotics were added according to the

resistance marker of plasmids in each culture. The working

concentration of ampicillin and kanamycin were 100 mg/L and

50 mg/L, respectively.

Reporter plasmid pJF07 was created by inserting a gfp gene [5]

into the BamHI & EcoRI sites of pTrcHis2B. To create plasmids

s14/s05/s21-bmk1, the bmk1 gene was inserted into plasmids s14/

s05/s21-gfp to replace the gfp gene. The dxs gene was obtained by

PCR using primers dxsF (59-CATGCCATGGGCATGAGTTTT-

GATATTGCCAAATACCCG-39) and dxsR (59-CCGGAATT-

CACTAGTTTATGCCAGCCACCTT-39) and genomic DNA of

E. coli K12 MG1655 as template. The isolated dxs gene fragment

was cloned into the NcoI & EcoRI sites of pTrcHis2B to create

plasmid pTrcHis2B-dxs, or inserted into s14/s05/s21-gfp to replace

the gfp for creation of plasmids s14/s05/s21-dxs respectively. The

ads gene was inserted into the NdeI & EcoRI sites of pET21c to

create plasmid pET21c-ads. The ispA gene was isolated by PCR

using primers (59-CATGCCATGGGCATGGACTTTCCG-

CAGCAACTCGAAG-39) and (59-CCGGAATTCACTAGTT-

TATTTATTACGCTGGATGATGTAG-39) and the genomic

DNA of E. coli K12 MG1655 as template. The product of ispA was

inserted into the NcoI & EcoRI sites of pET28a to create pET28a-

ispA. The XbaI & EcoRI excised fragment of pET21c-ads was

inserted into the SpeI & EcoRI sites of pET28a-ispA to create

pET28a-ispA-ads. All standard DNA manipulations were per-

formed as described by Sambrook et al. [31].

Library construction and characterization
Random mutagenesis of the wild-type Trc promoter & RBS

sequence was performed by error-prone PCR using primers TrcF (59-

ATAAGAATGCGGCCGCAACGGTTCTGGCAAATATTCTG

AAAT-39, the restriction site is underlined. The same below) and TrcR

(59-TCCTTTACGCATTGGATCCATGG-39) and plasmid pJF07

as template according to the Kit’s instruction (JBS Error-Prone Kit

PP101, Jena Bioscience). The reporter plasmid skeleton was PCR

amplified by PrimeSTAR DNA polymerase using primers pJF07F (59-

CGGGATCCAATGCGTAAAGGAGAAGAAC-39) and pJF07R

(59-ATAAGAATGCGGCCGCATGATGTCGGCGCAAAAAAC

ATTATC-39) and plasmid pJF07 as template. PCR products of the

reporter plasmid skeleton and Trc promoter & RBS excised by NotI &

BamHI were ligated and transformed into DH10B competent cells.

The transformed culture were spread onto LB agar plate and cultivated

overnight at 37uC for 16 hours.

For primary screening, transformants were picked out into the

48-deep-well plate and screened through gene fluorescent protein

assay (excitation/emission wavelength = 485 nm/535 nm). The

conditions for 48-deep-well plate cultivation were as follows:

0.5 ml LB medium with 0.1 mM IPTG in each 5 ml-well at 37uC
and 250 rpm for 8 h during exponential phase. The OD600 nm

and green fluorescent signal of 100 ml culture was quantified in a

96-well plate reader (Multiskan FC Microplate Photometer,

Thermo Scientific). For the convenience of comparison, we used

the relative strength [30] to represent the strength of a mutated

sequence, which was defined and calculated as

S~
( F

OD600
)
clone

-( F
OD600

)pTrcHis2B

( F
OD600

)
pJF07=m000

-( F
OD600

)pTrcHis2B

,

where S is the relative strength of the sequence, F the fluorescent

value; pTrcHis2B the blank control, and pJF07=m000 the wild-

type Trc promoter & RBS.

One hundred clones with distributed strength were selected and

cultivated overnight in LB broth and preserved in 20% glycerol at

280uC for seed culture. Fine quantification of the selected

elements was performed in tube (15 mm6150 mm) and assayed

by flow cytometry (FACSCalibur flow cytometer, Bection Dick-

inson). Seventy-five microliters of seed culture was innoculated

into 1.5 ml LB with 0.1 mM IPTG and incubated at 37uC and

250 rpm for 3 h at exponential phase. The culture was cooled with

ice bath and assayed using clone containing pTrcHis2B as blank

control. Each clone was sampled with 20,000 events and the

geometric mean (Gmean) of fluorescent signal was calculated using

statistics. The relative strength value [32] compared with wild-type

Trc promoter & RBS was calculated as

Quantitative Design of Regulatory Elements
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S~
Gmeanclone

GmeanpJF07=m000

:

Computational platform construction
Matlab 2012a (Mathworks Inc., http://www.mathworks.com/)

ran on a personal computer with Microsoft Windows 7 64-bit

(Microsoft Inc., http://www.microsoft.com/) operation system.

Neural Network Toolbox within Matlab served as the basic tool

for artificial neural network (ANN) model construction, data fitting

and prediction. All programs used in this work were designed and

run upon Neural Network Toolbox and Matlab environment.

Cultivation of recombinant strains and products analysis
Peptide expression was performed in E. coli BL21(DE3) at 37uC

and 250 rpm, induced with 0.1 mM IPTG at 0.6 of OD600 for

3 h, and analyszed by SDS-PAGE. The stained PAGE was

imaged by Tanon 2500R gel-imaging system (Tanon Science &

Technology Ltd., Shanghai, China). The relative content of

BmK1 to total cellular protein was calculated by the GIS 1-D

software (Tanon) according to the ratio of the intensity of target

peptide band to that of all protein bands.

Recombinant strains E. coli BL21(DE3) harbouring plasmid

pET28a-ispA-ads and s14-dxs, or s05-dxs, or s21-dxs were used for

amorphadiene production. Shake-flask fermentation was performed

using the following conditions: 2% of inoculation and 10 ml TB

medium (12 g/L tryptone, 24 g/L yeast extract, 2.31 g/L KH2PO4,

12.54 g/L K2HPO4) in 100 ml shake-flask with 2% glycerol, 20%

dodecane, and 0.1 mM IPTG at 28uC and 250 rpm for 3 days. After

cultivation, dodecane phase was diluted using ethyl acetate to an

appropriate concentration and analysed by GC-MS using caryophyl-

lene (Sigma-Aldrich) as internal standard [30].

Results

Construction of Trc promoter & RBS strength library
Trc promoter is commonly used for protein expression in E. coli or

other prokaryotic systems. To build and train the ANN models, we

initially constructed and characterized a mutated Trc promoter library.

Considering that protein expression is influenced by both transcription

and translation processes, herein the DNA region of Trc promoter plus

its RBS (224 bp in total) from a commercial plasmid pTrcHis2B was

subjected to random mutagenesis. The mutagenesis rate of the library

reached up to about 20%. After initial screening 4,000 clones, 100

mutants with uniformly distributed strengths were chosen to construct

a strength-gradient library (Figure 1 and Text S1). All of the mutants

were finely quantified and sequenced (Text S2 and Text S3). The

library contains 100 sequences (including the wild-type sequence) with

the strength ranging from 0 to 3.559 (relative to the strength of the

original sequence), of which 20 sequences are positive mutants (relative

strength .1.0) and 79 other sequences are negative mutants (relative

strength ,1.0).

Construction and training of ANN predicting models
The initial ANN model was built as a backpropagation model

(BP-ANN model) by using Matlab functions provided by Neural

Network Toolbox. The model contains three layers, including an

input layer, an output layer and a hidden layer. Neuron numbers

of the input layer and the output layer were 896 and 1 (determined

by the data conversion rule), respectively. For the hidden layer, the

number was variable for optimization. The initial weights for all

neuron connections were randomly assigned by Matlab functions.

We evaluated the predicting performance by using the sum

squared error (SSE) between the prediction value ai and target

strength value ti as

SSE~
Xn

t~1

(ai{ti)
2

(where n is the sequence number of training data set or test data

set), and defined prediction error as

Ei~Dai{ti D:

The activation functions of the hidden layer and the output

layer were set to be a non-linear sigmoid function ‘logsig’, which

Table 1. Strains and plasmids in this study.

Strains & plasmids Relevant characteristics Source

DH10B F- mcrA D(mrr-hsdRMS-mcrBC) Q80lacZDM15 DlacX74 recA1 endA1 araD139 D(ara, leu)7697 galU galK l- rpsL nupG Invitrogen

BL21(DE3) F- ompT hsdS (rBB-mB-) gal dcm (DE3) EMD4
Biosciences

pTrcHis2B Ampicillin resistance marker, Trc promoter Invitrogen

pJF07 Plasmid pTrcHis2B carrying a gfp gene at BamHI/EcoRI sites This study

pET28a-ispA pET28a derived plasmid carrying a ispA gene at NcoI/EcoRI sites This study

pET21c-ads pET21c derived plasmid carrying a ads gene at NdeI/EcoRI sites This study

pET28a-ispA-ads pET28a derived plasmid carrying ispA, ads for amorphadiene production This study

s14/s05/s21-gfp Three pTrcHis2B derived plasmids carrying synthetic promoters s14 (0.56), s05 (1.00) and s21 (2.50) followed
by a gfp gene at BamHI/EcoRI sites, respectively

This study

s14/s05/s21-bmk1 Three pTrcHis2B derived plasmids carrying synthetic promoters s14 (0.56), s05 (1.00) and s21 (2.50) followed by
a bmk1 gene at NcoI/HindIII sites, respectively

This study

s14/s05/s21-dxs Three pTrcHis2B derived plasmids carrying synthetic promoters s14 (0.56), s05 (1.00) and s21 (2.50) followed by
a dxs gene at NcoI/EcoRI sites, respectively

This study

pTrcHis2B-dxs pTrcHis2B derived plasmid carrying a dxs gene at NcoI/EcoRI sites This study

doi:10.1371/journal.pone.0060288.t001
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was defined as

f (x)~
1

1ze{x
:

For training of BP-ANNs, a set of example pairs was given as

(x,y), x[X and y[Y , and the aim was to find a function F : X?Y
that can match the examples. Here, X refers to the promoter &

RBS sequences and Y refers to their relative strength. In other

words, we wished to infer the mapping relationship between

sequence and strength by the samples of training data set. Here,

the mapping relationship was a ‘black box’ which can be served as

a predicting model for the prediction of test set data. This ‘black

box’ may be constructed after training by a set of sample data.

The original sequence data were translated to digital data and

served as the input matrix according to the following rules: A = {1,

0, 0, 0}, G = {0, 1, 0, 0}, C = {0, 0, 1, 0}, and T = {0, 0, 0, 1}. For

instance, a given sequence ‘ATTGCC’ can be translated to a ‘0-1’

digital series of {1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,

0, 0, 1, 0}.

It must be noted that, since the output range of logsig function

lies in (0,1), while the target strength can be greater than 1, so it

was necessary to normalize the target strength data through

dividing by the maximum strength value and then multiplying by

this value after simulation.

The goal of SSE value for fitting training data was set to be 0.2.

The initial weights for all neuron connections were set randomly

and automatically by Matlab functions. In addition, ‘traingdx’ was

adopted as the learning function; the training epochs and

momentum factor were set to be 5,000 and 0.95, respectively.

All 100 sequences in the library were randomly split into two

data sets (the training set and the test set) to train and test the ANN

prediction models. Considering the effect of the size of training set

on the prediction performance, training set was sampled from 40

to 90 sequences (51 situations in total) and each corresponding test

set contained the rest sequences. The neuron number of the

hidden layer was optimized in a range from 5 to 30, and each

trained to generate 1,000 models. Consequently, we obtained

5162661,000 = 1,326,000 models. Owing to the random initial-

ization of weights, the trained models have different prediction

performance which can be evaluated by their SSE and E values for

prediction of the corresponding test set. Figure 2 describes the

overall trends of SSE and E values as a function of the size of the

training data set. Both the maximum and the minimum SSEs

decline with the increasing size of training data set (Figure 2A),

indicating that a certain size of training data set is a requisite for

obtaining a model with high predicting performance. For

prediction errors E, however, both the maximum and the

minimum errors do not significantly decline until the size of

training set reaches 88 (Figure 2B). Among all generated models,

NET90_19_576 (containing 19 hidden layer neurons with a

training set’s size of 90, see Dataset S1 and Model S1) shows the

best performance with the lowest SSE of 0.19 and the highest

correlation coefficient values of 0.98 for test set prediction.

Meanwhile, its correlation coefficient values for fitting the training

data set reaches up to 0.98 as well (Figure 3A and 3B), suggesting

that this model does not overfit in the process of model training.

Besides the high correlation coefficient for the total test set,

NET90_19_576 also accurately predicts each element in the test

set (Figure 3C). Both the correlation coefficient and the predicting

accuracy in our ANN model are significantly improved compared

with PLS- [11], PWM- [12] and thermodynamics-based [10]

methods. As a comparison, the best result of PWM-based fitting

using our data only has an R of 0.63 (Figure 3D).

Quantitative design of promoter & RBS sequences with
desired strength

Owing to the high correlation and accurate prediction

performance, the model NET90_19_576 can be effectively

developed into a computational platform for quantitative design

of novel regulatory parts. Our quantitative design strategy was

achieved by consequential in silico mutagenesis on native Trc

promoter & RBS sequences coupled with rapid strength prediction

using NET90_19_576 model. There are two approaches to

introduce mutations: i) introduction of random mutagenesis and

ii) only introduction mutation of key points (nucleotides signifi-

cantly affecting the strength). For the first approach, some ‘non-

key points’ may be introduced as mutations and increase the

calculation time. Besides directly obtaining one (or more)

sequence(s), it can randomly generate an in silico library in an

arbitrary scale (e.g., 10,000 sequences). Hence, we can obtain any

desired sequence(s) from this pre-constructed computational

library. For the second approach, the effect of single point

mutation of wild-type sequence on its strength should be evaluated

to determine which points are the ‘key-points’ at first. The strength

Figure 1. Relative strengths of the constructed Trc promoter & RBS library. The region of Trc promoter & RBS in pTrcHis2B is selected for
random mutagenesis by error prone PCR, and mutants with various strength are obtained by detecting the fluorescent intensity of GFP after
screening by 48-deep-well plates and flow cytometry assay.
doi:10.1371/journal.pone.0060288.g001
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of mutated sequences may have some correlation with their

mutation points. Those sequences with extremely low activity (i.e.

m006, m007, m029, etc.) have large amount of mutation points,

and most of their functional domains, such as 235 region, 210

region, and RBS region, are destroyed (except for m413, m447,

m590, m599). On the contrary, most mutated sequences with high

strength have relatively conservative domains. Our results

reconfirm that key points significantly affect the sequence strength.

We can find out these key points through changing nucleotide one-

by-one and use them for designing new element sequences using

our computational platform. Figure 4A presents the prediction

results of all single point mutations and each point has three

Figure 2. Functional relationship between the prediction performance of ANN models and the scale of training data set. Training
data set scale ranges from 40 to 90 sequences. (A) Maximum and minimum SSE values of prediction as a function of training data set scale. (B)
Maximum and minimum prediction errors as a function of training data set scale.
doi:10.1371/journal.pone.0060288.g002

Figure 3. The well trained BP-ANN model NET90_19_576 can finely predict the measured Trc promoter & RBS strengths. (A) The
predicted relative strengths of promoter & RBS fit with the measured values using the data of training set. (B) The predicted values fit with the
measured values using the data of test set. (C) The comparison results between prediction values and target values (experiment values). (D) The best
fitting results of log Trc promoter & RBS activities with their PWM scores.
doi:10.1371/journal.pone.0060288.g003
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mutation types. As a result, 135 points are found significantly

impacting the sequence strength, in which 15 points (designated as

positive points) can significantly enhance $20% of the strength

and 120 other points (designated as negative points) can

significantly reduce $20% of the strength. Sequence logo analysis

[33] was also performed to show the most conserved bases among

mutations. As a result, most positive impacting points are non-

conservative in sequences with high activity (strength .1) (11 of

15, Figure 4B) and conservative in sequences with extremely low

activity (strength ,0.1) (8 of 15, Figure 4C); in contrast, most

negative impacting points are non-conservative in sequences with

extremely low activity (90 of 120, Figure 4C) and conservative in

sequences with high activity (91 of 120, Figure 4B) as well. That is

to say, it is easier to obtain a positive mutation sequence by

changing the positive impacting points, or to obtain a negative

mutation sequence by changing the negative impacting points.

Moreover, most negative points are found to change nucleotide

from AT to GC (Figure 4D). It indicates that an increase in GC

content may decrease the sequence activity; a higher energy

barrier should be overcome for DNA dissociation with a higher

GC when transcription and translation initiate.

To further verify the effectiveness of our design, sixteen novel

Trc promoters & RBS sequences (s01–s08 designed from pre-

generated library by approach i, s11–s15 generated from random

mutagenesis by approach i, and s21–s23 designed by approach ii)

were synthesized in vitro and quantified their strengths in strain

DH10B (Figure 5, Text S1 and S2). The measured values of all

sixteen designed elements show good consistency with our desired

strength values, suggesting that both of the above two approaches

can achieve quantitative design of novel elements under in silico

environment.

Application of designed elements for protein expression
and pathway engineering

The aforementioned work proves that predicting strength of one

randomized part and designing a new part are feasible. To further

validate the methodology, we need to change the reporter GFP

with other metabolic enzymes to test if the designed parts are

functionally reliable. Herein we attempted to apply these

quantitatively designed regulatory elements in different genetic

contexts in strain E. coli BL21(DE3), which is protease deficient

and suitable for peptide/protein expression. The first case is to

optimize heterologous expression of a small peptide BmK1, which

is a scorpion toxin secreted by Chinese scorpion Buthus martensii

Karsch (BmK) and a traditional Chinese medicine for treating ion

channelopathies [34,35]. Like most small peptide toxins, BmK1 is

extremely difficult to express in prokaryotic host such as E. coli

[36,37]. The strength of promoters has large effects on the

production of target protein in surrogate hosts [38,39], we thus

selected three designed elements s14 (strength = 0.56), s05

(strength = 1.0) and s21 (strength = 2.50) to improve BmK1

expression. As shown in Figure 6B, these three elements make

great difference for the peptide expression. The expression level of

BmK1 was improved from 1.6% (s14) to 9.1% (s21) of total

cellular protein with the increase of element strength. This result

shows that the strength of our designed elements still agrees with

the expression level of the novel genetic context BmKI in

BL21(DE3), thus the functional reliability of designed regulatory

elements is further verified. In contrast to the expression of GFP

without obvious strain growth variations, the growth here was

significantly decreased with the accumulation of BmKI, which

may probably be due to the cellular toxicity of this small peptide.

The second case is to fine-tune the expression of 1-deoxy-D-

xylulose-5-phosphate synthase gene (dxs) in E. coli BL21(DE3),

which has been known to regulate the metabolic flux of deoxy-

xylulose phosphate (DXP) pathway [5]. Here we used three

designed promoters (s14, s05 and s21) with different strengths to

control the expression of dxs for improving the supply of isoprenoid

precursors. As shown in Figure 6B, the production of sesquiter-

pene amorphadiene was enhanced with the decrease of element

strength. The weakest element s14 achieves the highest yield of

amorphadiene (4.82 mg/L/OD600). This result agrees with the

previous report that fine tuning the expression of rate-limiting

enzymes can effectively improve pathway’s metabolic flux [5] and

further verified the functional reliability of our designed regulatory

elements. The strain growth here was also decreased with the

enhancement of dxs expression and the accumulation of

amorphadiene. Both cases demonstrate that our methodology is

an effective tool for designing and selecting regulatory element

with proper strength for fine-tuning the target gene in metabolic

engineering processe. The designed elements with proper strength

can achieve both optimized specific product yield and strain

growth, which can eventually maximize the process productivity.

Discussion

Constructing computational models that can precisely predict

the strength of a regulatory element and further quantitatively

build regulatory elements with desired strength have been a real

challenge in gene expression area over decades. Many non-linear

or unknown relationships between the sequences of regulatory

elements and their strengths are still waiting to be uncovered [7].

We have introduced a methodology for constructing high-

precision predicting model based on artificial neural network,

which can finely predict the strength of regulatory element by its

sequence. Both the high correlation coefficient and the predicting

accuracy confirmed that the model is competent for de novo

quantitative design of desired regulatory elements. The designed

elements can be successfully applied in different genetic contexts.

In contrast to the existing prediction models [10,11,12], the

presented method does not depend on comprehensive under-

standing of the transcription/translation processes. As most

current studies focusing on correlating quantitative characteristics

with qualitative information of biological behaviours [40,41], our

method can quantitatively link the strength of regulatory elements

with their sequences based on a finely characterized sequence

library. The influence of each nucleotide mutation on sequence

strength was evaluated and 135 key points were identified in this

work, which are very useful for further study of ‘regulatory code’

and de novo design of elements. Besides, the methodology can be

generalized and applied to construct models for predicting and

designing more other promoters and RBSs, and even other

regulatory elements like terminators.

Previous studies have confirmed that certain promoters can be

identified or predicted based on ANN method

[21,22,23,24,25,26,27,28], but no further effort was reported for

quantitative description of their strength. Here, we constructed a

finely characterzied Trc promoter & RBS library for sufficient

model training and greatly improved the prediction accuracy

compared with previous reported methods (PLS-, PWM- and

thermodynamics-based) [10,11,12]. In addition, we built BP-

ANNs using feed-forward as the network structure and Back-

propagation (BP) as the training algorithm, mainly due to their

rigorous mathematical derivation and proof, well generalization,

strong non-linear mapping property, and a wide range of

adaptability and effectiveness [15,16]. The effectiveness and high

accuracy of BP-ANNs in constructing strength prediction models

has been proven. Here, the initial model only contains one hidden
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Figure 4. Effect of each single point mutation on sequence strength and sequence conservative analysis. (A) Sequence strength
influenced by mutation of each single site. Red indicates positive mutation while blue indicates the negative. Deeper color means more significant
change of strength. Each box represents one base in the sequence. Figure in the boxes is the location number of this base, while the subscript
indicates that this base is mutated to another one (e.g., ARC means A mutated to C, and TRG means T mutated to G, etc.). (B) Conservative analysis
of high activity sequences (strength .1). Bases in the boxes are conservative points. ‘+/2’ indicates this point is predicted to be a positive/negative
‘key-point’. Same as below. (C) Conservative analysis of extremely low activity sequences (strength ,0.1). The analysis was performed using online
WebLogo Tool (http://weblogo.threeplusone.com/create.cgi). (D) Count of mutation types of the ‘key-points’. Figure in the boxes is the count of
negative or positive mutation number.
doi:10.1371/journal.pone.0060288.g004
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layer, since in theory it can be approximate to a specific function

in an arbitrary precision [16]. Adding more hidden layers may

enhance the prediction performance but greatly increase the

training time. Instead, optimization of the number of hidden layer

neurons can also improve the predicting performance [15]. To

address the overfitting problem, we tried SSEs ranging from 0.001

to 0.5 for model training and found the optimal value of 0.2. The

results demonstrate that higher SSE makes lower correlation

coefficients of fitting for both training data set and test data set. A

lower SSE generates a higher R value of fitting for training data set,

but a much lower R value of fitting for test data set. In other words,

setting a lower SSE value of fitting for training data set can easily

result in the overfitting problem and bad prediction performance

for the test data set. Therefore, setting a suitable SSE is important

to avoid overfitting problem and achieve the optimal prediction

performance.

During the library construction process, we found that large

fraction of clones was negative mutants and the probability of

picking a positive mutant was less than 0.5%. In contrast, five

designed elements with desired strength .1.0 were experimentally

verified. These results demonstrate that the present methodology

makes great sense for obtaining large amount of elements with

different strength without laborious experimental screenings,

especially for those stronger elements. But we cannot design a

Figure 5. Promoter & RBS sequence design based on ANN prediction model. (A) Sequence with desired strength can be designed by the
following strategies: i) 8 out of 10,000 sequences (s01–s08) are randomly selected from an in silico Trc promoter & RBS library generated based on
ANN predicting model NET90_19_576; ii) sequences (s11–s15) with desired strength can be generated by repeated introduction of random mutations
into the wild-type sequence under a certain mutation rate; iii) sequences (s21–s23) with desired strength can be generated by using different
combinations of ‘key site’ mutations based on the prediction of NET90_19_576. All designed sequences were synthesized and their strengths were
tested and compared with the design strength.
doi:10.1371/journal.pone.0060288.g005

Figure 6. Application of designed elements for peptide BmK1 expression and DXP pathway engineering in E. coli. (A) Sketch maps of
plasmids for designed elements applications. Plasmids s21-gfp, s05-gfp and s14-gfp contain gene gfp between BamHI/EcoRI sites, plasmids s21-bmk1,
s05-bmk1 and s14-bmk1 contain gene bmk1 between NcoI/HindIII sites, plasmids s21-dxs, s05-dxs and s14-dxs contain gene dxs between NcoI/EcoRI
sites. (B) Effect of applying designed elements for peptide BmK1 expression and DXP pathway engineering in E. coli. The wild-type Trc promoter and
RBS (without inserting dxs gene) served as the blank control.
doi:10.1371/journal.pone.0060288.g006
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high strong element with a relative strength larger than the

maximum value of training data set (3.559), which is limited by the

strength range of data samples for model training.

With the rapid development of synthetic biology, quantitative

characterization and standardization of regulatory elements will be in

general valuable in predicting parts in ever increasing genome

sequence data [42]. The presented methodology would help us to

easily build high performance prediction and design models using these

standardized data in literatures/databases (e.g., the Registry of

Standard Biological Parts founded by MIT, http://partsregistry.org)

without reconstructing libraries by repeated and laborious experiments.

In this framework, our methodology for constructing high prediction

performance models and quantitative design of regulatory elements has

bright prospects for synthetic biology application.
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